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Abstract. 3D object detection from monocular images is an ill-posed
problem due to the projective entanglement of depth and scale. To over-
come this ambiguity, we present a novel self-supervised method for tex-
tured 3D shape reconstruction and pose estimation of rigid objects with
the help of strong shape priors and 2D instance masks. Our method
predicts the 3D location and meshes of each object in an image using
differentiable rendering and a self-supervised objective derived from a
pretrained monocular depth estimation network. We use the KITTI 3D
object detection dataset to evaluate the accuracy of the method. Exper-
iments demonstrate that we can effectively use noisy monocular depth
and differentiable rendering as an alternative to expensive 3D ground-
truth labels or LiDAR information.

1 Introduction

Autonomous driving relies heavily on 3D object perception for safe navigation.
Most existing systems leverage active sensors (e.g., LiDAR, radar) for location
estimation, yet they are either prohibitively costly for large-scale deployment
or too sparse in spatial coverage. For these reasons, research in monocular 3D
object detection has seen rising popularity in recent years.

Ongoing advancements have led to steadily improving detection accuracy [3,
23, 27]. Despite foregoing active sensing, they still require supervision in the form
of 9D cuboid labels which encode 3D location, rotation and metric object dimen-
sions. Most often, such labels are obtained with the help of annotation pipelines
and 3D LiDAR point clouds, demanding the usage of costly human labour and
expensive sensors. Alternatively, one can leverage self-supervised autolabeling
techniques that employ strong shape priors and optimize 3D alignment in stereo
point clouds [5, 6, 31] or mixed RGB/LiDAR setups [36].

In this paper, we explore a novel solution towards tackling 3D location and
shape estimation from 2D instance mask detections, requiring only monocular
input and geometric priors for self-supervision. Recently, self-supervised depth
estimation networks [9, 26] have become interesting alternatives to LiDAR sens-
ing. They are generally trained using only video sequences and are able to es-
timate depth with absolute scale when combined with weak supervision (e.g.,
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Fig. 1: We propose a self-supervised optimization pipeline for monocular 3D ob-
ject estimation via analysis-by-synthesis over object pose, metric dimensions,
shape and texture. Left: Starting from a 2D instance mask detection, we feed
the latent variables h into our decoder network and use differentiable rendering
to obtain 2D projections. We use various render-and-compare losses over multi-
ple quantities for comparative analysis and back-propagate the error. Right: The
fitting process over multiple iterations. Starting from a random initialization, we
can recover the actual object properties quite well.

velocity of the ego-camera [9]). However, they tend to be rather noisy, overall
less accurate than LiDAR, and therefore not well-suited for precise 3D object
localization and metric dimension estimation. We therefore incorporate addi-
tional strong priors over learned textured object shapes for regularization and
run comparative scene analysis via differentiable rendering [20, 11, 19, 2]. This
allows for optimizing 3D variables against image evidence via self-supervision
and back-propagation. While initial work focused mostly on toy examples, re-
cent papers have successfully explored applications of analysis-by-synthesis in
the wild [16, 15, 38, 36] and we follow in their path.

We present an example optimization of our pipeline in Fig. 1. Starting from a
2D detector that produces 2D boxes with associated instance masks, we optimize
over the 3D location, rotation, metric dimensions as well as the object’s shape
and texture. In our paper, we handle metric dimension as 3D scaling. For the
actual alignment computation, we leverage complimentary cues in the form of
instance masks, RGB values as well as monocular depth, and regularize with our
textured shape space. While our initial estimation is quite rough, our method is
able to converge to a good solution while traversing the possible space of shapes,
textures, metric sizes and poses. This process is run sequentially until all 2D
detections in the scene have been parsed and transformed into 3D estimates.

To summarize our main contributions: Firstly, we remove the necessity for 3D
sensing or ground-truth information, making our 3D object estimation pipeline
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a truly monocular approach. Secondly, we propose the idea of regularizing noisy
monocular depth maps at the instance level by strong geometric object priors.
Lastly, we evaluate our pipeline on the KITTI 3D dataset [7] and show that we
can achieve comparable accuracy to SoTA methods that rely on 3D supervision.

