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Abstract. In this paper, we propose a novel approach to predict group
activities given the beginning frames with incomplete activity execu-
tions. Existing action1 prediction approaches learn to enhance the rep-
resentation power of the partial observation2. However, for group activ-
ity prediction, the relation evolution of people’s activity and their posi-
tions over time is an important cue for predicting group activity. To this
end, we propose a sequential relational anticipation model (SRAM) that
summarizes the relational dynamics in the partial observation and pro-
gressively anticipates the group representations with rich discriminative
information. Our model explicitly anticipates both activity features and
positions by two graph auto-encoders, aiming to learn a discriminative
group representation for group activity prediction. Experimental results
on two popularly used datasets demonstrate that our approach signifi-
cantly outperforms the state-of-the-art activity prediction methods.

Keywords: Activity prediction, Group activity, Structured prediction,
Relational model.

1 Introduction

Group activity prediction is to forecast an activity performed by a group of
people before the activity ends. Different from group activity recognition, it
only has access to the beginning frames of a video containing incomplete
activity execution. It is useful in the scenarios where the intelligent systems
have to make prompt decisions, such as surveillance and traffic accident avoid-
ance where multiple people are present. Unfortunately, existing action prediction
methods [52,51,23,22,21] are limited to actions performed by an individual. Even
though some methods [23,24,45] attempt to predict actions performed by mul-
tiple people in standard databases such as UCF101 [39], they simply model the
multiple people as a single entity and ignore their relations. This would undoubt-
edly result in a low prediction performance.

1
We define action as the behavior performed by a single person, and define activity as the behavior
performed by a group of people.

2
We define partial observation as the beginning frames with incomplete activity execution, and
full observation as the one with complete activity execution.
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Fig. 1: Given the beginning frames, our method models the relational dynamics
of a group, and predicts a group activity by anticipating the group activity
representation and their positions occurring in the future unobserved frames.

As shown in [23], one of the major challenges in activity prediction is how
to enhance the discriminative power of the features extracted from the partial
observations. However, this is even more challenging to do so in group activity
prediction as multiple people are present in the scene. Each person’s individual
action may vary and people’s interactions frequently appear and change in a
group activity. To this end, it is important to model the relations of multiple
people in the observed frames and predict their future group representations. In
addition, if only limited beginning frames are observed, it would be extremely
difficult to directly anticipate the features of full observations at once. A tempo-
rally progressive anticipation model is desired for modeling activity evolution.

To address these challenges, we propose a novel sequential relational an-
ticipation model (SRAM) for group activity prediction by anticipating group
activities and positions in the future (see Fig. 1). SRAM is developed as an
encoder-decoder framework, in which an observation encoder summarizes the
relational dynamics in the beginning observed frames and a sequential decoder
further anticipates the representations for group activities and positions occur-
ring in the future. Specifically, the observation encoder naturally models the
relational dynamics of people and complex interactions between people in the
observed frames. To predict group activity, we propose a sequential decoder to
anticipate the structured group representation in the future using several un-
rolling stages. Two graph auto-encoders are used in the sequential decoder to
explicitly anticipate the activity and the position relations of people in the un-
observed frames. We propose to make sequential prediction that progressively
anticipates the future group representation by performing multiple unrolling
stages guided by three novel loss functions. This allows us to better capture
complex group activity evolution.

To our best knowledge, we are the first to investigate the challenging problem
of group activity prediction. The benefit of our method is twofold. Firstly, it not
only predicts people’s group activities but also predicts individuals’ positions in
the future. Our experimental results show that predicting people’s future po-
sitions significantly helps predict their group activities. Secondly, the proposed
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method progressively anticipates structured group representations, which has
shown to be very powerful in prediction especially when limited frames are ob-
served. This idea could be generalized to other prediction tasks, e.g. human
motion prediction [31] and video prediction [47].

Our contributions can be summarized as follows:

– We propose a novel sequential decoder to anticipate the representations for
multiple people’s future positions and activity, aiming to learn a discrimina-
tive structural representation for group activity prediction.

– We progressively anticipate the structured group representations at several
unrolling stages guided by novel loss functions. This improves the perfor-
mance when only few frames are observed.

