-Supplementary Material-**Detecting Human-Object Interactions with Action Co-occurrence Priors** Anonymous ECCV submission Paper ID 3850 The contents of this supplementary material include additional experimental results, implementation details of our model, more qualitative results and analvsis which have not been shown in the main paper due to the space limitation. **Additional Experimental Results** In this section, we provide additional qualitative results. We also analyze the effect of using different numbers of anchor actions introduced in Section 3.2 of the main paper, performance across different classes, and analyze false predictions in our model's predictions. 1.1 **Qualitative Results** Fig. 1 shows examples of HOI detection results that our model predicts correctly with high probability. We show each image with the predicted HOI class followed by the probability computed by our model. Number of Anchor Actions 1.2In addition, we investigate the effect of using different numbers of anchor actions $|\mathcal{D}|$ in Fig. 2. We measure the relative performance improvement from the +Hi-erarchical model to the *Modified Baseline* model by changing the number of anchor actions $|\mathcal{D}|$ at intervals of five. In principle, the more anchor actions we use, the better performance that can be attained. On one hand, the selected anchor actions can be more distinguish-able from one another with more anchor action categories and training samples. On the other hand, the remaining regular actions can also benefit from stronger co-occurrence priors. However, more anchor action will also result in more sub-networks to optimize, and this will cause over-fitting to a certain extent. Through observations, we found that an increase in the number of parameters of the HOI detector often causes a severe performance decrease. Thus, there is a trade-off between a large and small number of anchors, which requires us to empirically select the best anchor number. As depicted in Fig. 2, the hierarchical architec-ture shows the best overall mAP score (Full) with 15 anchors and the best mAP score on rare classes with 10 anchors. We finally use an experimentally overall best-performing choice of 15 anchor actions (maximum anchor action number is 54).

Fig. 1. Examples of bounding boxes and HOI detection scores from our model. Bounding boxes for humans are colored red, and bounding boxes for objects are coloreds blue. Each image is displayed with the predicted action+object class followed by the probability computed by our model.

1.3 Performance across Different Classes

Fig. 3 shows the improvements in mAP scores across different object and action classes. We compare our model with the baseline model. In order to visualize on which classes our method improves performance, the figure is organized in the order of the improvements of the scores of each class. It is found that our method improves mAP scores in 64 out of the 80 object classes (80%) and 90 out of the 117 actions (77%).

1.4 Analysis of False Predictions

Fig. 4 shows examples of false predictions by our model. We found three common reasons that the prediction is evaluated as false. First is the wrong prediction of object label from the object detector (e.g., 'couch' as 'chair' or 'sheep' as 'cow')which is shown in the left column of Fig. 4. Second, the prediction is correct but the ground truth label for the prediction in a test image is missing (e.g., 'ridebus' or 'hold-horse') which is shown in the middle column of Fig. 4. Last, a HOI detector could have been predicted correctly if there were a sophisticated way to take context (the third object or the background) into account (e.g., the

Fig. 2. Performance of the hierarchical architecture with different number of anchors at intervals of five. The model with 15 and 10 anchors show the best performance overall and on rare classes, respectively.

background for predicting 'repair-bicycle' or an object that person carries for
predicting 'load-bus') which is shown in the right column of Fig. 4. The last issue
can be solved by devising a better network architecture for effectively encoding
context, which is a direction orthogonal to our work. All of these issues (the
errors in the object detector, missing labels in datasets, and encoding context)
are fundamental issues in HOI detection, which can be interesting topics for
future work.

2 Implementation Details

In this section, we provide more implementation details of our method which arenot discussed in the main paper due to the space limitation.

⁰ 2.1 Knowledge Distillation in Object-agnostic Level

In Knowledge Distillation via ACP Projection (Section 3.4 in the main paper), the action co-occurrence matrices C_o and C'_o used for ACP Projection are objectaware (described in Eq. (17) and Eq. (18) in the main paper). We also use the object-agnostic action co-occurrence matrix C and C'.

We thus can generate two more object-aware teacher labels when constructing teacher objectives:

$$\hat{Y}_{proj} = joint(\hat{H}, \hat{O}, project(\hat{A}, C, C')) \in \mathbb{R}^{M}, \tag{1}$$

$$Y_{proj}^{gt} = joint(H^{gt}, O^{gt}, project(A^{gt}, C, C')) \in \mathbb{R}^{M}$$

$$\tag{2}$$

¹³¹ Finally, the total loss function we used to train the ACP model is expressed as:

$$\mathcal{L}_{tot} = \lambda_1 \mathcal{L}(\hat{Y}, Y^{gt}) + \lambda_2 \mathcal{L}(\hat{Y}, \hat{Y}_{projO}) + \lambda_3 \mathcal{L}(\hat{Y}, Y^{gt}_{mrojO})$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$L_{tot} = \lambda_1 \mathcal{L}(\hat{Y}, \hat{Y}^{s}) + \lambda_2 \mathcal{L}(\hat{Y}, \hat{Y}_{projO}) + \lambda_3 \mathcal{L}(\hat{Y}, \hat{Y}^{g}_{projO})$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$+\lambda_4 \mathcal{L}(\hat{Y}, \hat{Y}_{proj}) + \lambda_5 \mathcal{L}(\hat{Y}, Y_{proj}^{gt}),$$
¹³⁴

