
Learning to Optimize Domain Specific
Normalization for Domain Generalization

Seonguk Seo1, Yumin Suh2, Dongwan Kim1,
Geeho Kim1, Jongwoo Han3, and Bohyung Han1

1 Seoul National University
2 NEC Laboratories America

3 LG Electronics

Abstract. We propose a simple but effective multi-source domain gen-
eralization technique based on deep neural networks by incorporating op-
timized normalization layers that are specific to individual domains. Our
approach employs multiple normalization methods while learning sepa-
rate affine parameters per domain. For each domain, the activations are
normalized by a weighted average of multiple normalization statistics.
The normalization statistics are kept track of separately for each nor-
malization type if necessary. Specifically, we employ batch and instance
normalizations in our implementation to identify the best combination of
these two normalization methods in each domain. The optimized normal-
ization layers are effective to enhance the generalizability of the learned
model. We demonstrate the state-of-the-art accuracy of our algorithm
in the standard domain generalization benchmarks, as well as viability
to further tasks such as multi-source domain adaptation and domain
generalization in the presence of label noise.

Keywords: Domain generalization

1 Introduction

Domain generalization aims to learn generic feature representations agnostic to
domains and make trained models perform well in completely new domains. To
achieve this challenging goal, one needs to train models that can capture useful
information observed commonly in multiple domains and recognize semantically
related but visually inconsistent examples effectively. Many real-world problems
have similar objectives so this task can be widely used in various practical appli-
cations. Domain generalization is closely related to unsupervised domain adap-
tation but there is a critical difference regarding the availability of target domain
data; contrary to unsupervised domain adaptation, domain generalization can-
not access any examples in target domain during training but is still required
to capture transferable information across domains. Due to this constraint, the
domain generalization problem is typically considered to be more challenging, so
multiple source domains are usually involved to make the problem more feasible.

Domain generalization techniques are classified into several groups depend-
ing on their approaches. Some algorithms define novel loss functions to learn

2 S. Seo et al.

domain-agnostic representations [21, 20, 15, 7] while others are more interested
in designing deep neural network architectures to achieve similar goals [13, 6, 17].
The algorithms based on meta-learning have been proposed under the assump-
tion that there exists a held-out validation set [2, 14, 12].

Our algorithm belongs to the second category, i.e. network architecture de-
sign methods. In particular, we are interested in exploiting normalization layers
in deep neural networks to handle the domain generalization task. A näıve ap-
proach would be to train a single deep neural network with batch normalization
using all training examples regardless of their domain memberships. This method
works fairly well partly because batch normalization regularizes feature repre-
sentations from heterogeneous domains and the trained model is often capable
of adapting to unseen domains. However, the benefit of batch normalization
is limited when domain shift is significant, and we are often required to remove
domain-specific styles for better generalization. Instance normalization [27] turns
out to be an effective scheme for the goal and incorporating both batch and
instance normalization techniques further improves accuracy by a data-driven
balancing of two normalization methods [22, 23]. Our approach also employs the
two normalizations but proposes a more sophisticated algorithm designed for
domain generalization.

We explore domain-specific normalizations to learn representations that are
both domain-agnostic and semantically discriminative by discarding domain-
specific ones. The goal of our algorithm is to optimize the combination of normal-
ization techniques in each domain while different domains learn separate parame-
ters for the mixture of normalizations. The intuition behind this approach is that
we can learn domain-invariant representations by controlling types of normal-
ization and parameters in normalization layers. Note that all other parameters,
including the ones in convolutional layers, are shared across domains. Although
our approach is somewhat similar to [16] in that the optimal mixing weights
between normalization types are learned, we emphasize that the motivations are
different; [16] aims for a differentiable normalization for universal tasks while
we set our sights on how to remove style information without losing semantics
to generalize on unseen domains. In addition, our domain-specific properties—
learning normalization parameters, batch statistics and mixture weights for each
domain separately— makes it unique and more effective to construct domain-
agnostic representations, thereby outperforming all the established normaliza-
tion techniques. We illustrate the main idea of our approach in Fig. 1.

Our contributions are as follows:

• Our approach leverages instance normalization to optimize the trade-off be-
tween cross-category variance and domain invariance, which is desirable for
domain generalization in unseen domains.

• We propose a simple but effective domain generalization technique com-
bining heterogeneous normalization methods specific to individual domains,
which facilitates the extraction of domain-agnostic feature representations
by removing domain-specific information effectively.

