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A PSConv Based on Depthwise Convolution

Regarding the variant of PSConv based on depthwise convolution (DWConv),
we do not consider it in our main method because applying PSConv directly to
DWConv is non-trivial. Each group of DWConv contains only one channel, thus
the cyclic pattern cannot be accommodated inside one group. However, adapting
our cyclic pattern to external groups is possible. Specifically, one pattern is
arranged across t groups, where t is the original cyclic interval. The illustration
diagram is depicted in Fig. 1. It is also noted that such a DWConv-based variant
is akin to the MixConv+dilated accompanied with channel shuffling.
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Fig. 1. Comparison between dilation space of kernel lattice in Poly-Scale group con-
volution (group number g = 2 and cyclic interval t = 4) and Poly-Scale depthwise
convolution (group number g = C and cyclic interval t = 4), where C = 16 represents
the number of channels. Similar to Fig. 2 in the main paper, each color indicates one
specific type of dilation rate, the same hereinafter. Best viewed in color.
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Fig. 2. Comparison between the dilation space of the original PSConv (cyclic interval
t = 4) and its rearranged dilation space for efficient implementation.
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Fig. 3. The dilation space of two simplified cases of PSConv, which only vary dilation
rates along the input (left) or output (right) channel axis.
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B Efficient Implementation

In view of the interchangeability of channel indices, we provide an equivalent
but efficient implementation of the original PSConv by grouping channels with
the same dilation rate together. For each row in the re-arranged dilation space
of kernel lattice, the same dilation rates in each partition (P partitions in total)
are assembled, shaping a group with P channels. When rearranging the input
channel indices, the output channel indices are rearranged accordingly, since the
input channels of the current layer are output channels of the precedent layer.
The original and rearranged PSConv are comparatively illustrated in Fig. 2.
Reminiscent of the definition in the main paper, the dilation rate matrix D is a
block matrix after rearrangement, which serves the purpose of efficient matrix
operations.

C Ablation of Dilation Patterns

To validate the effectiveness of our design principle, we develop two simplified
cases for ablation studies, as shown in Fig. 3. The first one merely varies dilation
rates along the input channel axis, which means removing the shift operation
from PSConv. Actually it can be interpreted as splitting the incoming features
into groups along the channel dimension, transforming these features with one
dilation rate per group and aggregating the output features through summation.
The second one merely varies dilation rates along the output channel axis. It can
be interpreted as transforming the incoming features with different dilation rates
in parallel and concatenating the output features along the channel dimension.
Therefore, both of these two cases can reduce to the multi-scale network design
from the filter space. In contrast, the original PSConv is a more granular design
in the kernel space. The corresponding ablative experiments are discussed in the
Section 4.2 of the main paper and the comparison in Table 5 of the main paper
also demonstrates the superiority of the original PSConv compared to these two
simplified design.

D Visualization of Scale Allocation

With curiosity about the learned distribution of scale-relevant features, we dis-
sect the weight proportions with respect to different dilation rates in each PSConv
layer, as illustrated in Fig. 4. For each dilation rate in a PSConv layer, we com-
pute the mean of absolute values in each 3 × 3 kernel and take the maximum
across all corresponding kernels as the proxy. These layer-wise proxies can be
representative of the importance of different dilation rates. They are finally nor-
malized inside each layer for inter-layer comparison.

As for PS-ResNet-50 on the ImageNet, it is observed that in the first residual
block of stage 3-5 (conv3 x, conv4 x, and conv5 x), where feature maps are pro-
cessed with stride 2, PSConv is prone to overlook convolutional kernels with large
dilation rates and emphasize those without dilation rates, as the downsampling
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Fig. 4. Visualization of the automated selection mechanism concerning multi-scale fea-
tures. The left panel reveals the result of PS-ResNet-50 on the ImageNet, where the
horizontal axis corresponds to indices of residual blocks, � indicates the starting block
of stage 2-5. The right panel displays the result of PS-ResNeXt-29 (16×64d) on the
CIFAR-100. Best viewed in color.

operation already offers sufficient amplification of the receptive fields at these
points. This trend is not obvious for PS-ResNeXt-29 (16×64d) on CIFAR-100,
partially due to its few down-sampling operations. Nevertheless, there exists a
clear tendency that convolutional kernels with large dilation rates will occupy
a larger proportion in the deeper layers, implying the necessity of allocating
more resources to semantic features in the high-level layers. The visual analysis
also helps understand the quantitative performance improvement with a better
coarse-to-fine feature generation process compared to standard convolutions.

E Object Detection

We perform experiments with Faster R-CNN on the MS COCO object detection
track and report the results in Table 1. Compared to the detectors with vanilla
convolutions, PSConv also achieves obviously higher AP based on different back-
bone architectures. The comparison of performance gains across three backbone
networks shows a similar trend as Mask R-CNN in the main paper.