Fig. 3. The AP score improvements across different object and action classes sorted by the amount of improvement compared to the baseline model [3]. Our method improves mAP scores in 64 out of the 80 object classes (80%) and 90 out of the 117 actions (77%).

Fig. 4. Examples of the false predictions from our model. The false cases include wrong prediction of object label from the object detector (left column), correct prediction but missing ground truth labels (middle column), and predictions that could have been correct if the context were taken into account (right column).

by introducing two more loss balancing weights λ_4, λ_5 .

2.2 Details of Multiple Information and Fusion Networks

In Section 3.3 of the main paper, we introduced the baseline network "nofrills" [3]. We now give detailed definitions of the multiple information X and the fusion networks $F(\cdot)$ used in this baseline and our modified baseline.

The CNN features used for HOI classification are denoted as $\hat{x} = \{\hat{x}_h, \hat{x}_o\}$, where \hat{x}_h and \hat{x}_o are for human and object appearance, respectively. These CNN features are directly extracted from the final fully connected (FC) layer of the detector. The multiple information consists of human appearance \hat{x}_h , object appearance \hat{x}_o , as well as human pose (\hat{k}) , object category (\hat{o}) and bounding boxes (\hat{b} including both object and human bounding boxes). All of these input cues $X = \{\hat{x}, \hat{k}, \hat{o}, \hat{b}\}$ are fed to our target model. There are four separate network streams: human appearance $(f_h(\cdot))$, object appearance $(f_o(\cdot))$, bounding box

Fig. 5. Overall illustration of the basic components of our network architecture (More symbols added). The design choices for the hierarchical *action prediction module* are detailed in Fig. 7.

and object category $(f_b(\cdot))$, and human pose and object category $(f_k(\cdot))$. Each individual type of information is first fed through a separate network of two FC layers to generate a fixed dimension (number of actions N) feature. Then, all the features are added together and sent through a *sigmoid* activation to get the probability prediction for the action a:

$$\hat{A}(a) = p(a|X) = sigmoid(F(X)).$$
(4)

The multi-information fusion procedure F(X) is expressed as

$$F(X) = f_h(\hat{x}_h) + f_o(\hat{x}_o) + f_k(\hat{k}||\hat{o}) + f_b(\hat{b}||\hat{o}),$$
(5)

where the operation || denotes concatenation.

However, instead of directly adding up the multiple information, we average them and forward this through another *action prediction module* f_{sub} of a few FC layers to obtain the final action probability prediction as illustrated in Fig. 5. For a naive approach (denoted as the *Modified Baseline*), we simply use a sub-network f_{sub} of one FC layer as the *action prediction module*. Then Eq. (4) and Eq. (5) are modified to

$$\hat{A} = p(a|X) = sigmoid(f_{sub}(F(X))), \tag{6}$$

$$F(X) = \frac{f_h(\hat{x}_h) + f_o(\hat{x}_o) + f_k(\hat{k}||\hat{o}) + f_b(\hat{b}||\hat{o})}{n_{stream}}.$$
(7)

In this case, $n_{stream} = 4$.

2.3 Training Details

We employ Faster R-CNN [7] with a Feature Pyramid Network (FPN) [5] and ResNet-101 [4] backbone as an object detector and freeze it while training an HOI classifier. This detector was originally trained on the MS COCO dataset [6], which has the same 80 object categories as the HICO-Det dataset. The HOI classifier consists of four streams similar to [1,2], extracting features from instance

226		flush	tag	stab	wave	brush with	hunt		226
227		toast	pay	move	teach	no interaction	eat at		227
228		milk	squeeze	greet	stop at	stir	install		228
229		point	sign	paint	shear	release	control		229
223		break	light	lose	zip	lift	pack		225
230		cut with	type on	talk on	set	slide	operate		230
231		spin	assemble	pour	lie on	turn	chase		231
232		herd	flip	buy	hose	kick	row		232
233		peel	dry	hop on	direct	adjust	kiss		233
234									234
235									235
236	appearance, spa	atial loc	ation, ai	nd hun	ian po	se. The pose	and sp	atial streams are	236
227	composed of tw	vo FC la	vers wh	ereas t	he hu	nan and obi	ect apr	pearance streams	227
231	composed of th				mo mu	man and obj	cee apr	Sarance Streams	237

