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Abstract. Seeking effective neural networks is a critical and practical
field in deep learning. Besides designing the depth, type of convolution,
normalization, and nonlinearities, the topological connectivity of neural
networks is also important. Previous principles of rule-based modular
design simplify the difficulty of building an effective architecture, but
constrain the possible topologies in limited spaces. In this paper, we at-
tempt to optimize the connectivity in neural networks. We propose a
topological perspective to represent a network into a complete graph for
analysis, where nodes carry out aggregation and transformation of fea-
tures, and edges determine the flow of information. By assigning learn-
able parameters to the edges which reflect the magnitude of connections,
the learning process can be performed in a differentiable manner. We
further attach auxiliary sparsity constraint to the distribution of con-
nectedness, which promotes the learned topology focus on critical con-
nections. This learning process is compatible with existing networks and
owns adaptability to larger search spaces and different tasks. Quantita-
tive results of experiments reflect the learned connectivity is superior to
traditional rule-based ones, such as random, residual and complete. In
addition, it obtains significant improvements in image classification and
object detection without introducing excessive computation burden.

Keywords: Learning Connectivity, Topological Perspective

1 Introduction

Deep learning successfully transits the feature engineering from manual to au-
tomatic design. It marks the mapping function from sample to feature can be
optimized accordingly. As a tendency, seeking effective neural networks gradu-
ally becomes an important and practical direction. But the design of architecture
is still a challenging and time-consuming effort. Part of the research focuses on
how depth [17, 7, 17, 26], type of convolution [3, 13], normalization [43, 23] and
nonlinearities [24, 27] affect the performance. In addition to these endeavors, an-
other group of work also attempted to simplify the architecture design through
stacking blocks/modules and wiring topological connections.

This strategy was demonstrably first popularized by the VGGNet [32] that is
directly stacked by a series of convolution layers with plain topology. Due to the
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Fig. 1. From a natural perspective to the topological perspective for networks with
residual connectivity. Two types of networks with 1/2 interval are given. Red node
denotes the input x, and green one means the output feature y. Red arrows give an
example of this mapping for a node with in-degree of 3.

problems of gradient vanishing and exploding, extending the network to a deeper
level for better representation is nearly difficult. To better adapt the optimiza-
tion process of gradient descent, GoogleNet [36] adopted parallel modules, and
Highway networks [33] utilized gating units to regulate the flow of information,
resulting in elastic topologies. Driven by the significance of depth, the resid-
ual block consisted of residual mapping and shortcut was raised in ResNet [10].
Topological changes in neural networks successfully scaled up neural networks
to hundreds or even thousands of layers. The proposed residual connectivity
was widely approved and applied in the following works, e.g. MobileNet [31,
12] and ShuffleNet [45]. Divergent from aforementioned relative sparse topolo-
gies, DenseNet [14] wired densely among blocks to reuse features fully. Recent
advances in computer vision also explore neural architecture search (NAS) meth-
ods [46, 21, 37] to search convolutional blocks. To trade-off efficiency and perfor-
mance, most of them used hand-designed stacked patterns, and constrained the
search space in limited ones. These trends reflect the great impact of topology on
the optimization of neural networks. To a certain degree, previous principles of
modular design simplify the difficulty of building an effective architecture. But
how to aggregate and distribute these blocks is still an open question. Echoing
this perspective, we wonder: can connectivity in neural networks be learned?
What is the suitable route to do this?

To answer these questions, we propose a topological perspective to represent
neural networks, resulting in a directed acyclic graph as shown in Fig. 1. Under
this perspective, transformations (e.g convolution, normalization and activation)
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are mapped into a node, and connections between layers are projected to edges
which indicate the flow of information. We first unfold the residual connections
to be a complete graph. This gives another way to explain the effectiveness of the
residual topology, and inspires us to define the search space using a complete
graph. Instead of choosing a predefined rule-based topology, we assign learn-
able parameters which determine the importance of corresponding connections
to the edges. To adequately promote generalization and concentrate on critical
connections, we attach auxiliary sparsity constraint on the weights of edges. Par-
ticularly, we propose two updating methods to optimize the weights of topology.
One is a uniform type that regulates different edges uniformly. The other is an
adaptive type that is logarithmically related to the in-degree of a node. Then
the connectivity is learned simultaneously with the weights of the network by
optimizing the loss function according to the task using a modified version of
gradient descent.

