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Abstract. A common problem in human-object interaction (HOI) de-
tection task is that numerous HOI classes have only a small number of
labeled examples, resulting in training sets with a long-tailed distribu-
tion. The lack of positive labels can lead to low classification accuracy for
these classes. Towards addressing this issue, we observe that there exist
natural correlations and anti-correlations among human-object interac-
tions. In this paper, we model the correlations as action co-occurrence
matrices and present techniques to learn these priors and leverage them
for more effective training, especially on rare classes. The utility of our
approach is demonstrated experimentally, where the performance of our
approach exceeds the state-of-the-art methods on both of the two leading
HOI detection benchmark datasets, HICO-Det and V-COCO.

1 Introduction

Human-object interaction (HOI) detection aims to localize humans and objects
in an image and infer the relationships between them. An HOI is typically repre-
sented as a human-action-object triplet with the corresponding bounding boxes
and classes. Detecting these interactions is a fundamental challenge in visual
recognition that requires both an understanding of object information and high-
level knowledge of interactions.

A major issue that exists in HOI detection is that its datasets suffer from
long-tailed distributions, in which many HOI triplets have few labeled instances.
Similar to datasets for general visual relationship detection (VRD) [37], a rea-
son for this is missing labels, where the annotation covers only a subset of the
interactions present in an image. For the widely-used HICO-Det dataset [3], 462
out of the 600 HOI classes have fewer than 10 training samples. For such classes,
the lack of positive labels can lead to inadequate training and low classification
performance. How to alleviate the performance degradation on rare classes is
thus a key issue in HOI detection.

To address the problem of long-tailed distributions, we propose to take ad-
vantage of natural co-occurrences in human actions. For example, the HOI of
‘operate-hair dryer’ is rarely labeled and consequently hard to detect in the
left image of Fig. 1. However, ‘operate-hair dryer’ often occurs when the more
commonly labeled HOI of ‘hold-hair dryer’ is present. As a result, detection of
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P(operate-hair_drier) = 0.001

P(operate-hair_drier | hold-hair_drier) = 0.958

P(blow-cake) = 0.007

P(blow-cake | cut-cake) = 0.005

Fig. 1. Marginal/conditional probability values are computed from the distribution of
the training label. Intuitively, detection of HOIs (operate-hair dryer) can be facilitated
by detection of commonly co-occurring HOIs (hold-hair dryer). Also, non-detection
of HOIs (blow-cake) can be aided by detection of incompatible HOIs (cut-cake). We
leverage this intuition as a prior to learn an HOI detector on long-tailed datasets.

‘operate-hair dryer’ can be facilitated by detection of ‘hold-hair dryer’ in an im-
age. On the other hand, the detection of an HOI may preclude other incompatible
HOIs, such as for ‘cut-cake’ and ‘blow-cake’ in the right image of Fig. 1.

In this paper, we introduce the new concept of utilizing co-occurring actions
as prior knowledge, termed as action co-occurrence priors (ACPs), to train an
HOI detector. In contrast to the language-based prior knowledge which requires
external data sources [27,37,61], the co-occurrence priors can be easily obtained
from the statistics of the target dataset. We also propose two novel ways to ex-
ploit them. First, we design a neural network with hierarchical structure where
the classification is initially performed with respect to action groups. Each action
group is defined by one anchor action, where the anchor actions are mutually
exclusive according to the co-occurrence prior. Then, our model predicts the
fine-grained HOI class within the action group. Second, we present a technique
that employs knowledge distillation [20] to expand HOI labels so they can have
more positive labels for potentially co-occurring actions. During training, the
predictions are regularized by the refined objectives to improve robustness, es-
pecially for classes in the data distribution tail. To the best of our knowledge,
we are the first to leverage the label co-occurrence in HOI detection to alleviate
long-tailed distribution.

The main contributions of this work can be summarized as: (1) The novel
concept of explicitly leveraging correlations among HOI labels to address the
problem of long-tailed distributions in HOI detection; (2) Two orthogonal ways
to leverage action co-occurrence priors, namely through a proposed hierarchical
architecture and HOI label expansion via knowledge distillation. The resulting
model is shown to be consistently advantageous in relation to state-of-the-art
techniques on both the HICO-Det [3] and V-COCO [16] benchmark datasets.

