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Abstract. Snow removal usually affects the performance of computer
vision. Comparing with other atmospheric phenomenon (e.g., haze and
rain), snow is more complicated due to its transparency, various size, and
accumulation of veiling effect, which make single image de-snowing more
challenging. In this paper, first, we reformulate the snow model. Different
from that in the previous works, in the proposed snow model, the veil-
ing effect is included. Second, a novel joint size and transparency-aware
snow removal algorithm called JSTASR is proposed. It can classify snow
particles according to their sizes and conduct snow removal in different
scales. Moreover, to remove the snow with different transparency, the
transparency-aware snow removal is developed. It can address both trans-
parent and non-transparent snow particles by applying the modified par-
tial convolution. Experiments show that the proposed method achieves
significant improvement on both synthetic and real-world datasets and
is very helpful for object detection on snow images.

Keywords: Transparency and size-aware snow removal, Snow detec-
tion, Differentiable dark channel prior

1 Introduction

Snow is an atmospheric phenomenon which usually obstructs the visibility and
degrades the image quality severely. Therefore, snow removal is significant for
several computer vison missions. Compared with other atmospheric phenomenon,
due to the non-transparency property, snow removal is even more challenging
because it may occlude the background, which leads to the loss of information. In
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Fig. 1. Comparison of the proposed method with state-of-the-art methods [6,35,17].
The proposed method can achieve superior performance in both snow removal and veil-
ing effect recovery. The red bounding box demonstrates the complicated snow scenario.
(i.e. the snow particles with different sizes, transparencies, and the veiling effect)

the open literature, many snow removal algorithms [28,35,19,17,27,32] have been
developed for decades. Xu et al. [28] proposed a snow flake removal algorithm
using the guided filter without any pixel-based statistical information. Zheng et
al. [35] proposed to use the multi-guided filter to separate the snow part from
background. Pei et al. [19] utilized the features based on the color information
for snow removal. In [17], a learning-based snow removal algorithm was proposed
and the formation of snow was modeled by

K(x) = J(x)(1− Z(x)) + C(x)Z(x) (1)

where K is snow image acquired by the camera, J is the clean image, Z is the
snow mask, C denotes the chromatic aberration map for snow images. Although
these algorithms have good performance in some scenarios, they may have several
problems which limit the performance. First, for the conventional snow removal
strategies, the over-smoothness on the snow-free region may be produced because
the snow region is not identified in prior. Second, owing to the complicated
formation of the snow image, the conventional snow removal algorithms fail to
address the crucial factor in real snow images, such as the veiling effect caused
from haze veil and the accumulation of tiny snow particles. Third, unlike haze
or rain, which are transparent, snow particles may be non-transparent and the
background information is lost. Last, snow images usually consist of various size
of particles, however, the existing methods do not address this problem, which
leads to the limited recovered performance.

To address these limitations, we develop a novel snow removal model which
can cope with the complex snow scenes. The main contributions of this paper
are summarized as follows:

1. First, a novel de-snowing model called the Joint Size and Transparency-
Aware Snow Removal (JSTASR) is proposed. It applies three stages: (i)
veiling effect removal, (ii) the size-aware snow identifier, and (iii) transparency-
aware snow removal. The proposed architecture can retrieve snow informa-
tion (i.e., size, location and transparency), remove snow, and remove the
veiling effect jointly.

2. A new snow formation model is proposed based on the observation of snow
images in real world. The snow region mask and the veiling effect are included
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in this model. In order to train our network in this scenario, a large scale snow
dataset called Snow Removal in Realistic Scenario (SRRS) is proposed.

3. The size-aware snow identifier, discriminator and loss function is developed
to address the complicated snow scenarios according to the snow size. With
these modules, the performance of snow removal can be much improved.

4. In order to address particles with different transparency (i.e. transparent
and non-transparent snow), the modified partial convolution operation and
the transparency-aware snow removal algorithm are proposed.

5. To deal with the veiling effect and increase the visual quality of the recovered
result, a differentiable dark channel prior layer and an atmospheric light
prediction module are proposed and embedded into the network for fully
end-to-end learning in the de-snowing pipeline.