We evaluate our optimization method on classical networks, such as ResNets
and MobileNet. It demonstrates the compatibility with existing networks and
adaptability to larger search spaces. To exhibit the benefits of connectivity
learning, we construct a larger search space in which different topologies can
be compared strictly. We also evaluate our method on various tasks and dataset,
concretely, image classification on CIFAR-100 and ImageNet, object detection
on COCO. Our contributions are as follows:

– The proposed topological perspective can be used to represent most existing
neural networks. For the residual topology, we reveal for the first time the
properties of its dense connections, which can be used for the search space.

– The proposed optimization method is compatible with existing networks.
Without introducing much additional computing burden, we achieve 2.23%
improvement using ResNet-110 on CIFAR-100, and 0.75% using deepened
MobileNet on ImageNet.

– We design an architecture called TopoNet for larger search spaces and restrict
comparison. Quantitative results prove the learned connectivity is superior
to random, residual and complete ones, and surpasses ResNet in the similar
computation cost by 2.10% on ImageNet.

– This method owns good generalization. The optimized topology with learned
connectivity surpasses the best rule-based one by 0.95% in AP on COCO.
To the equal-sized backbone of ResNet, the improvement is 5.27%. We also
explore the properties of the optimized topology for future work.

2 Related Work

We briefly review related works in the aspects of neural network structure design
and relevant optimization methods.

Neural network design is widely studied in previous literature. From shal-
low to deep, the shortcut connection plays an important role. Before ResNet,
an early practice [41] also added linear layer connected from input to the out-
put to train multi-layer perceptrons. Besides, “Inception” layer was proposed in
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[36] that is composed of a shortcut branch and a few deeper branches. Except
on large networks, shortcut also proved effective in small networks, e.g. Mo-
bileNet [31], ShuffleNet [45] and MnasNet [37]. The existence of shortcut eases
vanishing/exploding gradients [10, 33]. In this paper, we explain from a topolog-
ical perspective that shortcuts offer dense connections and benefit optimization.
On the macrostructure, there also exist many networks with dense connections.
DenseNet [14] contacted all preceding layers and passed on the feature maps to all
subsequent layers in a block. HRNet [34] benefits from dense high-to-low connec-
tions for fine representations. Densely connected networks promote the specific
task of localization [39]. Differently, we optimize the desired network from the
complete graph in a differentiable way. And it is different from MaskConnect [1]
which is constrained by K discrete in-degree and owns binary connections. This
also provides an extension to [44] where random graphs generated by different
generators are employed to form a network.

For the learning process, our method is consistent with DARTS [21] which is
differentiable. In contrast to DARTS, we do not adopt alternative optimization
strategies for weights and architecture. Joint training can replace the transfer-
ring step from one task to another, and obtain task-related topology. Different
from sample-based optimization methods [29], the connectivity is learned simul-
taneously with the weights of the network using our modified version of gradient
descent. [2, 8] also explored this type and utilized weight-sharing across models
to amortize the cost of training. Searching from the full space is evaluated in
object detection by NAS-FPN [5], in which the feature pyramid is sought in all
cross-scale connections. In the aspect of semantic segmentation, Auto-DeepLab
[20] formed a hierarchical architecture to enlarge search spaces. The sparsity
constraint can be observed in other applications, e.g. path selection for a multi-
branch network [15], and pruning unimportant channels for fast inference [9].

3 Methodology

3.1 Topological Perspective of Neural Networks

We represent the neural network using a directed acyclic graph (DAG) in topol-
ogy. Specifically, we map both combining (e.g., addition) and transformation
(e.g., convolution, normalization and activation) to a node. And connections be-
tween layers are represented as edges, which determine the flow of information.
Then we can get a new representation of the architecture G = (N , E), where N
is the set of nodes, and E denotes the set of edges.