2 Related Work

Human-Object Interaction Human-Object Interaction was originally studied
in the context of recognizing the function or ‘affordance’ of objects [6,12,14,15,46].
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Early works focus on learning more discriminative features combined with vari-
ants of SVM classifiers [7,8,57], and leverage the relationship with human poses
for better representation [7,8,59] or mutual context modeling [58].

Recently, a completely data-driven approach based on convolutional neural
networks (CNNs) has brought dramatic progress to HOI. Many of the pioneering
works created large scale image datasets [3,4,16,68] to set new benchmarks in this
field. Henceforth, significant progress have been seen in using CNNs for this prob-
lem [1,3,11,13,18,25,32,33,35,43,45,49,50,52,53,54]. Most of these works follow a
two-step scheme of CNN feature extraction and multi-information fusion, where
the multiple information may include human and object appearance [3,11,13,43];
box relation (either box configuration or spatial map) [1,3,13,18,54]; object cat-
egory [1,18,41]; human pose [18,32,33]; and particularly, linguistic prior knowl-
edge [25,41]. More recent works tend to combine these various cues [18,33,50,53].
These works differ from one another mainly in their techniques for exploiting
external knowledge priors. Kato et al . [25] incorporate information from Word-
Net [39] using a Graph Convolutional Network (GCN) [29] and learn to compose
new HOIs. Xu et al . [54] also use a GCN to model the general dependencies
among actions and object categories by leveraging a VRD dataset [37]. Li et
al . [33] utilize interactiveness knowledge learned across multiple HOI datasets.
Peyre et al . [41] transfer knowledge from triplets seen at training to new unseen
triplets at test time by analogy reasoning.

Different from the previous works, our approach is to reformulate the target
action label space and corresponding loss function in a manner that leverages
co-occurrence relationships among action classes for HOI detection. In principle,
the proposed technique is complementary to all of the previous works and can be
combined with any of them. For our experiments, we implemented our approach
on a baseline presented in [18], with details given in Sec. 3.3.

Visual Relationship Detection The closest problem to HOI detection is Vi-
sual Relationship Detection (VRD) [5,31,42,56,60,61,62,64,65,67], which deals
with general visual relationships between two arbitrary objects. In the VRD
datasets [30,37], the types of visual relationships that are modeled include verb
(action), preposition, spatial and comparative phrase. The two tasks share com-
mon challenges such as long-tail distributions or even zero-shot problems [37].
Our work focuses on HOI detection, as co-occurrences of human-object interac-
tions are often strong, but the proposed technique could be extended to model
the general co-occurrences that exist in visual relationships.

Label Hierarchy in Multi-label Learning The hierarchical structure of la-
bel categories has long been exploited for multi-label learning in various vision
tasks, e.g., image/object classification [9,55], detection [23,38], and human pose
estimation [47,48]. In contrast, label hierarchy has rarely been considered in
HOI detection. Inspired by previous work [9] that uses Hierarchy and Exclusion
(HEX) graphs to encode flexible relations between object labels, we present the
first method to take advantage of an action label hierarchy for HOI recognition.
While label hierarchies have commonly been used, our method is different in that
it is defined by co-occurrences (rather than semantics or a taxonomy [9]). This
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Fig. 2. Examples of co-occurrence matrices constructed for several objects (bicycle,
boat, dog). Along the Y-axis is the given action, and the X-axis enumerates conditional
actions. Each element represents the conditional probability that an action occurs when
another action is happening.

co-occurrence based hierarchy can be determined statistically, without direct
human supervision.

3 Proposed Method

Our method for utilizing the co-occurrence information of HOI labels consists
of three key components: (1) establishing action co-occurrence priors (Sec. 3.1),
(2) hierarchical learning including anchor action selection (Sec. 3.2) and devising
the hierarchical architecture (Sec. 3.3), and (3) ACP projection for knowledge
distillation (Sec. 3.4).

3.1 Action Co-occurrence Priors

Here, we formalize the action co-occurrence priors. The priors for the actions are
modeled by a co-occurrence matrix C ∈ RN×N where an entry cij in C represents
the conditional probability that action j occurs when action i is happening:

cij = p(j|i), i, j ∈ [0, N), (1)

where N denotes the total number of actions classes and i, j are indices of two
actions. C is constructed from the target HOI detection dataset by counting the
image-level statistics of its training labels. Examples of co-occurrence matrices
constructed for single object are visualized in Fig. 2.

