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Marco Cristani4, and Vittorio Murino1,3,4

1 Pattern Analysis & Computer Vision, Istituto Italiano di Tecnologia
2 University of Genova, Italy 3Huawei Technologies Ltd., Ireland Research Center
{valentina.sanguineti,pietro.morerio,danilo.greco,vittorio.murino}@iit.it

4 University of Verona, Italy
niccolo.pozzetti@studenti.univr.it marco.cristani@univr.it

Abstract. In this paper, we propose the use of a new modality charac-
terized by a richer information content, namely acoustic images, for the
sake of audio-visual scene understanding. Each pixel in such images is
characterized by a spectral signature, associated to a specific direction in
space and obtained by processing the audio signals coming from an array
of microphones. By coupling such array with a video camera, we obtain
spatio-temporal alignment of acoustic images and video frames. This
constitutes a powerful source of self-supervision, which can be exploited
in the learning pipeline we are proposing, without resorting to expen-
sive data annotations. However, since 2D planar arrays are cumbersome
and not as widespread as ordinary microphones, we propose that the
richer information content of acoustic images can be distilled, through
a self-supervised learning scheme, into more powerful audio and visual
feature representations. The learnt feature representations can then be
employed for downstream tasks such as classification and cross-modal
retrieval, without the need of a microphone array. To prove that, we in-
troduce a novel multimodal dataset consisting in RGB videos, raw audio
signals and acoustic images, aligned in space and synchronized in time.
Experimental results demonstrate the validity of our hypothesis and the
effectiveness of the proposed pipeline, also when tested for tasks and
datasets different from those used for training.

Keywords: Audio-visual representations, acoustic images, audio- and
video-based classification, cross-modal retrieval, self-supervised learning

1 Introduction

Humans perceive and interpret the world by combining different sensory modal-
ities. However, designing computational systems able to emulate or surpass hu-
man capabilities in this respect, although of utmost importance from both sci-
entific and applicative standpoints, is still a far-reaching goal.

Among all modalities, vision and audio are surely the most commonly used
and important ones that both humans and machines can use to sense the world.
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Fig. 1. We consider three modalities aligned in time and space: RGB, (monaural)
audio signal (here in the form of spectrogram), and acoustic images. We exploit such
correspondence to jointly learn audio-visual representations. We improve audio models
with knowledge transfer from the acoustic image model.

This is also caused by the fact that they are often quite correlated, temporally
synchronized, and support each other for interpretation tasks. In fact, sound
helps to pay attention and visually focus on situations of interest, and may com-
plement noisy or low-quality visual information, ultimately aiming to improve
the interpretation of a scene. In such cases, humans take advantage of the spatial
localization of the produced sound (obtained thanks to the binaural configura-
tion of our auditory system), to shift visual attention to the event that generated
the sound.

Unfortunately, artificial systems mimicking human performance are not so
common, especially because video data typically comes with a monaural (single
microphone) acoustic signal only. Hence, spatial localization is lost, and reliably
recovering it is a difficult and only partially solved problem [9,23]. Thus, in
order to have the possibility to emulate human performance by also exploiting
spatially localized audio data, one needs to resort to an array of microphones
positioned in special geometrical (e.g., planar) configuration, and able to provide
an enriched audio description of a scene – an acoustic image – being formed
by properly combining the signals acquired by all microphones. In an acoustic
image, each pixel is characterized by the spectral signature corresponding to
the audio signal coming from the corresponding direction, so, overall, allowing
effectively to visualize the acoustic landscape of the sensed scene (see Fig. 2).

In particular, we take advantage of an audio-visual sensor composed by a mi-
crophone array coupled with a video camera, jointly calibrated, in order to get
a sequence of acoustic images and associated video frames, aligned in space and
time [36,6]. Examples of sample video frames overlaid with the energy map of
the sound obtained from the corresponding acoustic images are shown in Fig. 2.
The peculiar nature of this data, i.e., the spatial alignment and time synchro-
nization of the data produced by such sensor, opens the door to the adoption of
self-supervised learning approaches for model training. The motivation for this
choice lies in the fact that such methods do not require data annotations. This
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specifically suits to our case, since acoustic images would results quite expen-
sive to fully annotate (i.e., assigning pixel-level or bounding box annotations to
the same objects in both video frames and acoustic images while listening the
signals coming from different directions). Instead, self-supervised methods just
exploit the implicit supervision inherent in the signals themselves. For example,
we can train audio-visual networks by simply looking and listening to a large
number of unlabelled videos, and exploiting their natural alignment as a super-
visory signal. More in detail, in deep self-supervised learning schemes, a network
is trained to solve a so-called pretext task, and the quality of learned features
is then assessed on a variety of downstream tasks, which are usually supervised
(e.g., classification), showing beneficial effects [18].