– Extensive experiments demonstrate that our method outperforms the exist-
ing state-of-the-arts by a large margin.

2 Related work

Action Prediction aims to recognize the label of an action before the action
is fully executed. Existing work [26,6,21,17,36,30,53,37,43] focuses on predicting
actions performed by an individual. Ryoo et al. [34] used integral and dynamic
bag-of-words to represent features variations over time. DeepSCN [23] and AAP-
Net [24] make use of sequential context information by transferring knowledge in
full videos to partial observations. Wang et al. [45] developed a teacher-student
learning framework to distill knowledge from the action recognition task, in or-
der to enhance action prediction. Gammulle et al. [11] presented a jointly learnt
task for both action prediction and future motion representation inference.

Prediction on interactions between two people was studied in [51,52]. Yan et
al. [51] developed a tri-coupled recurrent structure and an attention mechanism
to address action prediction for two individuals’ interactions. Yao et al. [52]
predicted the motion of the interactions between two people, but did not predict
their interaction labels. Different from them, we focus on the prediction of group
activities involving multiple people. Our method elegantly captures complex
relational dynamics between people for learning discriminative information.

Group Activity Recognition has been extensively studied in previous
work [2,38,19,49]. Early work applies graphical models on the extracted hand-
craft features [2,27,46] as group representations. Deep learning methods for
multi-people activity recognition have shown excellent performance [38,4,44,18,8,41,12].
HDTM [19] develops a two-stage LSTM model to firstly extract features of tem-
poral individual motions and then aggregate neighborhood information. SSU [4]
achieves the individual detection and group activity recognition in a unified
framework. Recent work suggests that only part of people’s motions contribute
to the entire group activity [49,10,33,3,16], via suppressing the irrelevant ac-
tions. Previous work also shows that interactions between people are important
in understanding group activity. For example, HRN[18] introduces a hierarchi-
cal spatial relational layer to learn the relational representations between two
players. Other methods, including Stagnet [32], S-RNN [5], SBGAR [29] apply
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Fig. 2: Overall architecture. Our framework SRAM takes the beginning t0 ob-
served frames as input and predicts the group activity label. An observation
encoder first summarizes the relational dynamics in partial observation as a la-
tent variable Z0. Then, a sequential decoder takes over Z0 and progressively
anticipates the group representation through K unrolling stages. The output of
the last unrolling stage is expected to contain rich discriminative information
for group activity prediction. Details can be seen in Fig. 3.

structural-RNN to obtain spatiotemporal features. ARG [48] explicitly models
the interactions by employing graph convolution on a learnable graph.

The main difference between our work and group activity recognition meth-
ods is that we aim at predicting the group activity label given incomplete activ-
ity execution, while these methods are given complete activity executions. This
prompts us to develop novel model architecture and loss functions in this work.

3 Our approach

Problem formulation. Our goal is to predict the activity label y of a group
of people given a partial observation of a video containing incomplete activity
execution. We define the observation ratio as the number of observed frames t0 in
a streaming video divided by the total number of frames T in the corresponding
full video following [23,24], i.e. t0/T . For instance, if a partial video contains 30
frames and the corresponding full video contains 100 frames, then the observation
ratio of this activity is 30%.

During training, we have access to all full training videos containing complete
group activity executions. These full videos are supposed to contain all the dis-
criminative information for classification. During test, given a partial observation
of a group activity execution, we encourage our model to anticipate the group
representations that contain similar amount of discriminative information as the
corresponding full observation. Thus, its prediction power can be enhanced.

Overall architecture. The overall architecture is shown in Fig. 2. We for-
mulate our group activity prediction model as an encoder-decoder framework
that contains an observation encoder and a sequential decoder. Given a partial
observation containing t0 frames, the observation encoder summarizes the rela-
tional dynamics of the group from the partial observation and then the sequential
decoder anticipates the group representation for activities and positions in the
future unobserved frames.
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Due to the large motion variations between a partial and a full observation,
a novel sequential decoder is proposed in this work to progressively anticipate
the structured group representation for the future unobserved frames by several
unrolling stages. This is useful for enhancing the discriminative power of the
anticipated representation, especially if limited frames are observed. Moreover,
for group activity, relations between multiple people are discriminative informa-
tion and they vary as time. To predict group activity, our sequential decoder
uses two graph auto-encoders to concurrently perform relational anticipation on
both people’s activity features and their positions.