In the graph, each node ni ∈ N performs a transformation operation oi,
parametrized by wi, where i stands for the topological ordering of the node.
While the edge eji = (j, i, αji) ∈ E means the flow of features from node j to
node i, and the importance of the connection is determined by the weight of αji.
During forward computation, each node aggregates inputs from preorder nodes
where connections exist. Then it performs a feature transformation to get an
output tensor xi. And xi is sent out to the postorder nodes through the output
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Fig. 2. Details of node operations and the adjacency matrix. For each node, features
generated by preorder nodes are aggregated through weights of edges. Then a trans-
formation unit which consists of convolutional layers, batch normalization and the
activation function is used to transform features. Next, features are allocated to pos-
torder nodes where connections exist. For a stage, weights of edges can be represented
in an adjacency matrix, in which rows denote the weights of input edges, and columns
stand for the weights of output edges.

edges. It can be seen in the left of Fig. 2. It can be formulated as follows:

xi = oi(x
′
i; wi), where x′i =

∑
(j<i)∧(eji∈E)

αji · xj . (1)

In each graph, the first node in topological ordering is the input one, which
only performs the distribution of features. The last node is the output one, which
only generates final output of the graph by gathering preorder inputs. We also
propose an adjacency matrix as the memory space to store weights of edges. As
shown in the right of Fig. 2, each row denotes the weights of input edges, and
each column is the outputs. For nodes where there are no edges attached, the
corresponding α is 0. The dimension of row(with α 6= 0) is called in-degree for a
node, and the dimension of column(with α 6= 0) is named as out-degree.

For a network with k stages, k DAGs are initialized and connected in series.
Each graph is linked to its preceding or succeeding stage by output or input
node. We rewrite the weights of nodes as wk

i and the weights of edges as αk
ji.

For the k-th stage, T k(·) denotes the mapping function established by Gk with
parameters of Wk and αk, where Wk is the set of {wk

i }, αk is the set of {αk
ji}.

Given an input x and corresponding label y, the mapping function from the
sample to the feature representation can be written as:

F(x) = T k(· · · T 2(T 1(x;α1,W1);α2,W2) · · · ;αk,Wk), (2)
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3.2 Search Space

By defining the topological perspective of neural networks, most previous net-
works can be reformulated from the natural perspective. For definiteness and
without loss of generality, we selected the widely used residual connections for
analysis [10, 31, 45]. A block with residual connection formulates x + ϕ(x) as a
basic component, in which x represents the identity shortcut, and ϕ(x) denotes
the residual mapping. Normally, the residual component is composed of several
repeated weighted layers. We call the number of repeats as interval, which is
noted as l. Fig. 1 presents two residual architectures with a interval of 1 and 2
respectively. By using Eql.(1), we map the architecture from the natural perspec-
tive to the topological perspective. We give an example of this mapping in red
lines. From a natural perspective, the layer acquires information through skip
connections. In the new topological perspective, the node obtains information
by corresponding edges. It should be pointed out that these two perspectives are
completely equivalent in results. It also can be seen that the residual connec-
tions are rather denser than the original view, and perform multiple feed-forward
paths instead of a single deep network. Our topological view explains the reason
why residual connectivity is effective from a new aspect different from [40].

If the interval degrades to 1, as shown in the right of Fig. 2, its topology
evolves into a complete graph. Structurally, all nodes are directly connected to
the input and output, resulting in indirect access to the gradients and the original
input. Different from stacking blocks using predefined connectivity, the complete
graph provides all possible connections and is suitable to be the search space. For
a complete graph with N nodes, the search space contains 2N(N−1)/2 possible
topological structures. For a network with k stages, the total search space can

be noted as
∏

k 2N
k(Nk−1)/2. And it is much wider than cell-based or block-

based approaches [37, 8, 12]. By assigning learnable parameters which reflect the
magnitude of connections to edges, it changes to a weighted graph. Within the
search space, the connectivity can be optimized by learning continuous weights
of edges.

3.3 Optimization of Topological Connectivity

We put forward a differentiable type to optimize the topological connectivity
by learning a set of continuous weights of edges α. And they are learned si-
multaneously with all the other weights in the network via the loss generated
by the concurrent task, noted as Lt(·). Different from [1], we do not transform
the weights of α into binary. This allows us to assign discriminating weights to
different feature inputs. Different from the selection of node type [21], we do
not select the maximum input edge using arg max operation. Instead, the con-
tinuous weights guarantees the consistency between training and testing. The
optimization objective can be viewed as:

min
W,α
Lt(F(x; W,α),y) (3)
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Algorithm 1: Optimization of Topological Connectivity.

Input: Network represented with k graphs G(N , E ; W,α), training set {(x,
y)(s)}, Type of sparsity, λ and η.