2 Related Work

Due to the huge body of related 3D detection work, we will focus our survey
mostly on monocular methods. Mono3D [3] is an early work which introduces a
region proposal method tailored to autonomous driving. This method computes
the 3D bounding box by exploiting different cues such as semantic segmenta-
tion, instance segmentation, shape, context features and absolute locations in
2D/3D space. Importantly, they incorporate priors to limit the cuboid search
space by using pre-defined object sizes and orientations as well as assuming
a known ground plane. Deep3DBox [25] estimates cuboids from 2D bounding
boxes, assuming that the former should be tightly fit to the latter when pro-
jected onto the image plane. This strong assumption can underperform in cases
where the actual 2D bounding boxes are not tightly enclosing the objects due
to occlusion or truncation. The advent of unsupervised/self-supervised monoc-
ular depth estimation [8, 22, 26] saw their inclusion in recent detection work. In
Multi-Fusion [34] 3D region proposals are generated by backprojecting 2D pro-
posals to the 3D space using monocular depth. Similarly, ROI-10D [23] employs
such depth maps to robustify their bounding box lifting from the 2D to the 3D
space.

Methods based on the idea of Pseudo-LiDAR [32, 21] leverage reprojected
monocular depth from off-the-shelf models and run detection networks that
have been originally designed for LiDAR input with impressive accuracy im-
provements. All the mentioned approaches benefit greatly from the employed
monocular depth modules but their analysis shows that their overall perfor-
mance is heavily dominated by the accuracy of depth estimation. For this reason,
regularization from additional priors is desirable.

In terms of analysis-by-synthesis, much novel work has been presented in re-
spect to differentiable rendering. The works [20, 11, 2, 17] propose different ways
to produce gradients for the rasterization of triangle meshes. Building on such
ideas, both [16] as well as [36] present render-and-compare optimization frame-
works with learned shape spaces for automotive scenarios. The former uses 2D
instance masks for estimating the shape and up-to-scale pose whereas the latter
leverages LiDAR observations for full 3D estimation.

There exists other slightly-related work that leverages learned shape spaces
for automotive object retrieval that we discuss for completeness. In [5] a detector
initializes object instances which are further optimized for pose and shape priors
over stereo depth. The authors later extended it [6] for temporal priors to also
recover pose trajectories. In a similar vein, [31] runs full 3D object pose and
shape recovery over stereo depth. The authors of [29] explore probabilistic 3D
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Fig. 2: Overall pipeline of our method where hl, hd, hr are the variables for
location, dimension and rotation, and hs, ht are the latent variables for shape and
texture. We denote with Lm, Lb, Ld, Lp the losses for the silhouette, bounding
box, depth map and pixel colors respectively.

object completion via a shape space and LiDAR as weak supervision. Their work
assumes correct localization and focuses solely on the reconstruction quality.

3 Method

As mentioned, most existing monocular 3D detection methods rely on supervised
learning, requiring 3D cuboid information. Instead, we propose to estimate all
required 3D object properties via self-supervision and differentiable rendering,
avoiding any form of 3D annotation. We depict our pipeline in Fig. 2 and will
provide an overview before going into more detailed descriptions in the next
subsections.

We initially run off-the-shelf object detectors on an image to produce masked
2D detections. For each detection, we place an initial estimate into 3D space by
instantiating all object properties. Concretely, we capture metric location hloc ∈
R3, metric dimension hdim ∈ R3, rotation along the yaw axis hrot ∈ R, shape
hsh ∈ RDsh and texture htx ∈ RDtx . Following the parameterization introduced
in ROI-10D [23], we formulate the location hloc as the difference between the
center of 2D bounding box and the projected 3D centroid position (hu, hv) ∈
R2, together with the depth of the centroid hdep. We initialize hu = hv = 0,
whereas hdep are set hdim to the mean depth and dimensions. We also initialize
hrot, hsh, htx to random numbers sampled from a Gaussian with mean µ = 0 and
standard deviation σ = 0.1.