3.1 Relation Modeling for Group Activity

Given t0 observed frames, we first extract features of all the observed t0 frames,
and then apply ROIAlign [15] to extract the feature vectors of multiple people
based on their positions {B1, B2, · · · , Bt0}(t ∈ {1, · · · , t0}). Action features and
positions of the i-th individual on the t-th frame are represented as xt(i) and
bt(i) respectively. Afterwards, upon the individual dynamics, we follow [48] to
explicitly model the pair-wise position relations and action relations of multiple
people in the observed frames as two relation graphs Ga

t ∈ RN×N and Gp
t ∈

RN×N , respectively. Both of the two graphs have N nodes representing N people
in the t-th frame. Given the i-th and j-th individuals, the edge of the action
similarity graph Ga

t (i, j) is computed by the cosine similarity and normalized by
Softmax function. The edge on the position relation graph Gp

t (i, j) is computed
by the normalized Euclidean distance (denoted by d(·, ·)):

Ga
t (i, j) =

exp
(
xt(i)

T · xt(j)
)∑N

j=1 exp (xt(i)T · xt(j))
, Gp

t (i, j) =
1/d(bt(i),bt(j))∑N
j=1 1/d(bt(i),bt(j))

. (1)

Once the graphs are built, we obtain the structured representations for the
group activity in the observed frames. We will also perform anticipation on the
two graphs representing the group activity in the unobserved frames, which will
be discussed below.

3.2 Observation Encoder E

The observation encoder E is proposed to summarize spatiotemporal information
of the complex relational dynamics of multiple people in partial observations
containing t0 frames. E learns to map Ga

1:t0 , Gp
1:t0

, and X1:t0 to a latent variable
Z0, by the spatio-temporal graph convolution network ST-GCN [50]. Specifically,
it first performs spatial graph convolution [20] on the two graphs Gp

t and Ga
t for

the t-th frame
σ(Gp

tXtWp) + σ(Ga
tXtWa), (2)

and then performing temporal convolution [28] on every three consecutive frames
to learn the latent variable Z0. Here, σ is ReLU activation, Wp and Wa are
learnable weights, and Xt is the action features of N people. Latent variable Z0

will be integrated in the sequential decoder, and guides its unrolling stages.
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Fig. 3: Sequential decoder D is formulated as two auto-encoders Ea-Da and Ep-Dp

that progressively anticipate the group activity representation for future unob-
served frames using multiple unrolling stages. At the k-th stage, D is fed with
the summary of the partial observation encoded in the latent variable Z0 as well
as the action features X̂k and the position features B̂k from the previous stage.
Then D anticipates the action features X̂k+1 and positions B̂k+1.

Different from ARG [48], our model captures the temporal patterns of peo-
ple’s relations, which is useful for group activity prediction.

3.3 Sequential Decoder D

The performance of state-of-the-art action prediction methods [24,23] is still
limited especially when few beginning frames are given. This is mainly because
they use a direct mapping from partial observation to the corresponding full
observation in one pass, which is not powerful enough to deal with large visual
variations between partial and full observations. In this paper, we propose a
sequential decoder that progressively anticipates the group representation that is
expected to contain rich discriminative information as the fully observed activity
using K unrolling stages (see Fig. 3). This allows us to create a more powerful
model for group activity prediction.

Besides, different from individual action prediction methods [24,45], people’s
relations formulated as graphs using Eq. (1), are discriminative information for
group activity. Moreover, the group activity varies overtime. It is necessary to
predict group representations by anticipating relations in the unobserved stage.
As described in Section 3.1, people’s relations can be inferred from their action
similarity and relative positions. For example, a partial observation of a volleyball
activity is given, which contains run-up of ace spikers and waiting gestures of
their opponents. Our model is supposed to predict it as “spiking” by the cue that
the players are moving towards net with their actions. Therefore, we develop a
sequential decoder as a mixture of two graph auto-encoders: an activity auto-
encoder Ea-Da for predicting activity representations and a position auto-encoder
Ep-Dp for predicting positions of multiple people. The two auto-encoders are
coupled by the shared latent variables Z0 learned from partial observations.
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Activity auto-encoder Ea-Da. Using K activity auto-encoders, the pro-
posed sequential decoder progressively anticipates the activity representation by
K unrolling stages. Each activity auto-encoder at the k-th stage (k ∈ {1, 2, · · · ,K})
is fed with the output X̂k of the activity auto-encoder at the previous (k− 1)-th
stage. We use the spatiotemporal action features at the last observed frame t0
as the input of the activity auto-encoder at stage k = 1. We encode the input
X̂k of current unrolling stage to a latent variable Za