Output: Optimized weights W and a weighted graph defined by topology α.
for (xs,ys) in training set do

for Gk in network do
Set rev adj dict = {} to save directed edges;
Set memory = {} to save features generated by nodes;

for eji in Ek do
rev adj dict[i].append(j);

end

for ni in N k do
Obtain indices of input nodes of ni from rev adj dict[i] and fetch
corresponding input features from memory;

Aggregate inputs by weights of αk and transform features using
Eql.(1) and store transformed features memory[i]= xi;

end

Fetch the features generated by the output node for Gk+1;

end
Obtain final representation and compute the loss w.r.t ys by Eql.(6);
Compute gradients w.r.t wi in W by Eql.(4) and update weights;
if Type is uniform then

Compute gradients w.r.t αji in α by Eql.(7) and update weights;
else if Type is adaptive then

Compute gradients w.r.t αji in α by Eql.(8) and update weights;

end

Set ∂Lt

∂wi
be the gradients that the network flows backwards to wi. And let ∂Lt

∂xi

be the gradients to xi. Then the gradients update to wi and αji are of the form:

wi ← wi + η
∂Lt

∂wi
(4)

αji ← αji + η
∑ ∂Lt

∂xi
� ∂oi
∂x′i
� xj , (5)

where η is the learning rate, and � indicates entrywise product.
Since the features generated by different layers exhibit different semantic

representations, they contribute differently to subsequent layers, resulting in
diversities of the importance of connections. Much as the mammalian brain
[28] in biology, where synapses are created in the first few months of a child’s
development, followed by gradual re-weighting through postnatal knowledge,
growing into a typical adult with relative sparse connections.

To facilitate this process appropriately, we raise to attach sparsity constraint
as a regularization on the distribution of weights of edges. Similar thought also
has been verified in hashing representation [42] that sparsity can bring effective
gain through minimizing a hash collision. We choose L1 regularization, denoted
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as L1(·), to penalize non-zero parameters of edges resulting in more parameters
near zero. This sparsity constraint promotes attention to more critical connec-
tions. Then the loss function of our proposed method can be reformulated as:

L = Lt + λL1 = Lt(F(x; W,α),y) + λ · ‖α‖1, (6)

and λ is a hyper-parameter to balance the sparse level. Due to the properties of
a complete graph, we propose two types to update αji. The first one is uniform
sparsity that attaches constraint on all weights of edges uniformly. And let ∂L1

∂xi

be the gradients to xi, we rewrite the Eql.(5) as:

αji ← αji + η
∑

(
∂Lt

∂xi
+ λ

∂L1

∂xi
)� ∂oi

∂x′i
� xj , (7)

The second one is adaptive sparsity which is logarithmically related to the in-
degree δi of a node ni. It performs larger constraints on dense input and smaller
on sparse input. For the nodes with fewer input edges, this can ensure the smooth
flow of information and avoid being blocked. In this type, the αji is updated by:

αji ← αji + η
∑

(
∂Lt

∂xi
+ λ log(δi)

∂L1

∂xi
)� ∂oi

∂x′i
� xj . (8)

These two types will be further discussed in the experiments section. Algorithm
1 summarizes the optimization procedure detailedly.

4 Experiments and Analysis

4.1 Connectivity Optimization for Classical Networks

Our optimization method is compatible with classical networks. To investigate
the applicability, we select ResNet-CIFAR [10] consisted of 3 × 3 conv and
MobileNetV2-1.0 [31] consisted of Inverted Bottleneck. For the optimization
of ResNets, we rewire the interval of 2 in the BasicBlock to 1 to form the com-
plete graph. For MobileNetV2-1.0, each node involves a residual connection and
can be viewed as a complete graph naturally. In the case that MobileNet owns
fewer layers in each stage, we also increase the depth by increasing the node
in each stage, resulting in larger search spaces. It is also a common skill to ex-
pand networks [38]. Through assigning learnable parameters to their edges, the
topologies can be optimized using Algorithm 1. It should be mentioned that the
additional computations and parameters introduced by the edges are negligible
compared with convolution.

First, we evaluate the optimization of the connectivity with ResNets on
CIFAR-100 [16]. The experiments are trained using 2 GPUs 1 with batchsize
128 and weight decay 5e-4. We follow the hyperparameter settings in paper [4],

1 All of our experiments were performed using NVIDIA Tesla V100 GPUs with our
implementation in PyTorch [25].
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Table 1. Optimization Top-1 Accuracy of ResNets on CIFAR-100.