Meanwhile, we also consider the complementary event of action i (i.e., where
the i-th action does not occur) and denote it as i

′
, such that p(i

′
)+p(i) = 1. The

complementary action co-occurrence matrix C
′ ∈ RN×N can thus be defined by

entries c
′

ij in C
′

that represent the conditional probability that an action j occurs
when another action i does not occur:

c
′

ij = p(j|i
′
), i, j ∈ [0, N). (2)

It can be seen from Fig. 2, that different types of relationships can exist
between actions. The types can be divided into three types. The first type is the
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prerequisite relationship, where the given action is highly likely to co-occur
with the conditional action. For example, the HOI ‘sit on-bicycle’ is a prerequisite
of the HOI ‘ride-bicycle’. In this case, p(sit on-bicycle|ride-bicycle) is close to 1.
Next, exclusion, where the given action is highly unlikely to co-occur with the
conditional action. An example is that the HOI ‘wash-bicycle’ and HOI ‘ride-
bicycle’ are unlikely to happen together. As a result, p(wash-bicycle|ride bicycle)
is close to 0. Finally, overlapping, where the given action and conditional action
may possibly co-occur, for example HOI ‘hold-bicycle’ and HOI ‘inspect-bicycle’,
such that p(hold-bicycle|inspect-bicycle) is in between 0 and 1.

The strong relationships that may exist between action labels can provide
strong priors on the presence or absence of an HOI in an image. In contrast
to previous works where models may implicitly learn label co-occurrence via
relational architectures [2,63], we explicitly exploit these relationships between
action labels as priors, to effectively train our model especially for rare HOIs.

3.2 Anchor Action Selection via Non-Exclusive Action Suppression

From a co-occurrence matrix for an object, it can be seen that some actions
are close in semantics or commonly co-occur while others are not. Intuitively,
closely related actions (e.g., ‘sit on-bicycle’ and ‘straddle-bicycle’) tend to be
harder to distinguish from each other. If the positive labels for these actions are
rare, then they become even more difficult to distinguish. Such cases require fine-
grained recognition [10] and demand more dedicated classifiers. This motivates
us to learn HOI classes in a coarse-to-fine manner. Specifically, we first identify a
set of mutually exclusive action classes, called anchor actions, which tend to be
distinguishable from one another. The anchor actions will be used to partition
the entire action label space into fine-grained sub-spaces. The other action classes
will be attributed to one or more sub-spaces and recognized in the context of a
specific anchor action. In summary, unlike previous HOI detection works which
predict action probabilities independently of one another, we divide the whole
action label set into two sets, one for anchor actions and one for regular actions,
which are modeled in different ways as explained in detail in Sec. 3.3.

In selecting anchor actions, we seek a set of action classes that are exclusive
of one another. Toward this end, we define the exclusiveness of an action class
as counting the number of actions that will never occur if action i is happening
(ei =

∑
j(1 if (cij = 0), else 0)). ei will have a high value if few other actions

can occur when i does. Based on exclusiveness values, the anchor action label
set D is generated through non-exclusive suppression (NES). It iteratively
finds the most exclusive action class as an anchor action and removes remaining
action classes that are not exclusive to the selected anchor actions. The anchors
in the list are action classes that never occur together in the training labels.
For example, if an action such as ‘toast’ is on the anchor list, then actions like
‘stand’ and ‘sit’ cannot be on the list because they may co-occur with ‘toast’,
while actions such as ‘hunt’ or ‘hop on’ can potentially be on the list. While there
may exist other ways the anchor action selection could be done, we empirically
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found this approach to be simple, effective (detection accuracy), and efficient
(less than 0.01 second).

The anchor action label set acts as a finite partition of the action label space
(a set of pairwise disjoint events whose union is the entire action label space). To
form a complete action label space, we add an ‘other’ anchor action, denoted
as O, for when an action class does not belong to D. Finally, we get |D| + 1
anchor actions including D and the ‘other’ action class O.

There are several benefits to having this anchor action label set. First, only
one anchor action can happen at one time between a given human and object.
Thus, we can use the relative (one hot) probability representation with softmax
activation, whose features were shown to compare well against distance metric
learning-based features [21]. Second, anchor actions tend to be easier to dis-
tinguish from one another since they generally have prominent differences in an
image. Third, it decomposes the action label space into several sub-spaces, which
facilitates a coarse-to-fine solution. Each sub-task will have a much smaller so-
lution space, which can improve learning. Finally, each sub-task will use a stan-
dalone sub-network which focuses on image features specific to the sub-task,
which is an effective strategy for fine-grained recognition [10].