k by

Za
k = σ(Gp

kX̂kUep) + σ(Ga
kX̂kUea), (3)

and then decodes the activity representation X̂k+1:

X̂k+1 = σ(Ga
k(Z0 + Za

k))Uda) + σ(Gp
k(Z0 + Za

k)Udp), (4)

where Uep, Uea, Udp, Uda are learnable parameters. X̂k+1 is the anticipated group
features at the k-th stage, and is served as the input for the activity auto-encoder
at the (k+1)-th stage. The anticipation of X̂k+1 is conditioned on latent variables
Za
k and Z0, in order to both keep track of the short-term information of the

previous unrolling stage and use the long-term spatiotemporal information in the
partial observations. Ga

k and Gp
k are computed by the generated activity features

and positions at the k-th stage using similar functions as Eq. (1), respectively
(replacing time step t by the stage k).

The benefits of the progressive anticipation using K unrolling stages lie in
two aspects. First, the temporal dependency of activity evolution is naturally
built between successive stages. This allows us to naturally anticipate structured
group activity representations for prediction purpose. Second, the prediction
granularity can be controlled with the number of unrolling stages K. The case
when K = 1 is equivalent to the existing one-pass solution used in [24,23].

Position auto-encoder Ep-Dp. As described in Section 3.1, the interactions
between two people also depend on their relative positions. Thus, it is necessary
to explicitly anticipate the positions of these people in group activity prediction.

Similar to activity auto-encoder, the proposed sequential decoder also per-
forms K unrolling stages for position prediction for a group of people using K
position auto-encoders. Each position auto-encoder at stage k is fed with the
output of its previous auto-encoder at stage k − 1, and outputs the positions
of people. Experimental results in Section 4.4 show that the anticipated future
positions of people help improve performance of group activity prediction.

The position auto-encoder first encodes the positions B̂k of multiple people
to a latent variable Zp

k at stage k through graph convolution [20]:

Zp
k = σ(Gp

kB̂kVep) + σ(Ga
kB̂kVea), (5)

and then decodes the positions B̂k+1 for the next stage by

B̂k+1 = σ(Ga
k(Z0 + Zp

k ))Vda) + σ(Gp
k(Z0 + Zp

k )Vdp), (6)

where Vep, Vea, Vdp, Vda are learnable parameters.Gp
k andGa

k are the same graphs

used in the activity auto-encoder. The anticipation of B̂k+1 is conditioned on



8 J. Chen et al.

latent variables Zp
k and Z0, in order to both keep track of the short-term position

information of the previous unrolling stage and use the long-term spatiotemporal
information in the partial observations.

Position prediction is also benefited by sequential prediction via several un-
rolling stages, since the prediction granularity can be controlled. Similar to the
activity auto-encoder, the position auto-encoder at stage k = 1 also takes the
positions Bt0 of people on the last observed frame as input. The activity auto-
encoder and the position auto-encoder share the same graphs Gp

k and Ga
k and

are both conditioned on the latent variable Z0 (see Fig. 3).

3.4 Feature Aggregation for Prediction

SRAM returns both group activity and position representations at each of K
unrolling stages. TheK-th stage corresponds to the full observation status, which
contains the most discriminative information of an activity. We disregard all the
outputs given by the activity autoencoders from the 1-st to (K − 1)-th stages,
and perform max-pooling on the output X̂K+1 given by the activity autoencoder
at the K-th stage as the group activity representations. The resulting feature
vector is used for group activity prediction. Similarly, we directly use the output
B̂K+1 given by the K-th position autoencoder to perform position prediction.