More specifically, in this paper we investigate whether we can obtain more
powerful features for downstream tasks by training audio-visual models with a
self-supervised framework exploiting audio-visual correspondence. We also em-
ploy acoustic image modality as privileged information [34] used at training time
in a knowledge distillation [21] framework (see Fig. 1) to enhance such audio-
visual self-supervised features. The distillation framework was already exploited
in the literature for classification tasks in several scenarios [15,21,11,10,28],
but always in supervised settings. Instead, here we are proposing a novel self-
supervised distillation framework, which does not require any time-consuming
annotations, and allows to train audio and video models together. To the best
of our knowledge, privileged information was never exploited before in a self-
supervised learning pipeline. After training, individual models can be used as
feature extractors for the sake of audio and video classification and cross-modal
retrieval as downstream tasks.

To show the potentiality of acoustic images to improve feature learning,
we collected a new multimodal audio-visual dataset, composed by RGB video
frames, acoustic images and monaural audio signals3. This dataset contains 10
classes of real sound acquired outdoors in the wild, is bigger than AVIA dataset
[28] and more suitable for self-supervised learning. With this novel dataset we
carry out an accurate ablation study; subsequently, in two different benchmark
datasets publicly available [28,22], we show that, when augmented with privi-
leged information distilled from acoustic images, the obtained feature representa-
tions are more powerful than in the case of just training audio and visual models
with the audio-visual correspondence task. In the end, acoustic images proved
to have notable characteristics to be effectively transferred to other domains and
tasks, when distilled by our training mechanism.

In summary, the main contributions of this work can be summarized as fol-
lows:

– We propose a multimodal deep learning framework to learn audio-visual
models considering a novel modality, acoustic images, which is heavily under-
explored in computer vision. This framework embeds a novel self-supervised
distillation mechanism to transfer the information extracted from an acoustic

3 https://github.com/IIT-PAVIS/acoustic-images-self-supervision

https://github.com/IIT-PAVIS/acoustic-images-self-supervision
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image model to an audio model for learning more powerful feature represen-
tations.

– We collect and release a new multimodal dataset of aligned audio (single
microphone), RGB images and acoustic images, bigger than [28].

– Using this dataset for model training, we show the effectiveness of our frame-
work for downstream tasks such as 1) audio and video classification, and 2)
cross-modal retrieval. In particular, we prove that the features obtained by
the distillation of acoustic images perform better than those obtained with-
out using such privileged information, not only on our dataset, but also on
other public benchmarks [28,22].

Fig. 2. Three examples from the collected dataset. We visualize the acoustic image
by summing the energy of all frequencies for each acoustic pixel. The resulting map is
overlaid on the corresponding RGB frame. From left to right: drone, train, and vacuum
cleaner classes.

The rest of the paper is organized as follows. We review the state of the art
and highlight the main differences with respect to our work in Section 2. Sec-
tion 3 introduces our new dataset and briefly presents the sensor used. Section 4
explains the proposed self-supervised training method and, in Section 5, we eval-
uate our learning strategy and report the performance of the experiments in the
downstream tasks. Finally, in Section 6, conclusions are drawn.

2 Related works

Our work lies at the intersection of two broad topics, namely self-supervised
learning and knowledge distillation. In this section we give an overview of rel-
evant works in both fields, mainly in the context of audio-visual learning, and
discuss how our method relates to them. We also review literature dealing with
acoustic images.

Audio-visual self-supervised learning. Multimodal learning takes advan-
tage of data from different modalities [24] aiming at obtaining better semantic
representations than those learned by segregated modalities.