In Fig 1, the de-snowing results recovered by the proposed JSTASR are
compared with other state-of-the-art algorithms. One can see that the proposed
method can achieve more desirable results compared with other methods. More
experimental results will be shown in Section 4.

2 Related Work

2.1 Single Image Snow Removal Algorithm

For snow removal in the single image [28,35,19,17,27,32], Zheng et al. [35] in-
vestigated the difference between snow streaks and clear background edges. By
this statistical information, the multi-guided filter is applied to remove the snow
flake. Wang et al. [27] proposed a three-layer hierarchical scheme which combines
image decomposition and dictionary learning. Voronin et al. [26] developed the
anisotropic gradient in Hamiltonian quaternions to remove rain and snow. Li et
al. [15] applied the generative adversarial network (GAN) for snowflake removal.
Liu et al. [17] proposed a learning-based snow removal architecture called the
DesnowNet.

2.2 Single Image Haze Removal Algorithm

Although the proposed algorithm is related to snow removal, since it also adopts
the dark channel prior (DCP), which is a dehazing technique, several exist-
ing image dehazing algorithms are also reviewed here. For the single image de-
hazing, several haze and smoke removal algorithms have been proposed for a
decade [10,25,36,1,2,3,22,13,4,5]. He et al. [10] investigated haze-free images in
nature and proposed the dark channel prior to compute the transmission value.
Berman et al. [1] proposed a non-local image dehazing algorithm. For learning-
based algorithms, Cai et al. [2] computed the transmission map by a learning
architecture called DehazeNet. Chen et al. [3] proposed a new feature called the
patch map to select the patch size adaptively and addressed the color distortion
problem of the DCP. Ren et al. [22] proposed the multi-scale CNN to predict
the transmission map.



4 Chen et al.

Fig. 2. The overall flow chart of the proposed de-snowing architecture. The proposed
method consists three parts: snow removal, veiling effect removal, and clean image
discriminator.

3 Proposed Method

The flowchart of the proposed snow removal algorithm is depicted in Fig. 2.
Based on the observation of snow images in real world (see Fig. 1) and the
limitations mentioned in section 1, several mechanisms are designed. First, the
snow formation model is reformulated. Second, the Joint Size and Transparency-
Aware Snow Removal (JSTASR) module is designed to remove both transpar-
ent and non-transparent snows. The proposed JSTASR consists of two parts:
(i) the size-aware snow identifier and (ii) transparency-aware snow removal. The
size-aware snow identifier will generate the snow information map according to
different snow scales. Based on this information, the transparency-aware snow
removal module can deal with the snow in different scales and transparencies sep-
arately. Moreover, to address non-transparent snow, the modified partial convo-
lution is proposed. Third, the differentiable dark channel prior layer is proposed
and embedded in the network to remove the veiling effect.

3.1 Snow Model Formulation

In this section, the snow model is reformulated due to the distribution and the
veiling effect of snow images. First, unlike the global-distributed atmospheric
phenomenon such as haze, mist, or rain, the snow may distribute locally. How-
ever, there is no region information in (1) and it may cause error in the snow
removal process for snow-free pixels. By using existing snow removal algorithms,
the recovered results tend to be over-smoothed and the detail may vanish in those
pixels. Second, in snow images, the veiling effect, which is similar to haze and
mist, usually occurs. There are two reasons that can explain this phenomenon.
First, when snow starts to fall, the temperature on the ground decreases and the
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vapor in the air may condense to haze or mist. Second, tiny snow particles may
accumulate and overlap especially in the distant scene. This may also lead to
the veiling effect in snow images. However, for the conventional snow formation
model, the veiling effect is not considered and it may limit the performance of the
recovered process. Therefore, inspired by the Koschmieder model, which is gen-
erally performed on the atmospheric particle turbulence problem, we proposed a
new snow formation model as follows to take the veiling effect into consideration