3.5 Loss Functions and Model Learning

Adversarial loss. Inspired by [13], we encourage SRAM to generate represen-
tations corresponding to ground-truth full observations. We use two discrimi-
nators for the features generated by the sequential decoder. Discriminator D1

is an activity classifier implemented by a softmax layer. Lcls is computed on
the output of D1. Discriminator D2 is an adversarial regularizer and tells the
difference between the generated group features X̂1:K and group features of full
videos F1:K(X). Using the adversarial loss, SRAM is encouraged to generate
features that are indistinguishable from the group features of the corresponding
full videos:

LGAN =EX(1:T )∼pdata(X(1:T )) logD2 (F1:K(X)) (7)

+EX(1:t0)∼pdata(X(1:t0)) log
(
1−D2(X̂1:K)).

Note that the generated group representation X̂1:K is computed by SRAM S
from the partial observation X1:t0 .

Sequential reconstruction loss is proposed to align the predicted activity
representations to become close to the ground-truth activity representations at
each unrolling stage. Since our method has K-stage sequential prediction, it
is necessary to encourage the predicted group representations X̂1:K on each of
the K unrolling stages to become close to the ground-truth features at that
timestamp. This is different from adversarial loss that only align the generated
features to be close to ground-truth at full observation stage.
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We train a separate ST-GCN F (·) as a recognition model to obtain the group
activity representations of full videos X for training. The resulting frame-wise
group representations F (X) are used to encourage the activity features of the i-
th person generated at the k-th unrolling stage to be similar to the ground-truth
features using

Lrec =
1

K ×N

K∑
k=1

N∑
i=1

‖x̂k(i)− Fk(X, i)‖2 . (8)

Here, Fk(X, i) is the features of the i-th person of the full video at the k-th stage.
This loss function sequentially computes the difference between the predicted
features x̂k(i) (the i-th row on X̂1:K) for the i-th person at unrolling stage k
and the ground-truth features Fk(X, i), mimicking how a partial observation is
progressively approaching its corresponding full observation.

Position regression loss. We use the tracklets of individuals provided
by [18] as the ground-truth of individuals positions. During training, we use the
mean square error between the predicted positions and ground-truth positions
at the K unrolling stages as loss function:

Lreg =
1

K ×N

K∑
k=1

N∑
i=1

||b̂k(i)− bk(i)||2, (9)

where the predicted position b̂k(i) is the i-th row of B̂k, i.e., the i-th person’s
position predicted by the sequential decoder at the k-th stage.

Model learning. During training, the overall objective function is written as
a sum of sequential reconstruction loss Lrec, adversarial loss LGAN, classification
loss Lcls implemented by softmax loss, and position regression loss Lreg:

min
E,D

max
D1,D2

Lrec + LGAN + Lcls + Lreg. (10)

Sequential relational anticipation model (E ,D) and two discriminators (D1, D2)
are alternatively trained until convergence.

3.6 Discussion

Group activity modeling and anticipation. Our SRAM captures the in-
teractions of multiple people in the observation encoder, and anticipates their
future relations by a sequential decoder. This is different from existing action
prediction methods [24,32] that can only predict the action of an individual.
We believe such a novel method will pave the way for future research in other
structured visual prediction.

Structured sequential prediction. Compared with group activity recog-
nition methods [48,32,18], our method performs sequential prediction of group
activity, in form of future positions and activity representations. Our activity
prediction is also facilitated by explicitly predicting people’s future positions.
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Activity evolution over time. Our sequential decoder progressively pre-
dicts future representations through several unrolling stages, which boosts per-
formance when only few frames are observed. It is guided by a sequential recon-
struction loss, mimicking how a partial observation is sequentially approaching
its full observation and an adversarial loss to make the generated full observation
features to become indistinguishable from the real full observation features.

4 Experiments

4.1 Datasets

Volleyball Dataset [19] consists of 4830 video clips distributed in 8 group
activities, such as left spiking and right setting. Each clip has 41 frames. [19]
provides the players’ tracklets and splits the dataset into training, validation
and testing sets. Existing group activity recognition methods [48,19,18,32] use
the middle 10 frames of each video. To generalize it to prediction task, we extend
it to use the middle 20 frames as full observations, in order to model sequential
dynamics. Note that the middle 20 frames contain complete group activity ex-
ecutions, because athletes generally move quickly to complete a group activity,
such as direct spiking in a volleyball game.