Learning to Optimize Domain Specific Normalization 3

Fig. 1. Illustration of Domain Specific Optimized Normalization (DSON). Each domain
maintains domain-specific batch normalization statistics and affine parameters, as well
as mixture weights.

• The proposed algorithm achieves the state-of-the-art accuracy in multiple
standard benchmark datasets and outperforms all established normalization
methods.

2 Related Work

This section discusses existing domain generalization approaches and reviews two
related problems, multi-source domain adaptation and normalization techniques
in deep neural networks.

2.1 Domain Generalization

Domain generalization algorithms learn domain-invariant representations given
input examples regardless of their domain memberships. Since target domain
information is not available at training time, they typically rely on multiple
source domains to extract knowledge applicable to any unseen domain. The ex-
isting domain generalization approaches can be roughly categorized into three
classes. The first group of methods proposes novel loss functions that encourage
learned representations to generalize well to new domains. Muandet et al. [21]
propose domain-invariant component analysis, which generates invariant feature
representation via dimensionality reduction. A few recent works [20, 15, 7] also
attempt to learn a shared embedding space appropriate for semantic matching
across domains. Another kind of approach tackles the domain generalization task
by manipulating deep neural network architectures. Domain-specific information
is handled by designated modules within deep neural networks [13, 6, 18] while
[17] proposes a soft model selection technique to obtain generalized representa-
tions. Recently, meta-learning based techniques start to be used to solve domain

4 S. Seo et al.

generalization problems. MLDG [12] extends MAML [8] to domain generalization
task. Balaji et al. [2] points out the limitation of [12] and proposes a regularizer
to address domain generalization in a meta-learning framework directly. Also,
[14] presents an episodic training technique appropriate for domain generaliza-
tion. Note that, to the best of our knowledge, none of the existing methods
exploit normalization types and their optimization for domain generalization.

2.2 Multi-Source Domain Adaptation

Multi-source domain adaptation can be considered as the middle-ground be-
tween domain adaptation and generalization, where data from multiple source
domains are used for training in addition to examples in an unlabeled target
domain. Although unsupervised domain adaptation is a very popular problem,
its multi-source version is relatively less investigated. Zhao et al. [31] propose to
learn features that are invariant to multiple domain shifts through adversarial
training, and Guo et al. [9] use a mixture-of-experts approach by modeling the
inter-domain relationships between source and target domains. A recent work
using domain-specific batch normalization (DSBN) [5] has shown competitive
performance in multi-source domain adaptation by aligning the representations
in heterogeneous domains to a single common feature space.

2.3 Normalization in Neural Networks

Normalization techniques in deep neural networks are originally designed for reg-
ularizing trained models and improving their generalization performance. Var-
ious normalization techniques [11, 27, 1, 19, 24, 29, 22, 16, 25, 5] have been
studied actively in recent years. The most popular technique is batch normal-
ization (BN) [11], which normalizes activations over individual channels using
data in a mini-batch while instance normalization (IN) [27] performs the same
operation per instance instead of mini-batch. In general, IN is effective to remove
instance-specific characteristics (e.g. style in an image) and adding IN makes a
trained model focus on instance-invariant information and increases generaliza-
tion capability of the model to an unseen domain. Other normalizations such
as layer normalization (LN) [1] and group normalization (GN) [29] have the
same concept while weight normalization [24] and spectral normalization [19]
normalize weights over parameter space.

Recently, batch-instance normalization (BIN) [22], switchable normalization
(SN) [16], and sparse switchable normalization (SSN) [25] employ the combina-
tions of multiple normalization types to maximize the benefit. Note that BIN
considers batch and instance normalizations while SN uses LN additionally. On
the other hand, DSBN [5] adopts separate batch normalization layers for each
domain to deal with domain shift and generate domain-invariant representa-
tions.

Learning to Optimize Domain Specific Normalization 5

3 Domain-Specific Optimized Normalization for Domain
Generalization

This section describes our main algorithm called domain-specific optimized nor-
malization (DSON) in details and also presents how the proposed method is
employed to solve domain generalization problems.

3.1 Overview

Domain generalization aims to learn a domain-agnostic model that can be ap-
plied to an unseen domain by leveraging multiple source domains. Consider a set
of training examples Xs with its corresponding label set Ys in a source domain
s. Our goal is to train a classifier using the data in multiple source domains
{Xs}Ss=1 to correctly classify an image xt ∈ Xt in a target domain t, which is
unavailable during training.