Table 1. The list of 54 anchors made out of all 117 actions from HICO-Det dataset.

consist of one FC layer of size 512. The dimension of the two hidden layers in the pose and spatial streams is 512. The outputs of the four streams are consoli-dated via average pooling and passed through an FC layer of size 512 to perform HOI classification. We consider all detections for which the detection confidence is greater than 0.01 and create human-object pairs for each image. The image-centric training strategy [7] is also applied. In other words, pair candidates from one image make up each mini-batch. We adopt SGD and set the initial learn-ing rate to 1e-3, weight decay to 1e-4, and momentum to 0.9. For the ratio of positive to negative samples in training, while [3] uses 1:1000, we suspect 1:600 is more reasonable because intuitively the ratio of the positive and the negative sample is likely to be 1: (Number of classes). We empirically found out 1:600 gives better performance than 1:1000. We train the framework for 100000 iterations. All experiments are conducted on a single Nvidia K40 GPU.

More Illustrations for Our Methods

3.1Illustration for NES

Fig. 6 shows a step-by-step example of the anchor selection process among eight action classes (from 'A' to 'H'). The color of each node denotes whether or not its exclusiveness value e_i is included in the exclusiveness pool \mathcal{E} . The *i*-th node is blue if $e_i \in \mathcal{E}$, orange if selected as an anchor action, gray if $e_i \notin \mathcal{E}$) The color of the edge denotes whether or not the co-occurrence value c_{ii} is included in the co-occurrence pool \mathcal{C} .

3.2 **Design Choices for Hierarchical Architecture**

Fig. 7 illustrates the design choices for our hierarchical architecture (Modified Baseline, MultiTask, TwoStream, and Hierarchical).