There has been increased interest in using perception-inspired audio-visual
(fusion) deep learning models because the correspondence between the visual
and the audio streams is ubiquitous and free in unlabeled consumer videos.
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Vision and sound are often informative about the same concept of the world.
As a consequence of their correlations, concurrent visual and sound data provide
a rich supervisory self-training signal that can be used to jointly learn useful
audio and video representations. Early approaches trained single networks on
one modality only, using the other one to derive a sort of supervisory signal
[3,13,26,27]. For example, [3,13] train an audio network using pre-trained visual
architectures as teachers. Instead, [26,27] directly predicts sound from video,
thus using ambient sound as a supervisory signal for video.

Other works [19,1,17,2,12,31,29,8,25] jointly train visual and audio streams,
aiming at learning multimodal representations useful for many applications, such
as classification, cross-modal retrieval, sound source localization, speech separa-
tion, and on/off-screen audio-visual source separation. As in [1], we also use
audio-visual correspondence verification task: networks are trained to determine
whether a video frame and a short audio chunk overlap in time. Learned repre-
sentations are then tested in a classification task. Within a similar framework,
[19] uses hard samples, i.e., slightly out-of-sync audio and visual segments sam-
pled from the same video in a self-supervised curriculum-based learning scheme.
[2] enforces the alignment of features extracted by audio and visual networks
by computing the correspondence score as a function of the Euclidean dis-
tance between the normalized visual and audio embeddings, hence making them
amenable to retrieval.

The common factor in all these works is the natural temporal synchroniza-
tion between (single) auditory signal and visual images, which is used to train
the several models in a self-supervised manner. Some works instead explore the
spatial alignment between stereo auditory signal and visual images [35].

In our case, the intrinsic temporal synchronization, but also the spatial align-
ment of visual and acoustic images are exploited as a supervisory signal. Our
method takes inspiration from [2] and [31]: we force audio-visual agreement be-
tween feature maps to find aligned shared representations, however, both the
task and the mechanism we propose for training are different, since they involve
knowledge distillation and an extremely different modality.

Knowledge distillation. Our work is related to knowledge distillation,
which can be coarsely and generally defined as the class of approaches try-
ing to indeed condensate knowledge gained in a learning task and feed another
learning task or another model [15]. Such framework was later unified with the
privileged information framework [34] into the so-called generalized distillation
theory [21], and recently exploited in the context of multi-modal learning with
missing modalities at test time [16,11,10]

The seminal work [3] capitalizes on the natural synchronization between vi-
sion and sound to train a sound classification model using a teacher-student
setup, transferring from video teachers (ImageNet and Places pre-trained net-
works) into sound. However, such teachers are trained with supervision, while we
do not use any supervision at all. In fact, while traditional generalized distillation
framework are applied in a supervised setup, since exploiting cross-entropy loss
and teacher’s soft predictions [21], we are here in the self-supervised scenario,
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where labels are missing. We can thus only leverage embeddings as additional
information from the teacher. Furthermore, the teacher network itself is also
trained with self-supervision.

Acoustic images. Acoustic images are obtained using an array of micro-
phones, typically distributed in a planar configuration, by properly combining
the audio signals acquired by every microphone using an algorithm called beam-
forming [33]. To the best of our knowledge, acoustic image processing with deep
learning methods was only preliminary explored in [28], which proposed an ar-
chitecture able to classify acoustic images in a multimodal action dataset in a
supervised way. Furthermore, it also showed how to distill acoustic image infor-
mation to audio models, still in a supervised way. The substantial difference of
our work with respect to [28] is that we use here a self-supervised learning ap-
proach, for which, as also above highlighted, the canonical supervised distillation
[21] cannot be applied. Other applications of acoustic images regarded only the
tracking of sound sources [6,36]. In the end, no other works are present in the
literature aimed at using such unique source of information in a self-supervised
learning setting.