After selecting anchor actions, the entire action label set A is divided into
the anchor action label set D and the remaining set of ‘regular’ action classes R,
so that A = {D,R}. Each of the regular action classes is then associated with
one or more anchor actions to form |D|+ 1 action groups G = {Gi; i ∈ D ∪ O},
one for each anchor action. A regular action class j ∈ R will be assigned to
the group of anchor action i (Gi) if action j is able to co-occur with the anchor
action i,

j ∈ Gi, if cij > 0 (i ∈ D ∪O, j ∈ R). (3)

Note that the anchor actions themselves are not included in the action groups
and a regular action j can be assigned to multiple action groups since it may
co-occur with multiple anchor actions.

3.3 Hierarchical Architecture

We implemented our hierarchical approach upon the ‘No-Frills’ (NFs) baseline
presented in [18] on account of its simplicity, effectiveness, and code availabil-
ity [17]. Here, we give a brief review of the NFs architecture.
Baseline Network NFs follows the common scheme of CNN feature extraction
followed by multi-information fusion. It uses the off-the-shelf Faster R-CNN [44]
object detector with ResNet152 [19] backbone network to detect human and
object bounding boxes. As illustrated in Fig. 3, the multiple information used
in [18] (denoted as X) are fed through four separate network streams to generate
fixed dimension features. Then, all the features are added together and sent
through a sigmoid activation to get the action probability prediction Â:

Â = sigmoid(F (X)) ∈ RN , (4)

where Â(a) = p(a|X) represents the probability prediction for action class a.
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To eliminate training-inference mismatch, NFs directly optimizes the HOI
class probabilities instead of separating the detection and interaction losses as
done in [11,13]. The final HOI prediction is a joint probability distribution over
M number of HOI classes computed from the probabilities Ĥ, Ô, and Â for
human, object, and action, respectively:

Ŷ = joint(Ĥ, Ô, Â) ∈ RM . (5)

Specifically, for a HOI class (h, o, a),

Ŷ (h, o, a) = Ĥ(h) ∗ Ô(o) ∗ Â(a) = p(h|I) ∗ p(o|I) ∗ p(a|X), (6)

where Ĥ(h) = p(h|I) and Ô(o) = p(o|I) are the probability of a candidate
box pair being a human h and object o, provided by the object detector [44].
Finally, the binary cross-entropy loss L(Ŷ , Y gt) is directly computed from the
HOI prediction. This ‘No-Frills’ baseline network is referred to as Baseline.
Modified Baseline Network For a stronger baseline comparison, we make
two simple but very effective modifications on the baseline network. (1) Replace
the one-hot representation with the Glove word2vec [40] representation for the
object category. (2) Instead of directly adding up the multiple information, we
average them and forward this through another action prediction module to ob-
tain the final action probability prediction. For a naive approach (the Modified
Baseline), we simply use a sub-network fsub of a few FC layers as the action
prediction module. Then Eq. (4) is modified to

Â = sigmoid(fsub(F (X))). (7)

Our hierarchical architecture further modifies the action prediction module by
explicitly exploiting ACP information which is described in the next paragraph.
Proposed Hierarchical Architecture Now we introduce the action prediction
module for our hierarchical architecture (illustrated in Fig. 3) that better exploits
the inherent co-occurrence among actions. While the baseline network predicts
all the action probabilities directly from F (·) with a single feed-forward sub-
network fsub, we instead use |D|+ 2 sub-networks where one (fanchor(·)) is first
applied to predict the anchor action set and then one of the |D| + 1 other sub-
networks (fGi(·)) which corresponds to the predicted anchor action is used to
estimate the specific action within the action group. Because of the mutually
exclusive property of anchor actions, we use the softmax activation for anchor
action predictions, while employing the sigmoid activation for regular action
predictions conditional to the action groups:

Âanchor = softmax(fanchor(F (X))) ∈ R|D|+1 (8)

ÂGi = sigmoid(fGi(F (X))) ∈ RN−|D|,where i ∈ D ∪O, (9)

where Âanchor(i) is directly used as the final probability predictions for the an-
chor actions (p(i|X) = Âanchor(i), i ∈ D). We let ÂGi(j) represent the learned
conditional probability that action j occurs when action i is happening(p(j|i,X) =
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Fig. 3. Illustration of our overall network architecture. Our work differs from the base-
line [18] by the addition of a hierarchical action prediction module. For our hierarchical
architecture, anchor action probability is directly generated by a softmax sub-network.
Regular action probability is generated by a matrix multiplication of the anchor prob-
ability and the output from a few sigmoid based conditional sub-networks.