I(x) = K(x)T (x) +A(x)(1− T (x)) (2)

whereK(x) = J(x)(1−Z(x)R(x))+C(x)Z(x)R(x), I denotes the image acquired
by the camera, K is the veiling effect-free but snowy image. T (x )= e−βd(x) is
media transmission where d(x ) is the distance from the camera to the object
and β is the scattering coefficient. A is the atmospheric light of the veiling
effect. J is the clean image. C and Z are the same definition as (1). R is a
binary mask to denote the snow location information. By this reformulation,
the veiling effect problem in snow scenario can be well addressed. Moreover,
different from previous snow removal algorithms, with the introduction of R, the
local reconstruction is performed on the snow pixels. Therefore, with the veiling
effect recovery and the local reconstruction, the recovered image can achieve
sharper result containing more fruitful edge comparing with other methods.

3.2 Joint Size and Transparency-Aware Snow Removal

In this section, we illustrate the proposed JSTASR module in detail. It can ad-
dress the aforementioned snow removal problem via the fully end-to-end learning
system. As discussed before, the conventional snow removal algorithms may tend
to over or under reconstruction because they do not consider the variety of snow
particles. Compared with haze and rain, snow is more complicated because snow
particles have different sizes and transparencies and are distributed locally. Thus,
in the proposed JSTASR module, the information of (i) size, (ii) transparency,
and (iii) localization of snow particles are incorporated to the network design.
The flowchart of JSTASR module is shown in upper side of Fig. 2.

Size-Aware Snow Identifier: In the proposed architecture, the size-aware
snow identifier is designed. That is, given a snow image, one can acquire three
snow information maps in different scales (i.e., large, medium, and small). These
maps are gray-scale image consisting of the location and the intensity informa-
tion. For the design of the proposed snow identifier, three different networks are
designed to predict large, medium, and small snow particles and the multi-scale
convolution and deconvolution layers are adopted. In these layers, several con-
volution and deconvolution filters with different scales are connected in parallel.
(i.e., L = L1‖ L2‖ L3 for large snow particles, M = M 1‖ M 2‖ M 3 for medium
snow particles, S = S 1‖ S 2‖ S 3 for small snow particles, where ‖ denotes the
parallel connection and Ln, Mn, and Sn present the convolution kernels with
different kernel sizes). In general, the kernel size in L is largest and that in S
is smallest. With this architecture, the size and the location information can be
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acquired. Moreover, the shape information of snow particles can also be esti-
mated by this operation. Then, the accurate snow information map (SIM) can
be computed and it will be used in the snow removal process in next subsection.

Transparency-Aware Snow Removal: For snow particles, unlike haze
and rain, its transparency may be more divergent. From Fig. 1, one can observe
that, in a snow image, some snow particles are non-transparent while some are
transparent. Recovering transparent particles may be easier because it has been
developed for a while in [33,30]. However, recovering non-transparent particles
may be challenging because the background information is totally occluded by in-
visible snow, which means that these regions can be only estimated by the neigh-
boring area. Thus, inspired by other computer vision applications [16,18,31], the
technique of image inpainting is adopted to mitigate this problem. Image inpaint-
ing aims to fill the holes (broken pixels) in the image, which is similar to the
problem in non-transparent snow removal. In this paper, the modified partial
convolution which can perform the transparency-aware snow removal is pro-
posed. This method is inspired by the inpainting strategy in [16] which applies
the partial convolution to inpaint irregular area. The proposed snow removal
operation can be expressed as

y’ =

{
HT (S �M) sum(1)

sum(U) + b, if sum(U) ≥ 0

0, otherwise
(3)

where y’ denotes the output of inpainting, H presents the convolution filter
weight; b is the corresponding bias, S is the input feature map of the snow
image for the current convolutional kernel, U is the corresponding binary mask
which records the useful (transparent or clean) information for the inpainting
process, � means element-wise multiplication, and sum(1) presents summation
of the matrix which has the same dimension as U but all values are one. Sum(1)
/sum(U ) is a scaling factor to adjust the varying amount of unmasked inputs and
prevent the feature map from vanishing. After the operation in (3) is performed
for one round, the elements of the original snow mask in U will be updated to
U’ by (4)