Collective Activity Dataset (CAD) [7] contains 44 videos with 5 group
activities, including crossing, queueing, walking, talking and waiting. The group
activities in CAD are labeled as the majority of people’s individual actions. We
use the existing tracklet information and training/testing splits following [48].
The number of the frames in videos ranges from 100 to 2000. Following [32,48,4],
we divide each video into 10-frame video clips. This expands training and testing
data to 1746 and 765 clips, respectively. CAD mainly contains periodic activities
such as walking, in which significant changes can be seen in 10 frames.

4.2 Implementation Details

Following [48], we extract a 1024-dimensional feature vector for each individ-
ual with tracklets provided by [19], using Inception-v3 [40] as backbone and
ROIAlign [15]. We use three steps for training: First, Inception-v3 pretrained on
ImageNet is fine-tuned on single frames by jointly predicting individual actions
and group activities. Then, we freeze the backbone and finetune the recognition
model F (·) given full videos in the training set. The recognition model contain
two ST-GCN layers [50], both with 256-d hidden units. After that, we train the
proposed model. The observation encoder has two layers ST-GCN with both
256-d hidden units. The activity auto-encoder’s encoder has one graph convolu-
tion layer that encodes the input into 256-d latent feature space. The position
auto-encoder has two layer graph convolution by encoding the 2-d positions into
64-d space and then 256-d latent space. During training, SRAM plus classifier
D1 and discriminator D2 are alternatively updated.

The experiments are conducted with 10 different observation ratios ranging
from 10% to 100% of full videos length. The number of unrolling stages K is set
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to 5. We use stochastic gradient descent for optimization. For Volleyball dataset,
the three steps are trained for 30 epochs, 10 epochs and 20 epochs with learning
rate 0.001, 0.001, 0.0001 respectively. For Collective Activity Dataset, the three
steps are trained for 20 epochs, 50 epochs and 10 epochs with learning rate
0.0001, 0.0001, 0.0005, respectively.

4.3 Comparison with State-of-the-art

We compare our method with the state-of-the-art prediction methods LRCN [42],
DeepSCN [23], IBoW and DBoW [34], KD [45], AAPNet [24] and state-of-the-art
group activity recognition methods, including HRN [18], HDTM [19] ARG [48],
SSU [4]. Following these methods’ original setting, LRCN and HDTM adopt
the AlexNet [25] as the backbone. HRN, IBow, DBow, DeepSCN and original
AAPNet use VGG-19. Our method follows ARG and SSU to use Inception-
V3 method. HRN, HDTM, ARG, SSU and our method adopt the tracklets of
players provided by [19]. To make a fair comparison, we extend state-of-the-art
action prediction method AAPNet (“e-AAPNet” for simplification) to make use
of tracking information and use Inception-V3 as backbone. We train all of the
comparison methods using the parameters described in their original papers.

Results on Volleyball dataset. Table 1 summarizes the prediction perfor-
mance of the proposed method, existing action prediction methods and group
activity recognition methods. Results demonstrate that our model outperforms
the comparison methods. Existing action prediction methods, e.g., LRCN, IBoW,
DBoW, DeepSCN, AAPNet, KD propose to improve the prediction performance
by information transfer. However, they regard multiple people as a single entity
and do not consider the interactions between multiple people. Thus, the ex-
tracted features do not contain informative cues of the interactions of people,
resulting in a low prediction performance. The proposed method uses track-
lets [19], while the existing predictors for individuals e.g. LRCN, IBoW, DBoW,
DeepSCN, AAPNet, KD do not. To make a fair comparison, we extend AAP-
Net to use tracklet information. Experimental results show that our method can
predict the dynamics of interactions and better enrich partial observations.