ÂGi(j)). Since the anchor action set is a finite partition of the entire action label
space, the probability of a regular action j can be predicted according to the law
of total probability:

Âregular(j) = p(j|X) =
∑

i∈D∪O

p(i|X) ∗ p(j|i,X) =
∑

i∈D∪O

Âanchor(i) ∗ ÂGi(j), (10)

where j ∈ R. Thus, instead of Eq. (7), we obtain the final action probability
predictions for our hierarchical architecture Â(a) = p(a|X) as

Â(a) =

{
Âanchor(a), if a ∈ D∑

i∈D∪O Âanchor(i) ∗ ÂGi(a), otherwise.
(11)

We use the same method as in Eq. (6) and cross-entropy loss to compute the
final HOI probability prediction Ŷ and the corresponding loss L.

To demonstrate the effectiveness of the hierarchical learning, we introduce
another two baselines, MultiTask and TwoStream, that lie between the Mod-
ified Baseline and our hierarchical learning. MultiTask only uses the anchor
action classification as an additional multi-task element to the Modified Base-
line. TwoStream separately predicts the anchor and the regular actions but
without using the hierarchical modeling between anchor and regular actions.

3.4 ACP Projection for Knowledge Distillation

Knowledge distillation [20] was originally proposed to transfer knowledge from
a large network to a smaller one. Recently, knowledge distillation has been uti-
lized for various purpose such as life-long learning [34] or multi-task learning [28].
Hu et al . [22] extended this concept to distill prior knowledge in the form of logic
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rules into a deep neural network. Specifically, they propose a teacher-student
framework to project the network prediction (student) to a rule-regularized sub-
space (teacher), where the process is termed distillation. The network is then
updated to balance between emulating the teacher’s output and predicting the
true labels.

Our work fits this setting because the ACPs can act as a prior to distill. We
first introduce an ACP Projection to map the action distribution to the ACP
constraints. Then, we use the teacher-student framework [22] to distill knowledge
from ACPs.
ACP Projection In ACP Projection, an arbitrary action distribution A =
{p(i), i ∈ [0, N)} ∈ RN is projected into the ACP-constrained probability space:

A∗ = project(A,C,C
′
) ∈ RN , (12)

where A∗ is the projected action prediction. The projected probability for the
j-th action A∗(j) = p(j∗) is generated using the law of total probability:

p(j∗) =
1

N

N∑
i=1

(p(i)∗p(j|i)+p(i
′
)∗p(j|i

′
)) =

1

N
(

N∑
i=1

p(i)∗cij +

N∑
i=1

(1−p(i))∗c
′

ij).

(13)
In matrix form, the ACP projection is expressed as

project(A,C,C
′
) =

AC + (1−A)C
′

N
. (14)

In practice, we use the object-based action co-occurrence matrices Co ∈
RN×N and C

′

o ∈ RN×N which only count actions related to a specific object o.
Fig. 2 shows examples of Co with respect to object classes. Also, we give different
weights α and β as hyper-parameters to the action co-occurrence matrix Co and
its complementary matrix C

′

o, with the weights subject to α+β = 2, α > β. The
projection function is then modified as

project(A,Co, C
′

o) =
αACo + β(1−A)C

′

o

N
. (15)

This is done because we empirically found the co-occurrence relationships in Co

to generally be much stronger then the complementary actions in C
′

o.
Teacher-Student Framework Now we can distill knowledge from the ACPs
using ACP Projection in both the training and inference phases. There are three
ways ACP Projection can be used: (1) Directly project the action prediction Â
into the ACP-constrained probability space at the testing phase to obtain the
final action output (denoted as PostProcess). (2) Project the action prediction
Â in the training phase and use the projected action as an additional learning
target [22,61]. (3) Project the ground truth label Hgt, Ogt, and Agt3 to the ACP

3 The triplet ground truth labels Hgt, Ogt, and Agt are straightforward to determine
from the HOI ground truth label Y gt.
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space in the training phase and use the projected action project(Agt, COgt , C
′

Ogt)
as an additional learning target. The second and third items are incorporated
into the teacher-student framework as terms in a new objective function (denoted
as Distillation):

Ltotal = λ1L(Ŷ , Y gt) + λ2L(Ŷ , ŶprojO) + λ3L(Ŷ , Y gt
projO), (16)

where
ŶprojO = joint(Ĥ, Ô, project(Â, CÔ, C

′

Ô
)) ∈ RM , (17)

Y gt
projO = joint(Hgt, Ogt, project(Agt, COgt , C

′

Ogt)) ∈ RM . (18)

λ1, λ2, λ3 are balancing weights among the ground truth HOI term and the
teacher objectives. The object type can be easily determined from the object
probability predictions Ô or the ground truth label Ogt.