U’ (m,n) =

1, if sum
(p,q)∈Ωm,n

(U(p, q)) ≥ 0

0, otherwise
(4)

where Ωm,n is a patch centered at (m, n). By (4), the pixel value at (m, n) will
be updated as a useful information if there is at least one useful pixel (transpar-
ent or clear pixels) within the patch Ωm,n. Finally, after the inpainting process
repeated for sufficient rounds, the whole snow mask U will be set to 1, which
means that all non-transparent snow particles are filled and transparent pix-
els are also recovered to clear pixels. To better remove the snow with different
transparencies, different from the original partial convolution, the transparency-
aware mechanism is proposed to initialize the snow mask U in (3) according to
the snow information maps predicted by the size-aware snow identifier. This op-
eration is important because it can determine whether this information is useful
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in the inpainting process. The transparency-aware mechanism in this architec-
ture can help us to select proper reference pixels for inpainting. The operation
can be expressed as

σ(i, j ) =

{
1, if N(i, j) ≥ γ
0, otherwise

(5)

where σ(i, j ) denotes the transparency-aware snow region map (i.e., initial U in
(3)), N (i, j ) presents the summation of snow information maps in three scales
generated from the size-aware snow identifier, and γ is the transparent thresh-
old which determines whether the pixel is visible or not. With this operation,
snow pixels can be recovered according to their transparencies, that is, non-
transparent pixels are recovered only based on the neighboring pixels while the
transparent pixels are recovered partially by itself and partially by neighbor
pixels.

The proposed transparency-aware snow removal architecture is inspired by
U-Net [23]. For the encoder part, different from the traditional partial convolu-
tion which applies single convolution kernel size, the multi-scale architecture is
adopted. With it, the encoder can extract features in various levels adaptively
according to the different sizes of snow. For the decoder part, different from the
original partial convolution which applies up-sampling and convolution in the
decoder, we adopt both multi-scale deconvolution and up-sampling operations
to prevent the recovered feature from blurring. Moreover, the partial shortcut
as follows is applied to improve the quality of the reconstructed images :

ki = ρ [(y′i � Ui) ∪ ki−1] (6)

where ki denotes the output of the decoder in the layer i, ρ is a combination of the
traditional convolution operation, the global convolutional network (GCN) [20]
module, and the boundary refinement (BR) [20]. y’i and Ui indicate the output
of the partial convolution and the snow mask in the layer i, which has been
presented in (3), and ∪ presents the concatenate operation. The proposed idea
is that, for the original design, the decoded information usually tends to be blur-
ring. Inspired by the U-Net [23], the shortcut of original information is applied
to increase the recovered resolution. However, instead of passing the original in-
formation directly, we pass the partial information to the decoder because the
background information in non-transparent region is occluded in the original
data and this information may damage the recovered process. Therefore, we
discard the information on non-transparent pixels and only adopt useful infor-
mation. Moreover, the adopted GCN and BR modules are helpful for enhancing
the boundary and semantic information. With these operations, high-quality and
high-resolution de-snowing results can be acquired.

Size-Aware Loss Function: In order to enhance the performance of the
generator, we leverage the snow information maps which are predicted by the
snow identifier and proposed size-aware loss function in (7).
Lsize−aware = (ws + 0.5wm) [λ1Lpixel + λ2LTV ] + (wl + 0.5wm) [λ3LS + λ4LP ]

(7)
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where λ1, λ2, λ3, λ4 are constants, ws, wm and wl are the composition percent-
ages of snow pixels in the small, medium, and large snow information maps,
respectively. Lpixel [16], LTV [16], LS [16] and LP [11] denote the pixel loss,
the total variation loss, the style loss and perceptual loss, respectively. The idea
is based on that, for the region recovered from small snow particles, the total
variation loss and the pixel loss should have more weight because the results are
generally suffered from noise and the under-smoothed problem. On the other
hand, the area damaged by the large snow should put more emphasis on the
style loss and the perceptual loss because the recovered region may lose the tex-
ture and global information [16,11]. Moreover, for the pixels damaged by medium
snow, since the recovered results are between large and small snow, the weights
should be shared with ws and wl. By designing the size-aware loss function, the
error can be calculated according to different snow scenarios.