3 ACIVW: ACoustic Images and Videos in the Wild

We acquired a multimodal dataset containing 5 hours of videos outdoors in the
wild, using an acoustic-optical camera. The sensor captures both raw audio sig-
nals from 128 microphones acquired with a sampling frequency of 12.8 kHz and
RGB video frames of 480 × 640 pixels, using a planar array of microphones lo-
cated according to an optimized aperiodic layout [7] and a webcam placed at the
device center. Audio data is acquired in the useful bandwidth 500 Hz – 6.4 kHz
and audio-video sequences are acquired at a frame rate of 12 frames per second
(fps). 36 × 48 × 512 multispectral acoustic images are obtained from the raw
audio signals of all the microphones combining them through the beamforming
algorithm [33], which summarizes the audio intensity for every direction and dis-
cretized frequency bin. The acquisition of the latter modality is aligned not only
in time with optical images, but also in space: each acoustic pixel corresponds
to 13.3 × 13.3 visual pixels. Among the raw audio waveforms, we choose one
microphone for training monaural audio networks.

We selected 10 classes of interest: drone, shopping cart, traffic, train, boat,
fountain, drill, razor, hair dryer, vacuum cleaner. Figure 2 shows three sample
RGB frames overlaid with the energy of the corresponding acoustic image. More
examples, videos and details are provided in the supplementary material. We
acquired data for half an hour for each class, in different locations and viewpoints.
This implies more than 21,000 RGB and acoustic images for each class. The data
is split in training, validation and test in the proportion 70%, 15% and 15%.

We use the training split of this dataset for the pretext task of learning
correspondences. We then test for the downstream tasks of cross-modal retrieval
and classification on the test set. For classification, we also test on two publicly
available datasets proposed in [28] and [22].
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4 The method

As mentioned above, we consider three data modalities, namely audio, acoustic
images and RGB images, and we adopt a different stream network for each
modality as they are extremely heterogeneous, as shown in Fig. 3.

Our aim is to train two models at a time using audio-visual correspondence
pretext task: first, we train the acoustic images’ stream jointly with the RGB
stream, and, second, the audio stream with the RGB stream. After that, we
exploit the trained acoustic image stream to distill additional knowledge to a new
audio stream, trained again using the same pretext task as illustrated in Figure
4. We then compare the performances of audio and video models trained with
and without the aid of the self-supervised pre-trained acoustic image stream.

4.1 Input data

For the three modalities we consider temporal windows of 2.0 s, which represent
a good compromise between information content and computational load.

Monaural Audio. The audio amplitude spectrogram is obtained from an
audio waveform of 2 seconds, upsampled to 22 kHz by computing the Short-
Time Fourier Transform (STFT), considering a window length of 20 ms with
half-window overlap. This produces 200 windows with 257 frequency bands. The
resulting spectrogram is interpreted as a 200 × 1 × 257 dimensional signal, so
that the frequency bands can be interpreted as the number of channels in con-
volutions, as detailed in Figure 3.

Acoustic images. Acoustic images are generated with the frequency imple-
mentation of the filter-and-sum beamforming algorithm [36]. They are volumes
of size 36×48×512 (36×48 as image size, 512 frequency channels). These chan-
nels correspond to the frequency bins discretizing frequency content for each
pixels. A more comprehensive description of acoustic images generation can be
found in [33]. However, handling acoustic images with 512 channels is computa-
tionally expensive and most of the useful information is typically contained in
the low frequencies. Consequently, we compressed the acoustic images along the
frequency axis using Mel-Frequency Cepstral Coefficients (MFCC), which con-
sider human audio perception characteristics [32]. We thus compute 12 MFCC,
compressing from 512 to 12 channels, preserving most of the information but
consistently reducing the computational complexity and the required memory.
Acoustic images frame rate is 12 s−1, so we consider 24 acoustic images in input.

RGB video. RGB frames are 224 × 298 × 3 volumes obtained by scaling
the original 360 × 480 × 3 video frames, keeping the original proportion. The
images are then normalized by subtracting ImageNet mean [20]. Even if we have
both acoustic images and RGB images frame rates are 12 s−1, we consider just
one RGB frame per second to reduce computational burden, so we have 2 RGB
frames in input.
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Fig. 3. The adopted models for the 3 data modalities. In convolutional layers stride=1
and padding=SAME unless otherwise specified.