4 Experiments

The goal of the experiments is to show the effectiveness and generalizability of
our method. In particular, we show that our method can consistently alleviate
the long-tailed distribution problem in various setups by improving performance
especially for rare HOI classes. In this section, we describe the experimental se-
tups, competing methods and provide performance evaluations of HOI detection.

4.1 Datasets and Metrics

We evaluate the performance of our model on the two popular HOI detection
benchmark datasets, HICO-Det [3] and V-COCO [16]. HICO-Det [3] extends
the HICO (Humans Interacting with Common Objects) dataset [4] which con-
tains 600 human-object interaction categories for 80 objects. Different from the
HICO dataset, HICO-Det additionally contains bounding box annotations for
humans and objects of each HOI category. The vocabulary of objects matches
the 80 categories of MS COCO [36], and there are 117 different verb (action) cat-
egories. The number of all possible triplets is 117× 80, but the dataset contains
positive examples for only 600 triplets. The training set of HICO-Det contains
38,118 images and 117,871 HOI annotations for 600 HOI classes. The test set
has 9,658 images and 33,405 HOI instances.

For evaluation, HICO-Det uses the mean average precision (mAP) metric.
Here, an HOI detection is counted as a true positive if the minimum of the
human overlap IOU and object overlap IOU with the ground truth is greater
than 0.5. Following [3], HOI detection performance is reported for three different
HOI category sets: (1) all 600 HOI categories (Full), (2) 138 categories with fewer
than 10 training samples (Rare), and (3) the remaining 462 categories with more
than 10 training samples (Non-rare).

V-COCO (Verbs in COCO) is a subset of MS-COCO [36], which consists of
10,346 images (2,533, 2,867, 4,946 for training, validation and test, respectively)
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Table 1. Ablation study on the HICO-Det
dataset. Our final model that includes both
hierarchical architecture and distillation fol-
lowed by post processing (Ours, ACP) shows
the best performance among the baselines.

Full Rare Non-rare

Baseline 17.56 13.23 18.85
Modified Baseline 19.09 13.09 20.89

+Hierarchical only 20.03 14.52 21.67
+Distillation only 19.98 13.67 21.86
+Hierarchical+Distillation 20.25 15.33 21.72

+Hierarchical+Distillation+Post (Ours, ACP) 20.59 15.92 21.98

Table 2. Performance of our models
with different architectures for action
prediction module. Our model ((D)
Hierarchical) shows the best perfor-
mance among the design choices.

Full Rare Non-rare

(A) Modified Baseline 19.09 13.09 20.89
(B) MultiTask 19.54 13.93 21.22
(C) TwoStream 19.63 13.67 21.41
(D) Hierarchical 20.03 14.52 21.67

and 16,199 human instances. Each person is annotated with binary labels for 26
action classes. For the evaluation metric, same as for evaluation on HICO-Det,
we use the AP score.

4.2 Quantitative Results

Ablation study In the ablations, the ‘No-Frills’ baseline network [18] we used
is denoted as the Baseline. We first evaluate the effectiveness of the core de-
sign components in the proposed method including (1) our simple modification
to Baseline in Sec. 3.3, denoted as Modified Baseline ; (2) the hierarchical
learning technique introduced in Sec. 3.3, denoted as Hierarchical ; and (3) the
knowledge distillation technique presented in Eq. (16) of Sec. 3.4, denoted as
Distillation. Table 1 gives a comprehensive evaluation for each component. We
draw conclusions from it one-by-one.

First, our baseline network is strong. Our Modified Baseline achieves
19.09 mAP and surpasses the ‘No-Frills’ Baseline by 1.51 mAP (a relative 8.7%
improvement), which is already competitive to the state-of-the-art result [41] and
serves as a strong baseline.