In our approach, we aim to learn a joint embedding space across all source
domains, which is expected to be valid in target domains as well. To this end, we
train domain-invariant classifiers from each of the source domains and ensem-
ble their predictions. To embed each example onto a domain-invariant feature
space, we employ domain-specific normalization, which is to be described in the
following sections.

Our classification network consists of a set of feature extractors {Fs}Ss=1 and
a single fully connected layer D. Specifically, the feature extractors share all
parameters across domains except for the ones in the normalization layers. For
each source domain s, loss function is defined as

LC(Xs,Ys) =
1

|Xs|
∑

x∈Xs,y∈Ys

`(y,D(Fs(x)), (1)

where `(·, ·) is the cross-entropy loss. All the parameters are jointly optimized
to minimize the sum of classification losses of source domains:

L =
S∑
s=1

LC(Xs,Ys). (2)

Our domain-specific deep neural network model is obtained by minimizing the
total loss L. To facilitate generalization, in the validation phase, we follow the
leave-one-domain-out validation strategy proposed in [6]; the label of a validation
example from domain s is predicted by averaging predictions from all domain-
specific classifiers, except for the one with domain s.

3.2 Instance Normalization for Domain Generalization

Normalization techniques [11, 27, 1, 29] are widely applied in recent network
architectures for better optimization and regularization. Particularly, batch nor-
malization (BN) [11] improves performance and generalization ability in training

6 S. Seo et al.

(a) Input (b) Batch Normalization (c) Instance Normalization

Fig. 2. Comparing feature distributions of three classes, where color represents the
class label and each dot represents a feature map with two channels. where each axis
corresponds to one channel. For given (a) input activations, (c) instance normalization
makes the features less discriminative over classes when compared to (b) batch normal-
ization. Although instance normalization loses discriminability, it makes the normalized
representations less overfit to a particular domain and eventually improves the quality
of features when combined with batch normalization. (Best viewed in color.)

Table 1. Effects of training batch normalization on the PACS dataset using a ResNet-
18 architecture. Each column shows the performance on the target domain when a
network is trained using the remaining domains as sources. Fine-tuning BN parameters
degrades the generalization performance by overfitting to source domains.

Art painting Cartoon Sketch Photo Avg.

BN fixed 79.25 74.61 71.52 95.99 80.34
BN finetuned 78.47 70.41 70.68 95.87 78.86

neural networks and has become indispensable in many deep neural networks.
However, when BN is applied to cross-domain scenarios, it may not be opti-
mal [3]. Table 1 empirically validates our claim about the effects of training BN
in domain generalization. We employ a pretrained ResNet-18 on the ImageNet
dataset as the backbone network, and fine-tune it on the PACS dataset with two
different settings; fixing the BN parameters and statistics or fine-tuning them.
Although BN generally works well in a variety of vision tasks, it consistently
degrades performance when it is trained in the presence of a large domain di-
vergence. This is because the batch statistics overfit to the particular training
domains, resulting in poor generalization performance in unseen domains. This
motivates us to construct a domain-agnostic feature extractor.

To achieve our goal, we combine BN with instance normalization (IN) to ob-
tain domain-agnostic features. Our intuition about the two normalization meth-
ods is as follows. Instance normalization has been widely adopted in many works
regarding style transfer due to its ability to perform style normalization [10]. In-
spired by this, we employ IN as a means of reducing the inherent style informa-
tion in each domain. In addition, IN does not depend on mini-batch construction
or batch statistics, which can be helpful to extrapolate on unseen domains. These
properties allow the network to learn feature representations that less overfit to

Learning to Optimize Domain Specific Normalization 7

a particular domain. The downside of IN, however, is that it makes the fea-
tures less discriminative with respect to object categories. This is illustrated
in a simplified setting (Fig. 2), where we represent an instance by a cluster of
data points and the corresponding classes by color. Unlike BN, which retains
variation across the different classes, IN largely reduces the inter-class variance.
To reap the benefits of IN while maintaining good classification performance, we
utilize a mixture of IN and BN by optimizing the tradeoff between cross-category
variance and domain invariance. More specifically, we fuse IN into all the BN
layers of our network by linearly interpolating the means and variances of the
two normalization statistics. The combination serves as a regularization method
which results in a strong classifier that tends to focus on high-level semantic
information but is much less vulnerable to domain shifts.