4.2 Single data stream models

The chosen architectures for self-supervised learning are depicted in Figure 3:
ResNet18 for RGB frames [14], DualCamNet for acoustic images [28], and Hear-
Net [4] for the single audio signal. All networks were slightly modified for our
purposes as illustrated in Figure 3. We consider ResNet18 since it can be trained
from scratch on our dataset at relatively low computational cost and without
the risk of overfitting. In fact, we do not want to rely on ImageNet pre-trained
models to avoid employing labels at all. HearNet draws inspiration from [4] and
[28], but it has been modified to consider our sampling time interval of 2.0 s
(instead of 5.0 s). Such network takes spectrogram as input and has a limited
size, again making it suitable to be trained from scratch.

We cut ResNet18 and DualCamNet in order to obtain feature volumes and
then compute a similarity score map between them, via point-wise multiplica-
tion. In particular, we modified the original ResNet18 removing the 4-th block
and the final average pooling, adding instead a 2D convolution at the end of the
network. The feature volumes keep the same spatial relationships of the origi-
nal image and the acoustic image. In fact, these maps are proportional to the
224× 298 RGB image and to the 36× 48 acoustic image.

From HearNet, we cannot get spatial feature maps as explained above in
Subsection 4.1, since the signal is one-dimensional, but only a 128D array after
2 fully connected layers. In order to obtain the same similarity map as above,
we propose to tile audio feature vectors along 2D spatial dimensions, to match
the dimensions of the video feature map. This allows then to multiply the two
maps in a point-wise fashion, as in the case of the acoustic image.

In order to obtain baselines, ResNet18 and DualCamNet can be trained in a
supervised way (Table 2 - top) by adding a simple average pooling layer followed
by a fully connected layer. HearNet also requires to add one fully connected layer
for supervised training, in order to match the number of classes.
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Fig. 4. Proposed distillation method. Left: self-supervised learning of the teacher Du-
alCamNet. Right: The pre-trained teacher network contributes to the self-supervised
learning of the monaural and video networks. Note that setting α = 0 the audio network
is trained without distillation.

4.3 Pretext task

We propose the self-supervised training procedures depicted in Fig. 4: we employ
2 trainable streams, from which 2 feature map volumes are extracted. We obtain
a similarity score map by multiplying element-wise each 12× 16× 128 acoustic
image and video feature maps. For monaural audio, the feature cuboid is ob-
tained by replicating the 128D vector by HearNet in each spatial location. This
is different from both [31,2], as they use a dot product in each spatial location
to obtain a scalar map. Keeping the original depth in the similarity score map
allows to retain more information about the input.

The output of the architecture is one audio-visual feature vector and one
audio vector, either obtained from DualCamNet or from HearNet. The former is
a 128D vector obtained by a second element-wise product between the similarity
score map and the video feature map itself, followed by a sum along the two
spatial dimensions (spatial sum in Figure 4). This corresponds to a weighted
sum, where the weights come from the similarity map. Instead, the 128D audio
feature vector is obtained by a sum along two spatial dimensions of the acoustic
feature map in case of DualCamNet, while no sum is needed in case of Hearnet,
since it outputs a 128D already.

The two feature vectors are normalized and feed a triplet loss [30]:

Ltriplet
XY (xai , y

p
i , y

n
i ) =

N∑
i=1

[||fX(xai )− fY (ypi )||22− ||fX(xai )− fY (yni )||22 +m]+ (1)

where [f(x)]+ represents max(f(x), 0), m is a margin between positive and neg-
ative pairs, and f(xi) are the normalized feature vectors. The triplet loss aims
to separate the positive pairs from the negative ones by a distance margin. This
is obtained by minimizing the distance between an anchor a and a positive, p,
both of which have the same identity, and maximizing the distance between
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the anchor a and a negative n of a different identity. In our case, we want an
audio embedding fX(xai ) to have a small squared distance from video embed-
dings fY (ypi ) from the same clip, and a large one from video embeddings fY (yni )
obtained from a different clip.

It is crucial to select carefully triplets to make the networks learn. In partic-
ular, we exploit a curriculum learning scheme [5]: in the first epochs, we use all
the triplets that contribute to the training (i.e. with a loss greater than zero),
and later on only the hardest triplets: for each anchor, we select the hardest
negative as the one with smallest distance, and the hardest positive as the one
with largest distance from the anchor.