ECCV-20	submission	ID	3850
LCC / 20	Submission	ч	0000

271 A.1 List of Anchors 77 Table 1 shows the list of maximum number of anchor actions from the HICO-Det dataset in the order in which they are selected. For example, when setting the number of anchor actions to be 10, we take from the first action ('flush') to the tenth action ('teach') as the set of anchors, and the rest are associated to 'other.' 77 A.2 Example of Co-occurrence Matrices for Other Objects 78 Fig. 8 shows more examples of the co-occurrence matrices C_o for object o , constructed from the HICO-Det dataset. 78 78 Fig. 8 shows more examples of the co-occurrence matrices C_o for object o , constructed from the HICO-Det dataset. 78 79 Output Det dataset. 78 79 Output Det dataset. 78 79 Output Det dataset. 78 70 Det dataset. 78 71 Det dataset. 78 72 Det dataset. 78 73 Det dataset. 78 74 Det dataset. 78 75 Det dataset. 78 76 Det dataset. 78 77 Det dataset. 78 78 Det dataset. 78 79 Det dataset. 78	270	4 Extras	27(
Table 1 shows the list of maximum number of anchor actions from the HICO-Det dataset in the order in which they are selected. For example, when setting the number of anchor actions to be 10, we take from the first action ('flush') to the tenth action ('teach') as the set of anchors, and the rest are associated to 'other.' 4.2 Example of Co-occurrence Matrices for Other Objects Fig. 8 shows more examples of the co-occurrence matrices C_o for object o , constructed from the HICO-Det dataset. 301 302 303 304 305 305 306 307 308 309 301 302 303 304 305 305 306 307 308 309 309 300 301 302 303 304 305 305 306 307 308 309 309 300 301	271	4.1 List of Anchors	271
4.2 Example of Co-occurrence Matrices for Other Objects 7 Fig. 8 shows more examples of the co-occurrence matrices Co for object o, constructed from the HICO-Det dataset. 7 7 7	273 274 275 276 277	Table 1 shows the list of maximum number of anchor actions from the HICO-Det dataset in the order in which they are selected. For example, when setting the number of anchor actions to be 10, we take from the first action ('flush') to the tenth action ('teach') as the set of anchors, and the rest are associated to 'other.'	273 274 274 275 276 277
280 Fig. 8 shows more examples of the co-occurrence matrices Co for object o, constructed from the HICO-Det dataset. 28 281 28 282 28 283 28 284 28 285 28 286 28 287 28 288 28 289 28 280 29 281 29 282 29 283 29 284 29 295 29 296 29 297 29 298 29 299 29 291 29 292 29 293 29 294 29 295 29 296 29 297 29 298 29 299 29 291 29 292 29 293 29	278 279	4.2 Example of Co-occurrence Matrices for Other Objects	278
283 284 284 285 286 286 287 286 289 287 290 292 291 292 292 292 293 292 294 292 295 292 296 292 297 292 296 292 297 292 298 293 299 293 301 303 302 303 303 303 304 303 305 303 306 303 307 303 308 303 309 303 301 303 302 303 303 303 304 304 305 305 306 303 307 303 308 303 309 303 310 313 311 314	280 281 282	Fig. 8 shows more examples of the co-occurrence matrices C_o for object o , constructed from the HICO-Det dataset.	280 28: 28:
285 287 287 288 289 289 290 292 291 292 292 293 294 299 295 299 296 299 297 299 298 299 299 291 301 301 302 301 303 301 304 301 305 301 306 301 307 301 308 301 309 301 301 301 302 301 303 302 304 303 305 301 306 301 307 301 308 301 309 301 301 301 302 301 303 302 304 303 305 301 306 301 307 301 308 301 309 301 301 301 302 301 303 301	283 284		283 284
287 288 289 289 290 290 291 292 293 292 294 292 295 292 296 292 297 293 298 299 299 290 300 300 301 300 302 300 303 301 304 303 305 303 306 300 307 300 308 301 309 301 301 301 302 301 303 301 304 301 305 301 306 301 307 301 308 301 309 301 301 301 302 301 303 301 304 301 305 301 306 3	285 286		285 286
28 28 29 29 292 29 293 29 294 29 295 29 296 29 297 29 298 29 299 29 301 30 302 30 303 30 304 30 305 30 306 30 307 30 308 30 309 30 301 30 302 30 303 30 304 30 305 30 306 30 307 30 308 30 309 30 310 31 311 31 312 31	287 288		28 ⁻ 28
291 29 292 29 293 29 294 29 295 29 296 29 297 29 298 29 300 30 301 30 302 30 303 30 304 30 305 30 306 30 307 30 308 30 309 30 310 31 311 31 312 31	289 290		289
292 293 299 294 299 295 299 296 299 297 299 290 291 300 301 301 301 302 301 303 301 304 301 305 301 306 301 307 301 308 301 309 301 310 301 311 311 312 31	291		29:
294 295 295 296 297 299 298 299 300 300 301 300 302 300 303 301 304 300 305 300 306 300 307 300 308 300 309 301 310 311 311 311 312 311	292 293		29. 293
296 29 297 29 298 29 300 30 301 30 302 30 303 30 304 30 305 30 306 30 307 30 308 30 309 30 310 31 311 31 312 31	294 295		29- 29:
298 29 300 30 301 30 302 30 303 30 304 30 305 30 306 30 307 30 308 30 310 30 311 31 312 31	296 297		29 29
300 301 301 300 302 301 303 300 304 300 305 300 306 300 307 300 308 300 310 301 311 311 312 31	298 299		29 29
302 30 303 30 304 30 305 30 306 30 307 30 308 30 309 30 310 31 311 31 312 31	300 301		30(30)
303 304 304 30 305 30 306 30 307 30 308 30 309 30 310 31 311 31 312 31	302 303		302
305 30 306 30 307 30 308 30 309 30 310 31 311 31 312 31	304		30
307 30 308 30 309 30 310 31 311 31 312 31	305 306		30: 30:
309 30 310 31 311 31 312 31	307 308		30 30
311 31 312 31	309 310		30 31
	311 312		31: 31:
313 31 314 31	313 314		313 31/

which utilizes the anchor actions as in a multi-task learning manner. (c) *TwoStream*which separately predicts the anchor and the regular actions but without using the
hierarchical modeling between anchor and regular actions. (d) The proposed hierarchical target (*Hierarchical*). Anchor probability is directly used as a final score, and we
exploit multiple conditional sub-networks to further compute the probabilities for the
regular actions.

Fig. 8. Example of co-occurrence matrices C_o for each object o constructed from HICO-Det dataset.

References	450
	451
1. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect numan-object interactions. In: IEEE Winter Conference on Applications of Computer Vision	452
(WACV) (2018)	453
2. Gao, C., Zou, Y., Huang, J.B.: ican: Instance-centric attention network for human-	454
object interaction detection. In: British Machine Vision Conference (BMVC) (2018)	455
3. Gupta, T., Schwing, A., Hoiem, D.: No-frills human-object interaction detection:	456
Factorization, layout encodings, and training techniques. In: IEEE International	457
Conference on Computer Vision (ICCV) (2019)	458
4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.	459
5 Lin TY Dollár P Girshick B He K Haribaran B Belongie S · Feature	400
pyramid networks for object detection. In: IEEE Conference on Computer Vision	401
and Pattern Recognition (CVPR) (2017)	463
6. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,	464
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European Conference	465
on Computer Vision (ECCV) (2014) 7 Paper S. Ho, K. Circhiele, P. Sun, L. Faster, P. CNN, Tewards real time object.	466
detection with region proposal networks. In: Advances in Neural Information Pro-	467
cessing Systems (NIPS) (2015)	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	402
	403
	485
	486
	487
	488
	489
	490
	491
	492
	493
	494