3.3 Optimization for Domain-Specific Normalization

Based on the intuitions above, we propose a domain-specific optimized normal-
ization (DSON) for domain generalization. Given an example from domain d, the
proposed domain-specific normalization layer transforms channel-wise whitened
activations using affine parameters βd and γd. Note that whitening is also per-
formed for each domain. At each channel, the activations xd ∈ RH×W×N are
transformed as

DSONd(xd[i, j, n]; γd, βd) = γd · x̂d[i, j, n] + βd, (3)

where the whitening is performed using the domain-specific mean and variance,
µdn and σ2

dn,

x̂d[i, j, n] =
xd[i, j, n]− µdn√

σ2
dn + ε

. (4)

We combine batch normalization (BN) with instance normalization (IN) in
a similar manner to [16] as

µdn = wdµ
bn
d + (1− wd)µin

n , (5)

σ2
dn = wdσ

bn
d

2
+ (1− wd)σin

n

2
, (6)

where both are calculated separately in each domain as

µbn
d =

∑
n

∑
i,j xd[i, j, n]

N ·H ·W
and σbn

d

2
=

∑
n

∑
i,j

(
xd[i, j, n]− µbn

d

)2
N ·H ·W

, (7)

and

µin
n =

∑
i,j xd[i, j, n]

H ·W
and σin

n

2
=

∑
i,j

(
xd[i, j, n]− µin

n

)2
H ·W

. (8)

The optimal mixture weight, wd, between BN and IN are trained to minimize
the loss in Equation 2. Note that our domain-specific mixture weights are shared
across all layers for each domain, which facilitates to find the optimal point.

8 S. Seo et al.

3.4 Inference

A test example x in a target domain is unknown during training. Hence, for
inference, we feed the example to the feature extractors of all domains. The final
label prediction is given by computing the logits using the fully connected layer
D, averaging the logits, i.e. 1S

∑S
s=1D(Fs(x)), and finally applying a softmax

function.
One potential issue in the inference step is whether target domains can rely on

the model trained only on source domains. This is the main challenge in domain
generalization, which assumes that reasonably good representations of target
domains can be obtained from the information in source domains only. In our
algorithm, instance normalization in each domain has the capability to remove
domain-specific styles and standardize the representation. Since each domain has
different characteristics, we learn the relative weights of instance normalization
in each domain separately. Thus, predictions in each domain should be accurate
enough even for the data in target domains. Additionally, the accuracy given
by aggregating the predictions of multiple networks trained on different source
domains should further improve accuracy.

4 Experiments

To depict the effectiveness of domain-specific optimized normalization (DSON),
we implement it on domain generalization benchmarks and provide an extensive
ablation study of the algorithm.

4.1 Experimental Settings

Datasets We evaluate the proposed method on three domain generalization
benchmarks. The PACS dataset [13] is commonly used in domain generalization
and is favored due to its large inter-domain shift across four domains: Photo,
Art Painting, Cartoon, and Sketch. It contains a total of 9,991 images in 7
categories, with an image resolution of 227 × 227. We follow the experimental
protocol in [13], where the model is trained on any three of the four domains
(source domains), and then tested on the remaining domain (target domain).
Office-Home [28] is a popular domain adaptation dataset, which consists of four
distinct domains: Artistic Images, Clip Art, Product, and Real-world Images.
Each domain contains 65 categories, with around 15,500 images in total. While
the dataset is mostly used in the domain adaptation context, it can easily be
repurposed for domain generalization by following the same protocol used in
the PACS dataset. Finally, we employ five datasets—MNIST, MNIST-M, USPS,
SVHN and Synthetic Digits— for digit recognition and split training and testing
subsets following [30].

Implementation details For the fair comparison with prior arts [2, 6, 4, 14],
we employ ResNet as the backbone network in all experiments. The convolu-
tional and BN layers are initialized with ImageNet pretrained weights. We use

Learning to Optimize Domain Specific Normalization 9

Table 2. Comparision with the state-of-the-art domain generalization methods (%) on
the PACS dataset using ResNet-18 and ResNet-50 architectures. Column title indicates
the target domain. *All experiments use the “train” split for the source domains, except
MetaReg [2], which uses both “train” and “validation” splits.

Archictecture Method Art painting Cartoon Sketch Photo Avg.