After this initialization, we run an iterative pipeline of 1) rendering, 2) pro-
jective loss computation over multiple different cues and 3) backpropagation to
our latent object variables. To produce a rendering, we feed hsh and htx through
generative models to produce object shape and texture. We then rescale and ro-
tate using hdim and hrot, place the object in the 3D space using hloc and finally
render an RGB/D image pair with the differentiable renderer implementation
from [11]. Note that we work at metric scale and therefore require known camera
intrinsics during optimization.
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Fig. 3: Illustration of our shape and texture generator. During training, images of
cars are encoded to shape and texture vectors that live on hyperspheres. These
vectors can then be decoded to 3D shapes and texture maps, which in turn are
rendered and used to compute reconstruction losses. After training, the decoder
part can be used independently to generate novel textured shapes.

2D Object Detection and Segmentation To identify all instances in the
scene, we use an off-the-shelf Mask R-CNN [10] model with the X-152 backbone
from detectron2 [33], trained on COCO [18] and thresholded at 0.1.

To compute our rendering losses, we need a clear foreground/background
separation. In order to produce a background mask, we compute a union over
all detection masks to first obtain a foreground mask, and then invert it. We
will evaluate the majority of our experiments with this approach. Alternatively,
one can also leverage semantic segmentation for the separation and we present
an ablative comparison in the experimental section.

Rendering We use the publicly available differentiable renderer from Kato et
al. [11] and although they introduced their method for color and silhouettes only,
we extend it for rendering depth maps in a differentiable way. We exploit the
simple fact that a depth map is differentiable with respect to the z-coordinates
of a surface without any approximations because the depth value at a pixel is
computed by a weighted sum of z-coordinates of the surfaces at the pixel.

Shape and Texture Generation Differentiable rasterization allows us to es-
tablish losses between renderings and an input image (render-and-compare). This
approach was initially adopted by 3D-RCNN [16] in which shapes were projected
to 2D silhouettes. Unfortunately, silhouettes retain only a fraction of the orig-
inal information and have an especially strong impact on rotation estimation.
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To leverage image information as much as possible, we therefore additionally
reconstruct textures and render a joint representation of textured shapes.

To encode a variety of object shapes and appearances, we employ a genera-
tive model that is able to produce a mesh and a texture map for given inputs.
Concretely, we use the single-image 3D object reconstruction method presented
in [13] and provide an illustration in Figure 3. This method adopts an encoder-
decoder architecture that transforms an image into a low-dimensional latent
space which in turn can be used to generate a 3D object. Even though we train
the entire encoder-decoder architecture beforehand, we discard the encoder and
only use the decoder later on.

We would like our generator to produce plausible shapes and textures for
any decoding input hsh and htx, ensuring that our latent spaces are smoothly
traversable without collapsing. Therefore, unlike [13], we project the hidden
vectors onto a unit hypersphere, similar to [36]. To distribute h′sh and h′tx uni-
formly on the hypersphere, we employ a regularization technique where we take
random samples on the sphere and pull the closest latent vectors towards those
random samples. Let rsh and rtx be random samples uniformly distributed on
the hyperspheres of Dsh and Dtx dimensions. We add the following term to the
loss function:

Lh =
1

Nb

(
Nb∑
i=1

min
j
|rish − h

j
sh|1 +

Nb∑
i=1

min
j
|ritx − h

j
tx|1

)
. (1)

Nb is the size of minibatch, and h′ish, h
′i
tx, r

i
sh, r

i
sh represent i-th sample in the

minibatch. The encoder-decoder architecture is trained using synthetic views of
3D car models taken from the ShapeNet dataset [1]. We found a latent dimen-
sionality of 8 for the shape Dsh and texture Dtx spaces to work quite well.

Monocular Depth Estimation To weaken the projective entanglement be-
tween object dimensions, locations and 2D appearance, we employ depth maps
extracted by a pre-trained, state-of-the-art monocular depth estimator that is
trained with self-supervision (PackNet [9]). The scale of the estimated depth is
calibrated from weak supervision in the form of ego-camera velocity.