Group activity recognition methods such as HDTM, SSU, HRN, ARG do
not have capability of gaining extra information from full activity executions.
Thus, when the observation ratio is very low (10% or 20% observations), their
performance is much lower than our method. Note that ARG applies random
sampling strategy by sampling three frames from an entire video as input. In
the comparison experiment, this strategy is applied in each of the partial ob-
servations as input. The proposed method consistently outperforms ARG, as
our method captures the temporal dynamics of multiple people in the group,
and sequentially generates features close to the corresponding full observations.
It improves the representation power of the partial observations, and facilitates
group activity prediction.



12 J. Chen et al.

Table 1: Group activity prediction accuracy (%) on Volleyball dataset with ob-
servation ratios ranging from 10% to 100%. Group activity recognition results
can be seen from the last column, in which 100% frames are observed.
Models Tracklet Backbones 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
LRCN [9] No AlexNet 48.17 51.61 54.67 57.44 59.76 61.23 63.75 64.32 64.77 65.37
HDTM [19] Yes AlexNet 52.43 59.09 66.04 76.37 80.48 81.82 84.07 84.47 84.60 84.06
IBoW [35] No VGG 58.03 60.72 64.84 65.26 67.51 70.80 73.45 74.24 74.29 75.63
DBoW [35] No VGG 58.03 55.56 56.16 58.93 59.90 61.97 63.79 63.06 63.88 64.78
DeepSCN [23] No VGG 59.46 62.23 65.52 70.38 72.55 77.37 79.75 80.35 80.31 80.78
HRN [18] Yes VGG 52.58 56.99 64.32 74.49 76.96 80.36 83.72 84.74 84.08 85.30
KD [45] No VGG 65.67 67.68 70.00 70.83 71.96 72.10 73.22 73.30 73.30 73.90
AAPNet [24] No VGG 59.53 65.37 68.29 72.25 75.24 77.79 79.91 80.25 80.18 80.78
e-AAPNet [24] Yes InceptionV3 62.98 70.31 77.64 83.55 84.91 85.86 87.54 87.23 87.92 89.01
SSU [4] Yes InceptionV3 63.20 70.65 79.66 84.07 87.13 87.65 88.30 88.18 88.41 89.01
ARG [48] Yes InceptionV3 64.82 69.41 76.07 79.43 82.70 83.99 85.04 85.19 85.86 85.94
Ours Yes InceptionV3 77.86 82.57 84.97 87.06 88.63 88.93 89.08 88.93 88.48 91.97

Table 2: Prediction accuracy (%)
on Collective Activity Dataset.

Models Tracklet 50% 100%

ARG [48] Yes 88.10 88.37
DeepSCN [23] No 81.31 82.22
AAPNet [24] No 81.57 82.75
e-AAPNet [24] Yes 86.01 86.67
Ours Yes 92.55 92.81

Results on Collective Activity Dataset.
Comparison results are listed in Table 2. Our
method outperforms existing methods ARG,
DeepSCN, and AAPNet by a large mar-
gin. Given tracklets as input, our method is
6.54% higher than e-AAPNet at 50% obser-
vation ratio since the people’s actions and
relations are predicted in our model. Group
activities such as group walking are cyclic,
and thus the prediction performance of our
method at 50% observation ratio is close to the one at 100% observation ratio.

4.4 Ablation Study

We perform detailed ablation studies on the Volleyball dataset to evaluate the
contributions of the sequential prediction strategy, as well as the loss functions.

How much does the prediction loss help? The impacts of loss functions are
analyzed on Volleyball dataset in detail. The evaluation results can also validate
the contributions of the proposed sequential prediction strategy. We compare
the following the variants, including: (1) without the position regression loss
Lreg defined in Eq. (9). In this variant, the position auto-encoder for predicting
future positions is not used. During sequential prediction, we replace the indi-
viduals’ positions in the future frames by the ones given by the last observed
frame’s. The positions are used for computing Gp for each unrolling stage. (2)
without adversarial loss LGAN. (3) without sequential reconstruction loss Lrec

for generated features of unrolling stages. (4) The proposed full network.
Compared with variant (1), the significant performance gains with all differ-

ent observation ratios show that the prediction of people’s positions is of high
importance for group activity prediction. Compared with variants (2) and (3),
it shows that the adversarial loss LGAN and the reconstruction loss Lrec in our
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Table 3: Ablation studies on volleyball dataset. We show the accuracy(%) given
videos of observation ratio at 10%, 40%, 70%.