Second, both hierarchical learning and knowledge distillation are
effective. This is concluded by adding Hierarchical and Distillation to the
Modified Baseline, respectively. Specifically, +Hierarchical improves the
modified baseline by 0.94 mAP (a relative 4.9% improvement), and +Distil-
lation (training with Eq. (16)) improves the modified baseline by 0.89 mAP
(a relative 4.7% improvement). Including both obtains 1.16 mAP improvement
(relatively better by 6.1%).

Third, the proposed ACP method achieves a new state-of-the-art.
Our final result is generated by further using the PostProcess step (introduced
in Sec. 3.4) that projects the final action prediction into the ACP constrained
space. Our method achieves 20.59 mAP (relative 7.9% improvement) for Full
HOI categories, 15.92 mAP (relative 21.6% improvement) for Rare HOI cate-
gories, and 21.98 mAP (relative 5.2% improvement) for Non-rare HOI categories.
Note that our method made especially significant improvements for Rare classes,
which supports the claim that the proposed method can alleviate the long-tailed
distribution problem of HOI detection datasets. This result sets the new state-
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Table 3. Results on the HICO-Det dataset
compared to the previous state-of-the-art
methods. Our model shows favorable per-
formance against the current state-of-the-art
models on all the metrics.

Full Rare Non-rare

Shen et al . [45] 6.46 4.24 7.12
HO-RCNN [3] 7.81 5.37 8.54
Gupta et al . [16] impl. by [13] 9.09 7.02 9.71
InteractNet [13] 9.94 7.16 10.77
GPNN [43] 13.11 9.34 14.23
iCAN [11] 14.84 10.45 16.15
iHOI [53] 13.39 9.51 14.55
with Knowledge [54] 14.70 13.26 15.13
Interactiveness Prior [33] 17.22 13.51 18.32
Contextual Attention [51] 16.24 11.16 17.75
No-Frills [18] 17.18 12.17 18.68
RPNN [66] 17.35 12.78 18.71
PMFNet [50] 17.46 15.65 18.00
Peyre et al . [41] 19.40 15.40 20.75

Our baseline 17.56 13.23 18.85
ACP (Ours) 20.59 15.92 21.98

Table 4. Results on the V-COCO
dataset. For our method, we show re-
sults both for constructing the ACP
from V-COCO and for using the ACP
constructed from HICO-Det instead.
Both of these models show favor-
able performance against the current
state-of-the-art models.

AProle

Gupta et al . [16] impl. by [13] 31.8
InteractNet [13] 40.0
GPNN [43] 44.0
iCAN [11] 45.3
iHOI [53] 45.79
with Knowledge [54] 45.9
Interactiveness Prior [33] 48.7
Contextual Attention [51] 47.3
RPNN [66] 47.53
PMFNet [50] 52.0

Our baseline 48.91
ACP (Ours, V-COCO) 52.98
ACP (Ours, HICO-Det) 53.23

of-the-art on both the HICO-Det and V-COCO datasets as shown in Table 3
and Table 4.

In addition, the MultiTask ,TwoStream , and our Hierarchical architec-
ture are compared in Table 2. From MultiTask , it can be seen that the soft-
max based anchor action classification already brings benefits to the Modified
Baseline when used only in a multi-task learning manner. From TwoStream ,
separately modeling the anchor and the regular classes leads to a slight more
improvements compared to MultiTask . Moreover, our Hierarchical architec-
ture improves upon TwoStream by explicitly modeling the hierarchy between
anchor and regular action predictions.

Comparison with the state-of-the-art We compare our method with the
previous state-of-the-art techniques in Table 3. Among the methods included
in this comparison are the benchmark model of the HICO-Det dataset [3], the
baseline model that we modified from [18], and the current published state-of-
the-art method [41]. As shown in Table 3, our final model (Ours) shows signifi-
cant improvements over our baseline model on all metrics, and shows favorable
performance against the current state-of-the-art model in terms of all the met-
rics. In particular, our model surpasses the current state-of-the-art model [41]
by 1.19 mAP.