Size-Aware Discriminator: To improve the performance of the transparency-
aware snow removal module, the size-aware discriminator which can identify
whether the recovered result looks like a real image is proposed. Inspired from [21],
which applied the attention map to improve the performance of the discrimina-
tor in rain drop removal. Based on the oberservation of snow above, to further
improve the recovered process in the snow scenario, three snow information maps
based on different sizes (i.e, L, M, S) are applied in the proposed network. The
features are extracted with snow information map in different scales by multi-
pooling as follows

l = ψ
e∈s
Mk
e (x). (8)

where x represents the features determined from the previous layer, Mk
e denotes

the stride convolution operation with the kernel size e and the dilated level k, ψ
denotes the concatenate operation, and s is the scale range for the stride convo-
lution where s ∈{2, 3, 5}. In this work, k is set to 2. By the operation of multi
pooling, the extracted features can be well preserved in different sizes and scales.
Moreover, the concatenating operation is performed instead of addition because
we hope to preserve the properties at each scale. The idea of size-aware discrimi-
nator is based on that, compared to rain drop, snow is more complicated. It may
be non-transparent and the size variation is large. By extracting the features
from different scales and focusing on different transparencies, the performance
of the discriminative process will be improved effectively. Then, these features
will be concatenated together at the end of network and the fully connected
operation is performed to identify the recovered result.

Overall Loss Function: The overall loss function of the proposed JSTASR
module can be presented as

LJSTASR = Lsize−aware + λ5LIdentifier + λ6LAdv (9)

LAdv = min
G

max
D

Ex[logD(x)] + Ex[log(1−D(G(x′)))] (10)

where λ5 and λ6 are constants. x and x’ are snow-free image and snow image.
LIdentifier presents the MSE between the predicted snow information maps and
their corresponding ground truths. LJSTASR and LAdv are the generative loss
and the adversarial loss, respectively.
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3.3 Veiling Effect Removal

In veiling effect removal, we aim to address the inverse problem in (2), that
is, estimating the accurate transmission and atmospheric light values. For the
transmission value, we apply the differentiable DCP layer with the patch map [3].
The flowchart of veiling effect removal is shown in the bottom of Fig. 2.

Differentiable Dark Channel Prior: To cope with the veiling effect prob-
lem in the snow removal process, in the proposed method, we apply the DCP [10]
to estimate the transmission because it has been proved to be an effective way
to deal with the veiling effect in other works about atmospheric particle re-
moval [19,34]. However, this method has been indicated several limitations such
as the color degradation in the white and bright scene [3,29]. Although in PMS-
Net [3], the patch map can address the limitation of the dark channel prior
effectively, sometimes the performance is limited in color fidelity and recovered
quality. The reason is that the PMS-Net cannot train the whole system includ-
ing the atmospheric light estimation and refined network because the patch-map
based dark channel cannot be embedded into this method. Moreover, due to the
complicated scenario in our proposed method, end-to-end training and opti-
mization is necessary to achieve better performance. Therefore, in this paper,
we develop the patch-map based differentiable dark channel prior layer to im-
prove the performance of this method and further embed into the proposed snow
removal process to achieve fully end-to-end learning. This layer is extended with
a learnable patch map. The inputs are the image with veil, the predicted patch
map, and the predicted atmospheric light. The output is the estimated trans-
mission map. First, the minimum operation in the local patch is performed in
each color channel. The operation can be expressed as follows

H(x, y, z, p) = min
α,β∈[1,p]

[I(x+ α, y + β, z)] (11)

where I is the input image. x and y are the indexes of pixel location. z indicates
the different color channel. p is the index of the patch size axis, and H (x, y, z.
p) is the result of the minimum operation. Then, H’ (x, y, p) is formulated by
applying the minimum filter along the color channel axis z on H (x, y, z, p). The
patch map is then projected to the patch map box PMB(x, y, p):

PMB(x, y, p) =

{
1, if P (x, y) = p

0, otherwise
(12)

where P (x, y) is the predicted patch map. Then, H’ (x, y, p) will be multiplied
with PMB(x, y, p) and the coarse transmission map will be computed by sum-
ming the value along the patch size axis (i.e., p-axis). With this process, the
fully differentiable DCP layer can be achieved in the end-to-end veiling effect
removal network and the performance of recovered quality and color distortion
can be improved effectively.