Network Params(M) FLOPs(G) Original Optimized Gain

ResNet-20 0.28 0.04 69.01 69.91± 0.12 0.90
ResNet-32 0.47 0.07 72.07 73.34± 0.09 1.37
ResNet-44 0.67 0.10 73.73 75.60± 0.14 1.87
ResNet-56 0.86 0.13 75.22 76.90± 0.03 1.68
ResNet-110 1.74 0.25 76.31 78.54± 0.15 2.23

which initializes η = 0.1 and divides by 5 times at 60th, 120th, 160th epochs. The
training and test size is 32× 32. We report classification accuracy on the valida-
tion set by 5 repeat runs. The results are shown in Table 1. Under similar Params
and FLOPs, the optimization brings 2.22% improvement on Top-1 accuracy for
ResNet-110, which reflects larger search spaces lead to more improvements.

Next, we extend our method to ImageNet dataset [30] using MobileNets. We
train MobileNetV2 using 16 GPUs for 200 epochs with a batch size of 1024. The
initial learning rate is 0.4 and cosine shaped learning rate decay [22] is adopted.
Following [31], we use a weight decay of 4e-5 and dropout [11] of 0.2. Nesterov
momentum of 0.9 without dampening is also used. The training and test size is
224×224. The network with 2 times of layers is denoted as 2N. Under the mobile-
setting, we achieve 76.4% Top-1 accuracy. Under the larger optimization space
of 6N, the optimization brings a 0.75% improvement. This further demonstrates
the benefits of topology optimization for different networks.

Table 2. Optimization Top-1 Accuracy of Scaled MobileNets on ImageNet

Network Params(M) FLOPs(G) Original Optimized Gain

MobileNetV2-1.0 3.51 0.30 72.60 72.86± 0.13 0.24
MobileNetV2-1.0-2N 6.43 0.60 75.93 76.40± 0.05 0.47
MobileNetV2-1.0-4N 9.62 1.10 77.33 77.87± 0.09 0.54
MobileNetV2-1.0-6N 12.00 2.06 77.61 78.36± 0.14 0.75

4.2 Expanding to Larger Search Spaces by TopoNet

Due to restricted optional topologies of classical networks, the topology can be
only optimized in small search spaces, which limits the representation ability
of topology. These may limit the influence caused by topological changes and
affect the search for optimal topology. In this section, we propose a larger search
space, and fully illustrate the improvement brought by topology optimization.
The properties of edges and nodes in the optimized topology are also analyzed.

We design a series of architectures named as TopoNets that can flexibly
adjust search space, types of topology and node. As shown in Table 3, it consists
of four stages with number of nodes of {N1, N2, N3, N4}. The topology in each
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Table 3. Architectures of TopoNets for ImageNet.

Layers
Output Component Edges of Different Topologies

Size and Channels Random, p Residual, l Complete

Head 112× 112 7× 7 conv, C - - -

Stage 1 56× 56 N1 nodes, 2× C p ·
(
N1
2

)
N1−2

l
+

(N1−2
l

+2

2

) (
N1
2

)
Stage 2 28× 28 N2 nodes, 4× C p ·

(
N2
2

)
N2−2

l
+

(N2−2
l

+2

2

) (
N2
2

)
Stage 3 14× 14 N3 nodes, 8× C p ·

(
N3
2

)
N3−2

l
+

(N3−2
l

+2

2

) (
N3
2

)
Stage 4 7× 7 N4 nodes, 16× C p ·

(
N4
2

)
N4−2

l
+

(N4−2
l

+2

2

) (
N4
2

)
Classifier 1× 1 GAP, 1k-d fc, softmax - - -

stage is defined by a graph, whose type can be chosen from {complete, random,
residual}. The complete graph is used for the optimization of topology. For
a more strict comparison, we also take the other two types as baselines. The
residual one is a well-designed topology. In the random one, an edge between
two nodes is linked with probability p, independent of all other nodes and edges.
The higher the probability, the denser it is. We follow two simple design rules
used in [10], (i) in each stage, the nodes have the same number of filters C; (ii)
and if the feature map size is halved, the number of filters is doubled. The change
of filters is implied by the first calculation node in each graph. For the head of
the network, we use a single convolutional layer for simplicity. The network ends
with a classifier composed of a global average pooling (GAP), a 1000-dimensional
fully-connected layer and softmax function.