3.1 Loss Functions

For self-supervision we propose four loss functions between renderings and image
evidence: Lp which penalizes pixel color deviations, Lb to maximize 2D bounding
box overlap, Lm for silhouette alignment,and Ld for depth map differences. We
notate an input image of H ×W pixels as IRGB ∈ RH×W×3, the foreground
map and depth map estimated from the image as IF ∈ RH×W and ID ∈ RH×W ,
respectively. In addition, assuming that the number of detected objects is No,
we notate the cropped and resized region of the i-th object from these maps as
IRGBi ∈ RHc×Wc×3, IFi ∈ RHc×Wc , and IDi ∈ RHc×Wc . For the reconstructed
counterparts, we use the same notations with hat.
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Additionally, we use a regularization term Ldim to penalize unrealistic di-
mensions. We define it as the L1 distance between the estimated dimension and
the mean dimension of objects in the dataset. The overall loss function is defined
as the weighted sum of all the loss functions and the regularization term:

L = λpLp + λbLb + λmLm + λdLd + λdimLdim. (2)

Pixel Map Difference The pixel map difference loss is defined as L1 distance
between rendered image and input image by using equation

Lp =
1

HcWc

Nb∑
i=1

Hc∑
j=1

Wc∑
k=1

|IRGBijk − ÎRGBijk |. (3)

Bounding Box Difference We compute the bounding boxes of the objects
from the rendered image. Let IoUB

i be the intersection over union between input
and rendered 2D bounding boxes of i-th object. We define the bounding box loss
as

Lb =

Nb∑
i=1

maximum(1− IoUB
i − tb, 0). (4)

As the predicted bounding boxes may be noisy, we allow the IoU to have a small
error margin of up to tb. This loss is differentiable with respect to the vertices of
the reconstructed shapes as the bounding box is computed by differentiable pro-
jection of vertices to image coordinates. Fitting estimated 3D bounding boxes to
detected 2D bounding boxes is a well-known approach [25], and some works [24]
use IoU as a metric. Different from these works, we compute projected bounding
boxes using 3D shapes instead of 3D bounding boxes.

Silhouette Difference Concretely, assuming that IFijk = 1 if the pixel jk of

the i-th image is foreground and IFijk = 0 if background, the IoU of i-th image is

IoUF
i =

∑Hc

j=1

∑Wc

k=1 I
F
ijk Î

F
ijk∑Hc

j=1

∑Wc

k=1 I
F
ijk + ÎFijk − IFijk ÎFijk

, (5)

Lm =

No∑
i=1

Lmi =

No∑
i=1

(1− IoUF
i ). (6)

Depth Map Difference The depth map loss is defined as the L1 difference
between the rendered depth and model-predicted depth by using the formula

Ld =
1

HcWc

Nb∑
i=1

Hc∑
j=1

Wc∑
k=1

IFijk Î
F
ijk|IDijk − ÎDijk|. (7)
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Note that during the optimization, all the pre-trained networks are used with
fixed weights and are not optimized. We disable back-propagation for ÎFijk and

back-propagate gradients only through ÎDijk.

3.2 Escaping Rotational Local Minima

Estimating rotation with render-and-compare approaches can easily lead to local
minima [12, 30] due to non-linear objectives and visual ambiguities. To deal with
this issue, we explore several rotations at every step of the optimization. We
sample 4 different variations (hrot, hrot ± 15◦, -hrot) as well as a random angle
sampled from a uniform distribution. If an angle r0 gives a lower error with the
perceptual metric [37] than the one used at current iteration, we set hrot to r0.
Also, the size of the input and the reconstructed images are adjusted to ensure
that the area of the object bounding boxes is the same, and the background
region is masked out using the estimated segmentation mask.

3.3 Detection Confidence Score

MonoDIS [27] proposes to learn confidences of 3D detections by weighting con-
fidences of corresponding 2D detections. As their method requires ground-truth
3D bounding boxes for confidence training, it is not applicable in a straight-
forward manner to our problem. Instead, we propose to weight 2D confidences
using our reconstruction errors after optimization. To this end, we compute the
silhouette reconstruction loss Lmi of the i-th image, and the ratio of protrusion
bi between rendered bounding box and detection bounding box. Our confidence
score c3D is then defined by using the formula

c3D = c2De
−αmLmi e−αbbi , (8)

with two hyperparameters αm, αb and the original 2D detection confidence c2D.