Results on V-COCO dataset To show the generalizability of our method, we
also evaluate our method on the V-COCO dataset. Note that the exact same
method is directly applied to both HICO-Det and V-COCO, including the co-
occurrence matrix, anchor action selection, and the architecture design. We also
constructed a co-occurrence matrix from V-COCO, but the matrix was sparse.
Thus, to better take advantage of our idea, we instead use the co-occurrence
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Table 5. Results on the zero-shot triplets of the HICO-Det dataset. Our final model
shows better performance than Peyre et al . by a large margin. Note that our ACP model
under the zero-shot setting even outperforms the supervised setting of our baseline.

mAP

Peyre et al . [41] Supervised 33.7
Peyre et al . [41] Zero-Shot 24.1
Peyre et al . [41] Zero-Shot with Aggregation 28.6

Ours Supervised (Modified Baseline) 33.27
Ours Zero-Shot (Modified Baseline) 20.34
Ours Zero-Shot (ACP) 34.95

matrix collected from the HICO-Det dataset to train on the V-COCO. Table 4
shows the performance of our model (Ours, HICO-Det) compared to the recent
state-of-the-art HOI detectors on the V-COCO dataset. In addition, we show re-
sults of our model with the co-occurrence matrix constructed from the V-COCO
dataset (Ours, V-COCO). Both of these models show favorable performance on
the V-COCO dataset against the previous state-of-the-art model [50].
Results of the zero-shot setup on the HICO-Det dataset The zero-shot
setting on the HICO-Det dataset is defined by Peyre et al . [41]. Specifically,
we select a set of 25 HOI classes that we treat as unseen classes and exclude
them and their labels in the training phase. However, we still let the model pre-
dict those 25 unseen classes in the test phase, which is known as the zero-shot
problem. These HOI classes are randomly selected among the set of non-rare
HOI classes. Since Peyre et al . did not provide which specific HOI classes they
selected, we select the unseen HOI classes such that the performance (mAP)
for these classes in our Modified Baseline model (introduced in Sec. 3.3) is
similar to the corresponding Supervised baseline in [41]. In Table 5, we show
results of our final model (ACP) and our modified baseline model compared to
the corresponding setting reported in [41]. Our final model shows better per-
formance (35.0 mAP) than Peyre et al . (28.6 mAP) by a large margin (relative
22.4% improvement). This result is remarkable in that our ACP model under the
zero-shot setting even outperforms the supervised setting of our baseline model,
indicating the power of the proposed ACP method to effectively leverage prior
knowledge on action co-occurrences. Furthermore, the analogy transfer method
proposed by Peyre et al . (denoted as aggregation) requires large-scale linguis-
tic knowledge to train a word representation, whereas our model only requires
the co-occurrence information of the labels in the dataset, which is much easier
to obtain. We conclude that the proposed method is effective for the zero-shot
problem while being easy to implement.

4.3 Additional Analysis

Score Improvement after ACP Projection We also show the HOI prob-
ability change from before to after applying the projection function project(·)
on our model’s HOI prediction (i.e., the effect of PostProcess introduced in
Sec. 3.4) in Fig. 4. Leveraging co-occurrence matrix C can not only increase the
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hold-potted_plant (49.98 → 90.07)watch-bird (62.41 → 97.90)

hold-horse (75.16 → 42.95)walk-dog (60.04 → 24.53)

Fig. 4. The HOI probability before and
after applying the projection function
project(·) on our model’s HOI prediction
(PostProcess). Note that PostProcess
can be done without any optimization.
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Fig. 5. The relative mAP score improve-
ments for various HOI sets with the dif-
ferent number of training samples. Our
method is able to improve the perfor-
mance especially when the number of
training samples is small (38.24% im-
provement for 0-9 samples).

score for true classes (top) but also reduce the score for false classes (bottom).
Note that this change can be achieved without any optimization process.
Performance on various sets with different number of training samples
Finally, in Fig. 5, we show the relative mAP score improvements of our model
compared to the baseline model by computing mAP on various sets of HOI
classes that have different number of training samples. Our method shows posi-
tive performance improvements for all numbers of training samples. Also, there
is a trend that HOI classes with a small number of training samples mostly
show larger performance improvements. In particular, for HOI classes with the
number of training samples between 0 and 9, our model achieves 38.24% improve-
ment compared to the baseline model. These results indicate that the proposed
method is able to improve the performance of an HOI detector, especially for
classes with few training samples.

5 Conclusion

We introduced a novel method to effectively train an HOI detector by leveraging
prior knowledge on action co-occurrences in two different ways, via the archi-
tecture and via the loss function. Our proposed method consistently achieves
favorable performance compared to the current state-of-the-art methods in var-
ious setups. Co-occurrence information not only is helpful for alleviating the
long-tailed distribution problem but also can be easily obtained. A direction for
future work is to construct and utilize co-occurrence priors for other relationship-
based vision tasks [24,26,37].
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