Learning Atmospheric Light: To estimate the global atmospheric light
A from input images, we adopt the learning architecture to predict the air light
intensity because we want to achieve end-to-end learning with the differentiable
DCP layer. For this sub-network, we apply the VGG-16 architecture [24] as the
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Fig. 3. The example in SRRS: (a) Snow image; (b) ground truth; (c) combined snow
mask (d) large snow mask; (e) medium snow mask; (f) small snow mask. Note that
the snow masks are gray-scale images which contain the information of snow location,
intensity, and size.

backbone, but each convolution operation is replaced by the multi-level pooling
operation mentioned in subsection 3.2.

Loss Function: The loss functions of the veiling effect removal module is
formulated as

LV eil = LPatchMap + λ7LA (13)

where LV eil is the overall loss of veiling effect removal LPatchMap is the loss of
the patch map selection network proposed in [3]. LA is the atmospheric light
loss, which is defined as the MSE between the predicted atmospheric light and
the ground truth.

The overall loss function of the proposed whole network can be expressed as
LOverall = LJSTASR + LV eil (14)

4 Experimental Result

4.1 Dataset Generation

Although there is one large-scale synthetic dataset [17] for image de-snowing,
it does not contain the veiling effect. In this work, in order to address various
snow scenarios, a novel dataset called the Snow Removal in Realistic Scenario
(SRRS)1 is proposed. It contains 15000 synthesized snow images and 1000 snow
images in real scenarios downloaded from the Internet. We synthesize the SRRS
by two steps. First, we apply the popular haze benchmark dataset called RESIDE
dataset [14] to synthesize the image with veiling effect based on the procedure
in their paper. We set β ∈ [0.4, 1.6] and A ∈ [0.5, 1]. Then, for each snow image,
various types of snow are synthesized by Photoshop and the corresponding snow
information (i.e., transparency, size, and location) is labeled. The example of
SRRS is shown in Fig. 3. For the training procedure, we randomly pick 2500
snow images as the training dataset. For the test dataset, 1000 snow images
are picked randomly from the proposed SRRS dataset and we call it as Test
A. Moreover, in order to test the generalization of the proposed network, the
test dataset proposed by [17] is applied. We call this dataset as Test B which
contains 1000 snow images only with snow particles but without veiling effect.

1 The dataset can be downloaded from our project page
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Table 1. Quantitative evaluation for comparison with other state-of-the-art methods
on the Test A and Test B. (PSNR/SSIM)

Eigen [6] Zheng [35] DesnowNet [17] Ours

Test A
w/o MSCNN [22] 14.51/0.58 15.48/0.729 16.32/0.80 25.62/0.89
w MSCNN [22] 17.36/0.57 18.02/0.76 18.42/0.82 -

Test B - 18.57/0.43 23.72/0.83 25.58/0.85 25.69/0.86

Table 2. The evaluation of sharpness in terms of JNBM [7] and e [8] on 1000 real-
world images. Note: Larger values of JNBM and e means sharper and more newly
visible edges on recovered image

Zheng [35] Eigen [6] DesnowNet [17] Ours

JNBM/e 2.19/-0.08 3.04/-0.31 2.95/-0.09 3.92/0.25

Table 3. Run time comparison with state-of-the-art snow removal methods.

Zheng (C) [35] Eigen (G) [6] DesnowNet (G) [17] Ours (G)

Time (s) 1.4 2.81 1.38 0.36

Table 4. Comparing the performances of object detection when using the proposed
algorithm and other state-of-the-art methods for de-snowing in prior.