4 Experiments

We evaluate the proposed method on KITTI 3D [7], one of the most popular
benchmarks for 3D object detection in autonomous driving. KITTI 3D is com-
posed of synchronized RGB images/LiDAR frames, for which annotations of 2D
bounding boxes, 3D object location, 3D object dimension and 1D object rota-
tion angle along the y-axis (yaw) are provided. Unlike other approaches, our
method does not require 3D ground-truth or LiDAR observations in any part
of the pipeline. For a fair comparison to similar work, we use the same training
and validation splits proposed in [4] and focus on the car category.



Monocular Differentiable Rendering for Self-Supervised 3D Object Detection 9

Evaluation Metrics KITTI 3D uses different AP metrics to measure 2D and
3D detection accuracy at different cut-off thresholds (usually 0.5 and 0.7). For
each detection, the IoU overlap with a ground truth is computed either on the
image plane (2D), in bird’s eye view (BEV), or in volumetric 3D space. Following
a recent suggestion by [27], we use the AP|R40

metric that is currently used
in the official KITTI 3D benchmark leaderboard, instead of the older AP|R11

metric. For reference and a fair comparison to previously established work, we
also evaluate against the AP|R11

metric and share the results in the supplement.

System Configuration All experiments are performed on a Linux-based clus-
ter with 8 V100 (32GB) GPUs. Running the full pipeline on the KITTI 3D
validation dataset takes approximately one day.

Hyperparameters Tuning The hyperparameter values are set to λb = λm =
λp = 1, λd = 0.2, λdim = 0.1, and tb = 0.1. We use the Adam optimizer
[14] with α = 0.03, β1 = 0.5 and β2 = 0.9. For each detected object, we run
the optimization pipeline for 150 iterations. The hyperparameters for confidence
weighting are set to αm = 0.1 and αb = 0.03.

4.1 Comparison to SoTA

As a first experiment, we run our pipeline on the validation set and show our
quantitative results in Table 1 where we compare our inferred 3D boxes against
the ground truth labels. As can be seen, we position ourselves between the two
leading monocular 3D detectors MonoDIS [27] and MoVI-3D [28] for the easy
instances and fall slightly behind for the moderate and difficult cases. This shows
that our self-supervised 3D estimation method can be competitive with fully su-
pervised detectors trained on manually labeled 3D ground truth cuboids. For
more difficult instances, the monocular depth maps become noisier at longer
ranges, there is an increasing amount of occlusion, and there are smaller ob-
jects, all factors that challenge our losses for bounding box, silhouette, and pixel
differences. The autolabeling solution from [36] leverages shape priors similar to
us, yet has access to LiDAR observations that greatly benefit their scale and
3D location estimation. Nonetheless, especially for the more challenging 3D AP
metric, we can retrieve much more accurate object estimates overall. One of our
major differences over LiDAR equipped SDFLabel paper is the scale regression
method. SDFLabel often fail the strict 3D AP metric due to small deviations in
3D scale regression, especially at range where very few LiDAR points are on the
object. On the other hand, we leverage the dimension statistics of the cars as
a strong additional prior over generic driving scene instances. While SDFLabel
regress directly on metric scale, we regressed the deviation from the statistics.

We also present some qualitative results in Figure 4. It can clearly be seen
that our priors provide enough guidance to estimate the correct 3D locations and
rotations of the objects even if the predicted depth map is noisy. The depth map
provides weak supervision for the 2D loss to estimate the correct object scale
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and rough 3D location but is ultimately regularized by shape and texture. It is
also evident that optimizing for the 2D bounding box IoU loss Lb results in 3D
shape projections that tightly fit into the predicted 2D bounding boxes. Besides,
the regularization loss Ldim on dimensions prevents the predicted shapes from
being too different from the mean object shape.

4.2 Ablation Studies

Reconstruction Loss Firstly, we analyze the contribution of each individual
loss component on the final outcome. Table 2 shows that all losses have a signif-
icant impact. Among them, Ld is the most important, as the accuracy sharply
drops by over 60% when it is removed from the loss function. This shows that
using 2D loss functions alone is not as effective, and that even noisy knowledge
of scene depth (either implicitly or explicitly) is essential for monocular object
estimation tasks. On the other hand, optimizing only for Ld leads to an accuracy
close to zero. This signifies that using depth alone is apparently not enough for
accurate reconstruction. In such cases, the optimization is disregarding object
boundaries and physical extents. For example, the detected and reconstructed
silhouettes should overlap, but the loss function does not enforce this constraint.
Additionally, the objects can warp into any possible size.