Setup for TopoNet. To demonstrate the optimization capability in the larger
search space and to compare with existing network, we designed a set with similar
computation cost as ResNet-50. We select the separable depthwise convolution
that includes a 3× 3 depthwise convolution followed by a 1× 1 pointwise convo-
lution, and build a triplet unit ReLU-conv-BN as the node. The number of nodes
in each stage is {14, 20, 26, 14}. In this setting, the number of possible discrete
topologies is 6× 10209. The weights of α are initialized to be 1. And C is set to
be 64, resulting in Params of 23.23M and FLOPs of 3.95G (e.g ResNet-50 with
Params of 25.57M and FLOPs of 4.08G).

Strict Comparisons. To demonstrate the effectiveness of our optimization
method, we select graphs with random, residual connectivity as baselines.
For comparison, we also reproduce Erdös-Rényi (ER), Barabási-Albert (BA) and
Watts-Strogatz WS graphs [44] using NetworkX 2. Since original paper does not
release codes, we compare the best configurations of their method. We use these
graphs to build networks under the same setup in TopoNet. Two types of spar-
sity constraints are also demonstrated. For a fair comparison, all experiments

2 https://networkx.github.io
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are conducted on ImageNet with training 100 epochs. We use a weight decay of
1e-4 and a Nesterov momentum of 0.9 without dampening. Dropout is not used.
Label smoothing regularization [35] with a coefficient of 0.1 is also used.

Table 4. Comparision with Different Topologies on ImageNet.

Network Top-1 Acc(%) Top-5 Acc(%)

ResNet-50 76.50 93.10

random, p = 0.8 77.56± 0.22 93.69± 0.32
random, p = 0.6 77.84± 0.19 93.65± 0.43
random, p = 0.4 77.90± 0.27 93.76± 0.37

residual, l = 4 77.72± 0.13 93.57± 0.20
residual, l = 3 78.10± 0.07 93.83± 0.17
residual, l = 2 78.26± 0.14 93.78± 0.22

ER, p = 0.2 77.76± 0.33 93.20± 0.41
BA, m = 5 78.08± 0.17 93.46± 0.34

WS, k = 4, p = 0.75 78.19± 0.25 93.78± 0.24

complete 77.24± 0.12 93.40± 0.23
complete, α 78.22± 0.13 93.80± 0.15

complete, α, uniform 78.46± 0.14 93.81± 0.32
complete, α, adaptive 78.60± 0.16 93.92± 0.11

The validation results are shown in Table 4. Some conclusions can be drawn
from the results. (i) Topological connectivity of network largely affects the per-
formance of representation. (ii) The performance is related to the density of
connections according to different p and l. (iii) For the complete graphs, di-
rect optimization with α can yield 0.98% improvement on Top-1. (iv) Through
assigning sparsity constraints, performances have been further improved. The
complete graph with adaptive sparsity constraint gets the best Top-1 of 78.60%.
This proves the benefits of sparseness for the connectivity. (v) The connectivity
can be optimized in neural networks, and is superior to rule-based designed ones,
such as random, residual, BA and WS.

In order to intuitively understand the optimization effect of sparsity con-
straints on dense topological connections, we give the distributions of the learned
α Fig. 3. Sparsity constraints push more parameters near zero, resulting in focus-
ing on critical connections. With the enhancement of constraints, more connec-
tions disappear. Excessive constraints will damage the representation of features,
so we set the weight of balance λ to be e-4 in all experiments. And it is also
robust in the range from e-5 to e-4, resulting in similar effects. In the right of
Fig. 3, we give the optimized results with two types of constraints. The adaptive
one penalizes denser connections a lot and keeps the relative sparser but critical
connections, resulting in better performance.
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Fig. 3. The effect of sparsity constraint on distributions of α. The histogram on the left
indicates that sparsity drives most of the weights near zero. Adjacency matrices on the
right shows the difference between uniform and adaptive one, whose rows correspond
to the input edges for a particular node and columns represent the output ones. Colors
indicate the weights of edges.