ResNet-18

Baseline 78.47 70.41 70.68 95.87 78.86
JiGen [4] 79.42 75.25 71.35 96.03 80.51
D-SAM [6] 77.33 72.43 77.83 95.30 80.72
Epi-FCR [14] 82.10 77.00 73.00 93.90 81.50
MetaReg* [2] 83.70 77.20 70.30 95.50 81.70
MASF [7] 80.29 77.17 71.69 94.99 81.04
MMLD [18] 81.28 77.16 72.29 96.09 81.83

ResNet-50

DSON (Ours) 84.67 77.65 82.23 95.87 85.11

Baseline 80.22 78.52 76.10 95.09 82.48
MetaReg* [2] 87.20 79.20 70.30 97.60 83.60
MASF [7] 82.89 80.49 72.29 95.01 82.67
DSON (Ours) 87.04 80.62 82.90 95.99 86.64

Table 3. Comparision with the state-of-the-art domain generalization methods (%)
on the Office-Home dataset using a ResNet-18 architecture. Column title indicates the
target domain.

Art Clipart Product Real-World Avg.

Baseline 58.71 44.20 71.75 73.19 61.96
JiGen [4] 53.04 47.51 71.47 72.79 61.20
D-SAM [6] 58.03 44.37 69.22 71.45 60.77
DSON (Ours) 59.37 45.70 71.84 74.68 62.90

a batch size of 32 images per source domain, and optimize the network param-
eters over 10K iterations using SGD-M with a momentum 0.9 and an initial
learning rate η0 = 0.02. As suggested in [31], the learning rate is annealed by
ηp = η0

(1+αp)β
, where α = 10, β = 0.75, and p increases linearly from 0 to 1 as

training progresses. We follow the domain generalization convention by train-
ing with the “train” split from each of the source domains, then testing on the
combined “train” and “validation” splits of the target domain.

We made the mixture weights shared across all layers in our network to
facilitate optimization. In our experiments, the convergence rates of local mix-
ture weights in lower layers were significantly slower than higher layers. We
sidestepped this issue by sharing the mixture weights across all the layers. This
strategy improved accuracy substantially and consistently in all settings.

4.2 Comparison with Other Methods

In this section, we compare our method with other domain generalization meth-
ods on PACS and Office-Home datasets.

10 S. Seo et al.

Table 4. Domain generalization accuracy (%) in ablation study. We compare DSON
(ours) with its variants given by different implementations of normalization layers.
‘Art.’ denotes ‘Art painting’ domain in the PACS dataset.

PACS Office-Home
Art. Cartoon Sketch Photo Avg. Art Clipart Product Real-World Avg.

Baseline 78.47 70.41 70.68 95.87 78.86 58.71 44.20 71.75 73.19 61.96
IBN [23] 75.29 72.95 77.42 92.04 79.43 55.41 44.82 68.28 71.95 60.09
DSBN [5] 78.61 66.17 70.15 95.51 77.61 59.04 45.02 72.67 71.98 62.18
SN [16] 82.50 76.80 80.77 93.47 83.38 54.10 44.97 64.54 71.40 58.75
DSON (Ours) 84.67 77.65 82.23 95.87 85.11 59.37 45.70 71.84 74.68 62.90

Table 5. Domain generalization accuracy (%) on Digits datasets using a ResNet-18
architecture. We compare DSON (ours) with its variants given by different implemen-
tations of normalization layers.

Digits
MNIST MNIST-M USPS SVHN Synthetic Avg.

Baseline 86.15 74.44 90.07 81.29 94.46 85.28
DSBN [5] 87.01 71.20 91.18 78.23 94.30 84.38
SN [16] 89.28 78.40 88.54 79.12 95.66 86.20
DSON (Ours) 89.62 79.00 91.63 81.02 95.34 87.32

PACS Table 2 portrays the domain generalization accuracy on the PACS
dataset. The proposed algorithm is compared with several existing methods,
which include JiGen [4], D-SAM [6], Epi-FCR [14], MetaReg [2], MASF [7], and
MMLD [18]. Our method outperforms both the baseline and other state-of-the-
art techniques by significant margins, which is particularly effective for hard
domain (Sketch). When ResNet-50 is employed as a backbone architecture, our
method still achieves better performance than other baselines; this result implies
the scalability and stability of DSON when it is incorporated into a larger model.

Office-Home We also evaluate DSON on the Office-Home dataset, and the
results are presented in Table 3. As in PACS, DSON outperforms the recently
proposed JiGen [4] and D-SAM [6] as well as our baseline. We find that DSON
achieves the best score on all target domains. Again, DSON is more advantageous
in hard domain (Clipart).