Table 1. Bounding-box Average Precision (AP) comparison on the COCO 2017 vali-
dation set for the bounding-box detection track with different backbones.

Detector Architecture Conv Type AP AP50 AP75 APS APM APL

Faster R-CNN

R50
standard 36.4 58.4 39.1 21.5 40.0 46.6
PSConv 38.4(+2.0) 60.6 41.6 22.9 42.4 49.9

R101
standard 38.5 60.3 41.6 22.3 43.0 49.8
PSConv 40.9(+2.4) 63.0 44.3 23.8 45.3 53.5

X101-32x4d
standard 40.1 62.0 43.8 23.4 44.6 51.7
PSConv 41.3(+1.2) 63.6 45.1 24.7 45.5 53.8

Cascade R-CNN

R50
standard 40.4 58.5 43.9 21.5 43.7 53.8
PSConv 41.9(+1.5) 60.8 45.5 24.2 45.3 55.6

R101
standard 42.0 60.3 45.9 23.2 45.9 56.3
PSConv 43.8(+1.8) 62.6 47.7 25.6 47.5 57.9

X101-32x4d
standard 43.6 62.2 47.4 25.0 47.7 57.4
PSConv 44.4(+0.8) 63.6 48.4 26.6 48.3 59.2
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F Visualization of Predictions on MS COCO

We select Faster R-CNN and Mask R-CNN with ResNet-101 for visualization in
view of the large margins between our PSConv-based detectors and the standard
ones under this setting, as indicated by experimental results in the Section 4.3
of the main paper.

The result comparisons of Faster R-CNN are presented in Fig. 5, 6 and 7.
Regarding the bounding-box results, detectors based on PSConv could reduce
false alarms of large-sized objects and precisely perceive small-sized instances.
For example, the potted plant in the second row of Fig. 5, the bear in the last
row of Fig. 6, the refrigerator in the first row of Fig. 7 are obvious false alarms
that are rejected in the predictions of our model. Furthermore, referring to the
middle row in Fig. 6, the bounding box of the umbrella is more compact and the
bench below the person is detected with confidence. It validates the superiority
of our PSConv-based detector to capture objects with diverse shapes and sizes.

The result comparisons of Mask R-CNN are presented in Fig. 8, 9 and 10.
For example, the traffic light in the third row of Fig. 8, the person in the first
row and the sink in the last row of Fig. 10 are false alarms in the standard
detector but omitted in our PSConv-based detector. A skiing person on the
snow mountain is missed by the standard detector possibly due to its tiny size,
but successfully detected by the PSConv-based model, as shown in the first row
of Fig. 9. As demonstrated in the last row of Fig. 9, distinct instances of the
bench are distinguished together with the detected small bird, thanks to the
robustness of our PSConv to scale variation.

G Speed Optimization

Based on our preliminary GPU speed benchmark in the main paper, the speed
gap is primarily due to dilated convolution inside our PSConv. However, such
a gap can be largely bridged using a specialized implementation of Dilated-
Winograd Convolution (DWC). Compared to GEMM implementation in cuDNN,
the average speedup by DWC for dilated convolutional layers with a dilation rate
of 2/4 is 2.14×/1.53×, on a single TITAN X GPU (similar results are also re-
ported in [2]). By adopting the TVM compiler [1], the speedup can be further
increased to 2.86×/2.01×. After combining the latest version of Intel OneDNN
tool (achieving an additional speedup of +0.2), the inference time of a PSConv
layer would be roughly 1.42× of the standard convolution. Furthermore, the
above optimization procedure could yield a better speedup ratio on CPU infer-
ence, tested on Dual Intel Xeon Platinum 8280 @ 2.70GHz. Since we only apply
PSConv to the 3 × 3 convolutional layers of a residual network, the slow-down
effect will be diluted on a whole network compared to a single convolution layer.
Specifically, the inference time of a PSConv-based ResNet-50/101 becomes very
similar to the standard ResNet-50/101 (1.066× on GPU and 1.051× on CPU).
As a consequence, our PSConv can be comfortably put into practical usage.
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Fig. 5. Some bounding-box detection results of Faster R-CNN with ResNet-101 on
the COCO 2017 validation set. The left panel shows predictions from the standard
detector while the right panel shows the detector equipped with our PSConv, the same
hereinafter.
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Fig. 6. Some bounding-box detection results of Faster R-CNN with ResNet-101 on the
COCO 2017 validation set.
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Fig. 7. Some bounding-box detection results of Faster R-CNN with ResNet-101 on the
COCO 2017 validation set.
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Fig. 8. Some bounding-box detection and instance segmentation results of Mask R-
CNN with ResNet-101 on the COCO 2017 validation set.
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Fig. 9. Some bounding-box detection and instance segmentation results of Mask R-
CNN with ResNet-101 on the COCO 2017 validation set.
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Fig. 10. Some bounding-box detection and instance segmentation results of Mask R-
CNN with ResNet-101 on the COCO 2017 validation set.
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