We experimented to integrate depth information by backprojecting depth
maps into 3D point clouds similar to Pseudo-LiDAR [35]. We optimized the
Hausdorff distance between predicted meshes and the point clouds, and also
experimented with Procrustes variants to support rotation, translation and scale.
However, both results were very similar to our current depth-only results.

Another strong impact can be seen from the silhouette loss Lm. This loss
back-propagates 2D silhouette mismatches to penalize the reconstruction of the
3D shape. Along with the regularization loss of dimensions Ldim, it helps con-
verging towards a realistic shape that matches the predicted mask.

On the other hand, the impact of bounding box IoU loss Lb and pixel color
loss Lp have less impact on the final accuracy. Lb strongly enforces 2D projection

Method Supervised LiDAR
3D detection Birds eye view

Easy Moderate Hard Easy Moderate Hard

MonoDIS [27] X 11.06 7.60 6.37 18.45 12.58 10.66
MoVI-3D [28] X 14.28 11.13 9.68 22.36 17.87 15.73
SDFLabel [36] X 1.23 0.54 n/a 15.7 10.52 n/a

MonoDR (ours) 12.50 7.34 4.98 19.49 11.51 8.72

Table 1: Evaluation of different monocular 3D detection methods: We report
AP|R40

on the KITTI 3D validation set. The values are calculated assuming an
intersection-over-union (IoU) between the predicted and ground-truth bounding
boxes (in bird’s-eye view) of at least 0.7.
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Fig. 4: Representative results obtained through our method: Raw images with
predicted 2D bounding boxes and instance masks are shown in the left column.
Reconstructed images (with the projection of an estimated 3D shape onto the
image plane) are shown in the middle column. Ground-truth (green)/predicted
(red) 3D bounding boxes in the bird’s-eye view (BEV) are shown in the right
column. The white points in BEV represent projections of object point clouds
generated from predicted depth maps. The ground truth information is only used
for visualization purposes.

of the reconstruction to be within the bounding box limits, which can be inter-
preted as an auxiliary support for the silhouette loss Lm. Similarly, the pixel loss
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Reconstruction loss
3D Detection Birds eye view

Easy Moderate Hard Easy Moderate Hard

full (L) 12.50 7.34 4.98 19.49 11.51 8.72
w/o depth (L− λdLd) 4.82 2.88 1.91 7.96 4.96 3.64
depth only (Ld) 0.00 1.00 0.00 0.00 0.00 0.00

Table 2: Evaluation of different reconstruction losses on KITTI 3D val set.

Confidence weighting
3D detection Birds eye view

Easy Moderate Hard Easy Moderate Hard

full (c3D) 12.50 7.34 4.98 19.49 11.51 8.72

w/o silhouette recon. (c2De
−αbbi) 11.19 6.81 4.61 17.72 10.80 8.20

w/o box protrusion (c2De
−αmLmi ) 12.43 7.29 4.89 19.29 11.34 8.64

w/o both (c2D) 10.74 6.48 4.40 17.19 10.36 7.95

Table 3: Evaluation of different confidence weighting schemes on the val set.

impacts primarily the texturing of objects and helps mostly for minor textural
misalignments but can hardly recover larger displacements or affect the shape.

Confidence Weighting In Table 3, we illustrate the impact of our proposed
confidence weighting schemes. In the last row, we present the accuracies cal-
culated by using the scores obtained from 2D bounding box detection without
applying any confidence weighting. In the first row, we present the result after
applying the confidence weighting over all scores. Applying both weights im-
proves the accuracy by 11% - 16%. The second row shows that weighting the
scores by using the silhouette reconstruction loss value significantly impacts the
increase.