4.3 Ablation Study

PACS and Office-Home Dataset We conduct an ablation study to assess the
contribution of individual components within our full algorithm on the PACS and
Office-Home datasets. Table 4 presents the results, where our complete method
is denoted by DSON. It also presents accuracies of its variants given by differ-
ent implementations of normalization layers. We first present results from the

Learning to Optimize Domain Specific Normalization 11

Table 6. Domain generalization accuracy (%) using ResNet-18 in the presence of label
noise on the PACS dataset. Note that ∆Avg. denotes the amount of accuracy drop
with respect to the results from clean data.

Noise level Method Art painting Cartoon Sketch Photo Avg. ∆Avg.

0.2

Baseline (BN) 75.16 70.41 68.17 92.13 76.47 -2.89
IBN [23] 77.25 69.75 69.53 90.60 76.78 -2.65
DSBN [5] 77.10 66.00 59.43 94.85 74.35 -3.27
SN [16] 78.56 75.21 77.42 91.08 80.57 -2.57
DSON (Ours) 83.11 79.07 80.15 94.79 84.03 -1.08

0.5

Baseline (BN) 73.49 64.68 58.95 89.22 71.59 -7.77
IBN [23] 67.60 63.58 65.08 86.53 70.70 -8.73
DSBN [5] 75.05 57.98 59.99 93.35 71.59 -6.02
SN [16] 78.27 74.06 72.23 88.86 78.36 -4.78
DSON (Ours) 80.22 73.85 77.37 94.91 81.59 -3.52

baseline method, where the model is trained näıvely with BN layers that are not
specific to any single domain. Then, to examine the effects of domain-specific
normalization layers, the BN layers are made specific to each of the source do-
mains, which is denoted by DSBN [5]. We also examine the suitability of SN [16]
by replacing BN layers with adaptive mixtures of BN, IN and LN. IBN-Net [23]
concatenates instance normalization and batch normalization in a channel axis,
but its improvement is marginal. We do not include batch-instance normaliza-
tion (BIN) [22] in our experiment because it is hard to optimize and the results
are unstable. The ablation study clearly illustrates the benefits of individual
components in our algorithm: optimization of multiple normalization methods
and domain-specific normalization. Note that other normalization methods can
degrade the performance compared to baseline depending on the dataset, while
DSON consistently displays superior results.

Digits Dataset The results on five digits datasets are shown in Table 5. Our
model achieves 87.32% of average accuracy, outperforming all other baselines by
large margins.

4.4 Additional Experiments

Robustness against Label Noise The performance of the proposed algorithm
on the PACS dataset is tested in the presence of label noise, and the results
are investigated against other approaches. Two different noise levels are tested
(0.2 and 0.5), and the results are presented in Table 6. Although all algorithms
undergo performance degradation, the amount of accuracy drops is marginal in
general and DSON turns out to be more reliable with respect to label noise
compared to other models. This is partly because DSON makes the network less
overfit to class discrimination, reducing the effects of noise.

12 S. Seo et al.

Table 7. Multi-source domain adaptation results on the PACS dataset using [26] as a
backbone with a ResNet-18 architecture.

Art painting Cartoon Sketch Photo Avg.

Baseline 78.85 76.79 78.14 99.42 83.30
DSBN [5] 88.94 83.54 77.39 99.42 87.32
SN [16] 79.00 77.66 79.11 97.78 83.39
DSON (Ours) 86.54 88.61 86.93 99.42 90.38

Art painting Cartoon Sketch Photo0

10

20

30

40

50

Th
e

ra
tio

 o
f I

N
to

 B
N

(%
)

Single-source
Multi-source

(a) PACS

Art Clipart Product Real World0

2

4

6

8

10

12

14

Th
e

ra
tio

 o
f I

N
to

 B
N

(%
)

Single-source
Multi-source

(b) Office-Home

Fig. 3. Analysis of the mixture weights with single-source and multi-source scenarios
on the PACS (left) and Office-Home (right) datasets. We present the weight ratio of
IN to BN in our DSON module. (Best viewed in color.)