Baseline Zheng+MSCNN Eigen+MSCNN DesnowNet+MSCNN Ours

Accuracy (IoU) 0.23 0.43 0.33 0.50 0.72

4.2 Training Detail

The proposed de-snowed network mainly consists of two sub-networks: the JS-
TASR module and veiling effect removal. First, we train the veiling effect removal
network with 2500 hazy images based on the RESIDE [14] dataset. Second, for
JSTASR, initially, we train the size-aware snow identifier to predict the snow
information. Then, the identifier is fixed to train the transparency-aware snow
removal module. These two processes are pre-trained with the fixed veiling effect
removal network. After the pre-trained process, two sub-networks are trained to-
gether in the fine-tuned state. All these modules and the fine-tuned process are
trained based on the training set of SRRS dataset. The learning rate is set to
e−4 and the Adam [12] optimizer is adopted in both JSTASR and veiling effect
removal. In this network, the pre-trained process is adopted. For the parameter
setting in the proposed network, we set λ1 = λ2 = λ3 =λ4 =λ5 = 1, λ6 = 0.5,
and λ7 = 10−4. We set the threshold value γ = 0.1. For each epoch, we cut 15%
of the training data as the validation set. Finally, two pre-trained sub-networks
will be combined and trained together to fine-tune the entire network for sev-
eral thousand iterations. The proposed method is implemented on a workstation
with a 3.5 GHz CPU, 64G RAM, and Nvidia GTX 1080 Ti GPU. The number of
the parameter in the proposed network is 6.5×107. Moreover, the whole training
process of this network takes five days.
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Table 5. Quantitative evaluation for the ablation study in the proposed modules of
snow removal on Test A (PSNR/SSIM)

Module J J+P J+P+M J+P+M+T All w/o EVER All w EVER

PSNR/SSIM 24.01/0.81 24.86/0.87 23.02/0.88 24.27/0.89 20.32/0.77 25.85/0.89

Table 6. Quantitative evaluation for the ablation study of the proposed differential
dark channel prior layer on the indoor dataset in SOTS [14]. The lower value of CIEDE
2000 means less color distortion.

DCP [10] PMS-Net [3] Ours

PSNR/SSIM/CIEDE 2000 18.2/0.83/9.42 21.14/0.88/5.88 24.68/0.90/4.25

4.3 Comparison with State-of-the-art Methods

Analysis in Synthetic Snow Dataset. In Table 1, the proposed de-snowed
algorithm is evaluated on the synthetic snow dataset. We apply two metrics:
the peak-to-peak signal to noise ratio (PSNR) and the structural similarity
(SSIM). We apply state-of-the-art snow removal algorithms(i.e., Zheng [35], and
DesnowNet [17]) and atmospheric particle removal methods (i.e., Eigen [6]) for
comparison. To compare with these methods fairly, we apply the conventional
haze removal method (i.e., MSCNN [22]) as the veiling effect removal strategy
because the images in Test A contain the veiling effect. The quantitative compar-
ison is presented in Table 1. We can find that the proposed method outperforms
state-of-the-art methods on both Test A and B in all metrics no matter the veil-
ing removal strategy is applied or not. Note that, the proposed method is trained
on our proposed dataset but still can achieve better performance on that pro-
posed by the DesnowNet [17]. These results can prove that our proposed method
for snow removal is guaranteed and effective.

Analysis in Real-world Snow Dataset. The qualitative comparison of the
proposed method with other state-of-the-art de-snowing algorithms is performed.
In Fig. 4, some examples of our real-world dataset are shown. One can notice
that, the results recovered by Eigen [6] and Zheng [35] may still contain snow
particles and those recovered by the later one may have severe blurring problem.
Although the results recovered by DesnowNet [17] can achieve better perfor-
mance comparing with Eigen [6] and Zheng [35], the large and non-transparent
snow particles cannot be removed clearly (see the 2nd, 3rd and 4th rows). More-
over, all other methods cannot address the veiling effect problem (see the 1st,
3rd and 6th and the Fig. 1). By contrast, the proposed algorithm can well remove
snow particle with different sizes and transparencies, and veiling effect because
we propose the size-aware snow identifier, transparency-aware snow removal and
differentiable dark channel prior. Furthermore, with the snow information maps
predicted by the size-aware snow identifier, the proposed method can prevent
the recovered images from blurring effectively because the snow location is con-
sidered during the snow removal procedure. To evaluate the effectiveness of this
mechanism, we apply the just noticeable blur metric (JNBM) [7] and the newly
visible edge ratio (e) in VLD [8] to evaluate the performance of detail and sharp-
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Fig. 4. A qualitative comparison of the proposed method with state-of-the-art algo-
rithms on real-world images.(Zoom-in to view in detail.)