Model
Box AP Mask AP 2D detection 3D detection Bird’s Eye View
COCO COCO Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Mask R-CNN X152 50.2 44.0 82.24 74.82 59.34 12.50 7.34 4.98 19.49 11.51 8.72
Panoptic R101-FPN 42.4 - 78.59 72.17 59.66 9.26 5.84 4.35 15.42 9.97 7.44

Table 4: Different segmentation networks, on KITTI 3D validation set.

Effect of the Segmentation Masks In Table 4, we present the impact of the
chosen 2D object detection and segmentation network on the final accuracy. We
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compared the results of Mask R-CNN X-152 [10] and Panoptic Segmentation
R101-FPN, both taken from detectron2[33] and pretrained on COCO [18]. Mask
R-CNN has significantly better mAP than the panoptic segmentation model,
especially for the easy and moderate instances. Even though panoptic segmenta-
tion provides better semantic masks, it provides worse 2D detection performance
for occluded objects. This is due the general nature of panoptic segmentation,
since it derives its bounding boxes tightly around the segmentations. As our
method is strongly dependent on the tightness of 2D bounding boxes, panoptic
segmentation has an overall negative impact on the accuracy.

4.3 Limitations and Failure Cases

The quality of the estimated bounding boxes and segmentation masks clearly
impacts the rendering used for computing the loss. Inaccuracies in their esti-
mation will be reflected in the quality of the estimated 3D shape and object
pose. Figure 5a shows two example of failure cases due to stronger car occlu-
sions. Because the 2D bounding boxes used in this work are not amodal, they
only confine the visible parts of the cars. In this case, optimization is done by
projecting the 3D shape onto a partial view of the car, which leads to a large
error in the rotation estimation. This problem could be solved by fine-tuning the
detector on a dataset with annotated amodal 2D bounding boxes.

The size of the estimated 3D shape is also constrained by the size of the esti-
mated 2D bounding box. Figure 5b shows an example of a failure case where the
2D bounding box is larger than the object (non-tight). Because the optimization
requires the projection of the 3D shape to fit the 2D bounding box, the shape is
constrained to be larger than it should be. In this case, a large translation error
can be seen due to a shift in the center of mass.

The computational cost is currently a bottleneck of our method. The current
computation time is proportional to the number of detected objects and the
mean computation time per image on the KITTI validation set is three minutes.
The major time is spent on escaping the local minima of the rotation 3.2 as we
had to render multiple times per image.

5 Conclusion

We presented a self-supervised approach, based on differentiable rendering, for
3D shape reconstruction and localization of rigid objects from monocular images.
Although used in the context of autonomous driving, our method is generally
applicable to many categories and scenarios. We showed that it is possible to use
noisy monocular depth and differentiable rendering in conjunction with learned
object priors as an alternative to expensive 3D ground-truth labels or LiDAR
information.

Future work should investigate alternative approaches to estimating depth
from monocular images and registering point clouds. Although significantly im-
proved over the last years, accurate long-range depth estimation is still a chal-
lenging problem. This information is of vital importance in autonomous driving,
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Ground-truth
Prediction

Ego vehicle

(a) Example of failures caused by occlusion. The cars on the right side (top row) and
the car on the left side (bottom row) are partially visible and the estimation of their 2D
bounding boxes is not accurate, which leads to large errors in rotation estimation.

Ground-truth
Prediction

Ego vehicle

(b) Example of a failure caused by a non-tight 2D bounding box. The inaccurate 2D
bounding box estimation leads to a large error in 3D shape estimation and pose trans-
lation.

Fig. 5: Two examples of cases where our method fails to estimate accurate object
pose translations or rotations. Ground-truth (green)/predicted(red) 3D bound-
ing boxes in the birds-eye view (BEV) are shown in the right column. The white
points in BEV represent projections of object point clouds generated from pre-
dicted depth maps. The ground truth information is only used for visualization
purposes.

where the system often needs to make quick decisions. Having accurate informa-
tion about the surrounding environment, as early as possible, allows for better
risk assessment, planning and control.

Accurate and fast point cloud registration, on the other hand, is necessary
in our pipeline for achieving self-supervision. Many of the current techniques are
either slow or require an initial guess for accurate registration. This makes them
impractical for applications where real-time inference is required.
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