Multi-Source Domain Adaptation DSON can be extended to the multi-
source domain adaptation task, where we gain access to unlabeled data from
the target domain. To compare the effect of different normalization methods,
we adopt the algorithm proposed by Shu et al. [26] as the baseline method and
vary the normalization method only. The results are shown in Table 7, where we
compare DSON with baseline, SN [16], and DSBN [5]. All compared methods
illustrate a large improvement over the baseline. In direct contrast to the results
from the ablation analysis in Table 4, DSBN is clearly superior to SN. This is
unsurprising, given that DSBN is focused specifically on the domain adaptation
task. Interestingly, we find that DSON outperforms not only the baseline but
also DSBN, which demonstrates how effectively DSON can be extended to the
domain adaptation task. Domain-specific models consistently outperform their
domain-agnostic counterparts in this task.

4.5 Analysis

Mixture Weights For a trained network with DSON in domain generalization
tasks, the mixture weights of IN and BN are 3:7 and 1:9 on average for PACS
and Office-Home datasets, respectively. Additionally, we analyzed the effect that

Learning to Optimize Domain Specific Normalization 13

Table 8. Effects of separating mixture weights for each domain in our DSON module on
the PACS dataset with multi-source domain generalization scenario. Domain-agnostic
denotes the mixture weights are shared across domains.

Mixture weights Art painting Cartoon Sketch Photo Avg.

Domain-agnostic 82.13 74.10 80.02 95.03 82.82
Domain-specific (Ours) 84.67 77.65 82.23 95.87 85.11

Table 9. Single-source domain generalization accuracy on the PACS dataset. Rows
and columns denote source and target domains, respectively. We compare DSON (ours)
with BN in terms of the amount of change (%p).

BN (%) DSON (%p)
A C S P A C S P

Art painting 89.42 60.71 48.74 94.25 – 1.20 + 7.42 + 20.36 – 0.44
Cartoon 69.68 94.51 71.60 81.56 + 2.83 – 0.11 + 0.88 + 3.65
Sketch 44.34 63.65 93.50 49.28 + 8.64 + 0.64 – 0.67 + 9.82
Photo 61.72 29.10 33.98 97.86 + 3.56 + 16.85 + 1.19 – 0.52

the number of source domains has on the value of the mixture weights. To this
end, we tested two scenarios; single-source and multi-source. For each domain,
single-source denotes that only the specified domain was used for training, while
multi-source indicates that other domains, along with the specified domain, were
used for training. The graphs in Fig. 3 show the weight ratio of IN to BN for
each domain in the two scenarios. As shown in the plot, training with multi-
source domains led to a large and consistent increase in the usage of IN for
all domains, because the multi-source scenario requires more domain-invariant
representations than the single-source scenario. We also validated the effective-
ness of separating mixture weights for each domain independently in Table 8, in
which domain-specific mixture weights boosts the performance compared to the
domain-agnostic ones.

Effects of Instance Normalization To analyze the effects of combining in-
stance normalization, we tested single-source domain generalization on every
source-target combination of domains, as shown in Table 9. Rows and columns
denote source domains and target domains, respectively. For evaluation, we used
the validation split of the target domain in case source and target domains are
the same. Although DSON marginally sacrifices the accuracy compared to BN
when source and target domains are the same, it brought a significant perfor-
mance gain in most cross-domain scenarios. This presents a desirable trade-off
in combining instance normalization; cross-category variance for domain invari-
ance.

14 S. Seo et al.

Table 10. Results from single source domain branch on the PACS dataset. Columns
denote target domains and rows denote the single source domain branch of our model.

Art painting Cartoon Sketch Photo

Art painting - 73.68 79.51 95.41
Cartoon 80.96 - 75.87 93.77
Sketch 78.71 71.72 - 91.98
Photo 79.49 75.71 76.38 -

DSON (all) 84.67 77.65 82.23 95.87

Results from Single Source Domain Branch We present the classification
results using each single domain branch of our model on the PACS dataset in
Table 10. Columns denote target domains and rows denote each single source do-
main branch of our model. It shows that the results from single domain branches
differ slightly from each other in accuracy, and integrating them gives consistent
performance gain.

5 Conclusion

We presented a simple but effective domain generalization algorithm based on
domain-specific optimized normalization layers. The proposed algorithm uses
multiple normalization methods while learning a separate affine parameter per
domain. The mixing weights are employed to compute the weighted average of
multiple normalization statistics for each domain separately. This strategy turns
out to be helpful for learning domain-invariant representations since instance
normalization removes domain-specific style while preserving semantic category
information effectively. The proposed algorithm achieves the state-of-the-art ac-
curacy consistently on multiple standard benchmarks even with substantial la-
bel noise. We showed that the algorithm is well-suited for unsupervised domain
adaptation as well. Finally we analyzed the characteristics and effects of our
method with diverse ablative study.