ness preservation. The results shown in Table 2 demonstrate that the proposed
method achieve the best performance on retaining both the sharpness and edge
comparing with other methods. It can prove the effectiveness of the proposed
method in the real-world images.

Run Time Comparison. We further compare the runtime in Table 3. The
results show that the proposed snow removal method can achieve much better
performance in computational time2. It proves that the proposed method has
superior performance comparing to state-of-the-art methods in terms of both
the run time and the recovered quality.

Improvement in High-Level Vision Application of Object Detec-
tion. In Table 4, we verify that the proposed snow removal algorithm can benefit
to the high-level vision tasks such as object detection in the snow scenario. We
apply the RTTS dataset in RESIDE [14], which contains the hazy images with
annotation and conduct the snow synthesis process in subsection 4.1 to gen-
erate snow images with annotation. We compare the proposed algorithm with

2 The input size of DesnowNet in this experiment is 480×480.
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three desnowing methods. The object detection algorithm is fixed to the Mask
R-CNN [9]. From Table 4, one can see that, with the utility of the proposed
de-snowing algorithm, the accuracy of object detection can be improved by 44%
and 210% comparing to the DesnowNet and baseline. It proves that the proposed
approach is helpful for achieving better performance for the object detection.

4.4 Ablation Study

To verify the effectiveness of the proposed modules, the ablation study is per-
formed. The evaluation consists of two part: the proposed JSTASR module and
the differentiable DCP. For the former one, six component combinations are con-
structed, that is, 1) JSTASR with traditional partial convolution (J); 2) the J
module with partial shortcut (J+P); 3) the J+PS module with multi-convolution
(J+P+M); 4) the J+P+M module with the transparency-aware mechanism
(J+P+M+T); 5) the J+P+M+T module with the size-aware mechanism (i.e.,
the size-aware loss and the size-aware discriminator) but without end-to-end
veiling effect removal (All w/o EVER); 6) the JSTASR with end-to-end veil-
ing effect removal ((All) w EVER); The result is shown in Table 5. One can see
that all the proposed modules are effective for the snow removal process. Further-
more, for the veiling effect removal, the results illustrate that the image quality
achieves great improvement with the proposed differentiable DCP. To prove the
effectiveness of the proposed differentiable dark channel prior, we adopt the ab-
lation study on the famous haze image benchmark called SOTS dataset without
the snow removal process in Table 6. In this experiment, we only apply indoor
dataset to evaluate the improvement. The results show that applying the differ-
entiable DCP layer can achieve higher performance on dehazing comparing to
the PMS-Net [3] and DCP [10].

5 Conclusion

In this paper, a novel de-snowed algorithm based on joint size and transparency
aware filters and veiling effect removal is proposed. The differentiable DCP is
proposed to remove the veiling effect. In the snow removal procedure, first, the
size-aware snow identifier is proposed to identify snow particles according to their
sizes. In each snow information map, the intensity, location, and size information
are recorded to perform adaptive snow removal. Then, the transparency-aware
snow removal process based on the modified partial convolution is developed
to address various snow types. Also, a binary mask is applied to select the
useful information for snow pixel recovery. Moreover, to further improve the
performance of the modified partial convolution, the partial shortcut and the
multi-scale encoder and decoder are proposed. Last, to better optimize the snow
recovered results in different sizes of snow particles, size-aware loss functions and
the snow-free discriminator are designed. Experimental results showed that the
proposed method can achieve better performance even in the complicated snow
scenarios compared to other methods.
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