4.3 Transferability on Different Tasks

To evaluate the generalization and transferability for both optimization method
and TopoNets, we also conduct experiments on COCO object detection task
[19]. We adopt FPN [18] as the object detection method. The backbone is re-
placed with corresponding pretrained one in Table 4, and is fine-tuned on COCO
train2017 dataset. We test using the COCO val2017 dataset. Our fine-tuning is
based on 1× setting of the publicly available Detectron [6]. The training con-
figurations of different models are consistent. Test performances are given in
Table 5. To comparable ResNet-50, TopoNets obtain significant promotions in
AP with lower computation costs. Contrast with elegant residual topology, our
optimization method can also achieve increase by 0.95%. These results indicate
the effectiveness of the proposed network and the optimization method.

Table 5. Transferability Results on COCO object detection.

Backbone AP AP50 AP75 APS APM APL

ResNet-50 36.42 58.66 38.90 21.93 39.84 46.74

Residual, l = 2 40.74(+4.32) 63.22 44.62 25.01 44.18 52.74
Complete, α 41.35(+4.93) 63.32 45.08 25.63 44.99 53.47

Complete, α, uniform 41.46(+5.04) 63.83 44.91 25.07 45.31 53.52
Complete, α, adaptive 41.69(+5.27) 63.86 45.45 25.58 45.52 53.69

4.4 Exploring Topological Properties by Graph Damage

We further explore the properties of the optimized topology. First, we remove
individual nodes according to its topological ordering in the graph and evaluate
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Fig. 4. Impact of node (left) and edge (right) removal for the optimized topology.

it without extra training. We expect them to break because dropping any layer
drastically changes the input distribution of all subsequent layers. Surprisingly,
most removals do not lead to a noticeable change as shown in Figure 4 (left). It
can be explained that the available paths is reduced from (n − 1)! to (n − 2)!,
leaving sufficient paths. This suggests that each node in the complete graph do
not strongly rely on others, although it is trained jointly. Direct links with in-
put/output nodes make each node contribute to the final feature representation,
and benefits the optimization process. Another observation is that nodes in the
front of topological orderings contribute more. This can be explained that for
a node with the ordering of i, the generated xi can be only received by node j
(where j > i). This causes the feature generated by the front nodes to partici-
pate in aggregation as a downstream input. It makes the front nodes contribute
more, which can be used to reallocate calculation resources in future work.

Second, we consider the impact of edge removal. All edges with α below a
threshold are pruned from the graph, only remaining the important connections.
Accuracies before and after retraining are given in Figure 4 (right). Without re-
training, accuracy decreases as the degree of pruning deepens. It is interesting
to see that we have the “free lunch” of reducing less than 40% without losing
much accuracy. If we fix α of remaining edges and retrain the weights, it can
maintain accuracy with 80% of the nodes removed. This proves that the opti-
mization process has found indeed important connections. After pruning edges,
nodes with zero in-degree or zero out-degree maybe safely removed. It can be
used to reduce the parameters and accelerate inference in practical applications.

4.5 Visualization of the Optimization Process

We visualize the optimization process in Fig. 5. During the initial phase, there
are strong connections between all nodes. As the optimization process progresses,
the connections become sparse, leaving the critical ones. We sample topologies
with different connectivity during the process and retrain them from scratch
with α froze. This allows us to compare the change of topology capabilities
during optimization. Validation accuracies are given in the right of the figure. It
can be seen the representation ability of connectivity increases with the training
process, not just the weights of networks.
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Fig. 5. The changes of the connectivity and corresponding accuracies after retraining.
It proves that the representation capability of topological connectivity improves along
with the process, and demonstrates the effectiveness of optimization.

5 Conclusion and Future Work

In this work, we proposed a feasible way for the learning of topological connectiv-
ity in neural networks. Motivated by our topological perspective, the optimization
space is defined as a complete graph. By assigning learnable continuous weights
which reflect the importance of connections, the optimization process is trans-
formed into a differentiable type with less extra cost. The sparsity constraint
further improve the generalization and performance. This method is compatible
with existing networks, and the optimized connectivity is superior to rule-based
designed ones. Experiments on different tasks proved the effectiveness and trans-
ferability. Moreover, the observed properties of topology can be used for future
work and practical applications. Our work has a wide application and is com-
plementary to existing neural architecture search methods. We will consider
verifying NAS-inspired networks in the future work.
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