(a) Comparison of different loss functions, LGAN,
Lrec, Lreg, and Lcls.

Loss 10% 40% 70% Average

(1)LGAN+Lrec+Lcls 75.09 85.59 87.06 84.85
(2) Lrec+Lreg+Lcls 76.14 85.79 88.18 86.30
(3) Lreg+LGAN+Lcls 77.61 83.22 85.64 86.22
(4) Ours 77.86 87.67 89.08 86.85

(b) Comparison on the number
of unrolling stages K.

K 10% 40% 70% Average

1 70.38 80.02 86.14 81.47
2 72.36 86.59 89.07 85.22
5 77.86 87.06 89.08 86.85
10 77.93 86.69 89.23 86.79

method improve the performance by 0.55% and 0.63% on average, respectively.
Therefore, the proposed sequential decoder guided by LGAN and Lrec can gen-
erate more discriminative activity representations at each stage.

How much does the sequential prediction help? Our sequential decoder
predicts group activity representations at K unrolling stages. In this experiment,
we evaluate the effect of the number of unrolling stages K on the prediction per-
formance. We set K to 1, 2, 5, and 10, and compare the prediction performance.
Table 3b indicates that the best overall prediction performance is achieved when
K = 5. The prediction performance is slightly affected when K = 10, but the
computational complexity of the prediction model is increased due to the ex-
tra unrolling stages. The average prediction performance drops to 81.47% if
K = 1. The variant with K = 1 is the one that directly maps partial observa-
tion in one unrolling stage, similar to what [24,23] do. The result demonstrates
the superiority of our progressive prediction in anticipating discriminative group
representations given partial observations. If more stages are allowed (K = 5 or
K = 10), the sequential decoder in our model can progressively generate dis-
criminative features for group activity prediction even though it is given very
limited frames. Therefore, its prediction performance is improved.

4.5 Position Prediction Evaluation

Visualization of predicted positions As shown in Fig. 4, we visualize the
movement of individuals learned by the position auto-encoder in SRAM. The
position auto-encoder progressively predicts the positions of individuals at the
unrolling stages. The visualization result shows our position auto-encoder can
successfully predict the directions and step sizes of individuals in the future based
on partial observations. Although Fig. 4 (bottom-right) shows the direction of
the predicted movement is mostly accurate, the future position of a person is
not accurate if the person moves very fast.

Quantitative evaluation We quantitatively evaluate our position prediction
results compared to two popular trajectory prediction methods SocialGAN [14]
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left-spiking

left-winpoint right-passing

right-spiking

Fig. 4: Visualization of position predictions. The blue and the yellow lines de-
note the prediction positions and ground-truth positions [19], respectively. “×”
indicates the starting point of the movement. Best viewed in color.

and SocialLSTM [1]. Following SocialGAN, Final Displacement Error (FDE) is
used to compute the Euclidean distance between the predicted positions and
ground-truth positions at the final timestamp and Average Displacement Error
(ADE) is used to compute that at each unrolling stage.

Table 4: Final Displacement Error
(FDE) and Average Displacement
Error (ADE) for position prediction.

Method FDE ADE

SocialGAN [14] 5.32 3.05
SocialLSTM [1] 6.44 4.44
Ours 3.62 2.44

As shown in Tab. 4, the results demon-
strate that our method can accurately pre-
dict the future positions for a group of
people, and our method outperforms the
two trajectory prediction methods. This is
mainly because we capture the relational ac-
tion dynamics of multiple people while So-
cialGAN and SocialLSTM do not.

5 Conclusion

We have proposed a novel sequential relational anticipation model (SRAM) to
predict group activity given only the beginning frames of an activity execu-
tion. Our model captures complex relational dynamics of multiple people in the
observed frames. It then anticipates the group representations including group
activity features and position features. A novel sequential decoder is proposed
to progressively anticipates the group representations through several unrolling
stages. Extensive results on two datasets demonstrate that our method signifi-
cantly outperforms the state-of-the-art methods. Results also validate that the
progressive anticipation using multiple unrolling stages facilitates group activity
prediction. Further experimental results show that the modeling and prediction
of people’s positions improves our performance on group activity prediction.
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