Acknowledgement

This work was supported by Institute for Information & Communications Tech-
nology Promotion (IITP) grant funded by the Korea government (MSIT) [2016-
0-00563, 2017-0-01779].

References

1. Ba, L.J., Kiros, R., Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450 (2016) 4, 5

2. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain gener-
alization using meta-regularization. In: NeurIPS (2018) 2, 4, 8, 9, 10

Learning to Optimize Domain Specific Normalization 15

3. Bilen, H., Vedaldi, A.: Universal representations: The missing link between faces,
text, planktons, and cat breeds. arXiv preprint arXiv:1701.07275 (2017) 6

4. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain
generalization by solving jigsaw puzzles. In: CVPR (2019) 8, 9, 10

5. Chang, W.G., You, T., Seo, S., Kwak, S., Han, B.: Domain specific batch normal-
ization for unsupervised domain adaptation. In: CVPR (2019) 4, 10, 11, 12

6. DaInnocente, A., Caputo, B.: Domain generalization with domain-specific aggre-
gation modules. In: GCPR (2018) 2, 3, 5, 8, 9, 10

7. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via
model-agnostic learning of semantic features. In: NeruIPS (2019) 2, 3, 9, 10

8. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: ICML (2017) 4

9. Guo, J., Shah, D., Barzilay, R.: Multi-source domain adaptation with mixture of
experts. In: EMNLP (2018) 4

10. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: ICCV (2017) 6

11. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training
by Reducing Internal Covariate Shift. In: ICML (2015) 4, 5

12. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning
for domain generalization. In: AAAI (2018) 2, 4

13. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: ICCV (2017) 2, 3, 8

14. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training
for domain generalization (2019) 2, 4, 8, 9, 10

15. Li, Y., Gong, M., Tian, X., Liu, T., Tao, D.: Domain generalization via conditional
invariant representations. In: AAAI (2018) 2, 3

16. Luo, P., Ren, J., Peng, Z.: Differentiable learning-to-normalize via switchable nor-
malization. In: ICLR (2019) 2, 4, 7, 10, 11, 12

17. Mancini, M., Bulò, S.R., Caputo, B., Ricci, E.: Best sources forward: domain gen-
eralization through source-specific nets. In: ICIP (2018) 2, 3

18. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent
domains. In: AAAI (2020) 3, 9, 10

19. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: ICLR (2018) 4

20. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised
domain adaptation and generalization. In: ICCV (2017) 2, 3

21. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant
feature representation. In: ICML (2013) 2, 3

22. Nam, H., Kim, H.E.: Batch-instance normalization for adaptively style-invariant
neural networks. In: NeurIPS (2018) 2, 4, 11

23. Pan, X., Luo, P., Shi, J., Tang, X.: Two at once: Enhancing learning and general-
ization capacities via ibn-net. In: ECCV (2018) 2, 10, 11

24. Salimans, T., Kingma, D.P.: Weight normalization: A simple reparameterization
to accelerate training of deep neural networks. In: NIPS (2016) 4

25. Shao, W., Meng, T., Li, J., Zhang, R., Li, Y., Wang, X., Luo, P.: Ssn: Learning
sparse switchable normalization via sparsestmax. In: CVPR (2019) 4

26. Shu, Y., Cao, Z., Long, M., Wang, J.: Transferable curriculum for weakly-
supervised domain adaptation. In: AAAI (2018) 12

27. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Improved Texture Networks: Maximiz-
ing Quality and Diversity in Feed-Forward Stylization and Texture Synthesis. In:
CVPR (2017) 2, 4, 5

16 S. Seo et al.

28. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep Hashing
Network for Unsupervised Domain Adaptation. In: CVPR (2017) 8

29. Wu, Y., He, K.: Group Normalization. In: ECCV (2018) 4, 5
30. Xu, R., Chen, Z., Zuo, W., Yan, J., Lin, L.: Deep cocktail network: Multi-source

unsupervised domain adaptation with category shift. In: CVPR (2018) 8
31. Zhao, H., Zhang, S., Wu, G., Moura, J.M.F., Costeira, J.P., Gordon, G.J.: Adver-

sarial multiple source domain adaptation. In: NeurIPS (2018) 4, 9