4.4 Knowledge distillation

Distillation is carried out by exploiting a self-supervised pre-trained DualCam-
Net, as depicted in the right part of Fig. 4. To this end, we exploit an additional
triplet loss between the single-audio and the acoustic-image embeddings vectors,
which we name Transfer Loss Ltransfer = Ltriplet

HD , where H stands for HearNet,
D for DualCamNet and Ltriplet is the triplet loss. Such loss tries to transfer
effective embeddings learned with DualCamNet to the monaural audio model.

The total loss is thus the weighted sum of the triplet loss between HearNet
and ResNet18 embeddings and the transfer loss, which is calculated between
(previously trained) DualCamNet and HearNet embeddings vectors:

Ltot = αLtransfer + (1− α)Ltriplet
HR (2)

where 0 ≤ α ≤ 1, H is HearNet, R is ResNet18.
The imitation parameter α measures how much HearNet features will resem-

ble DualCamNet features. Note that in the limit case where α = 0 we fall in the
standard self-supervised case with no knowledge transfer. We consider different
values of the imitation parameter α to assess how much we have to weight the
two losses.

5 Experiments

Classification and cross-modal retrieval are the downstream tasks used to eval-
uate the quality and generalization capability of the features learned with the
proposed approach.

We compare our self-supervised method with supervised distilled audio model
[28] and with L3Net [1]. Features considered for our work and [28] are 128D.

The correspondence accuracy of L3Net on our dataset is 0.8386 ± 0.0035.
We consider both self-supervised audio and video sub networks obtained from
L3Net to extract features as well as audio and video supervised models trained
separately adding after the final 512D feature vectors a fully connected layer with
size equal to number of classes. Both supervised and self-supervised models of
L3Net [1] have features 512D. Training details are in the supplementary material.
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5.1 Cross-modal retrieval

The target of cross-modal retrieval consists in choosing one audio sample and
searching for the corresponding video frames of the same class. The audio sample
comes either in the form of an acoustic image or of a spectrogram. We will
specify whenever needed. Given an audio sample, corresponding audio-visual
embeddings are ranked based on their distance in the common feature space.
Rank K retrieval performance measures if at least one sample of the correct
class falls in the top K neighbours.

Fixing a query audio we can compute audio-visual embeddings for any given
video sample, while we cannot fix the audio-visual embedding, because its value
will be different for different audios. Thus, we perform cross-modal retrieval only
from audio to images and not vice versa.

Results are presented in Table 1 and refer to the test set of the ACIVW
dataset. They clearly show that audio-visual representations learned with acous-
tic images (DualCamNet) are consistently better than those learned with monau-
ral audio alone. Besides, results are good in absolute terms, considering that
random chance on Rank 1 is 10% and that features learned with the pretext
task proposed by [1] are less effective.

Table 1. CMC scores on ACIVW Dataset for k = 1, 2, 5, 10, 30.

Model Rank 1 Rank 2 Rank 5 Rank 10 Rank 30

DualCamNet 33.41±3.65 37.01±3.17 42.97±2.25 48.21±1.80 62.44±1.33
HearNet 28.95±2.15 34.40±3.27 42.43±4.88 48.08±5.77 61.43±4.94
L3 Audio Subnetwork [1] 9.74±0.33 11.91±4.09 24.23±9.02 26.78±8.60 30.14±10.00

5.2 Classification

For this task we use the trained models as feature extractors and classify the
extracted features with a K-Nearest Neighbor (KNN) classifier. We consider both
audio and audio-visual features computed as explained in Subsection 4.3. We
benchmark against the proposed ACIVW dataset as reference and then test the
generalization of features on two additional datasets: Audio-Visually Indicated
Action Dataset (AVIA) [28] and Detection and Classification of Acoustic Scenes
(DCASE - version 2018) [22]. AVIA is a multimodal dataset which provides
synchronized data belonging to 3 modalities: acoustic images, audio and RGB
frames. DCASE 2018 is a renowned audio dataset, containing recordings from
six large European cities, in different locations for each scene class.

ACIVW Dataset. In Table 2 we report, in the top part, the fully supervised
classification baseline accuracies for the single stream architectures described in
Subsection 4.2. The bottom part lists instead the KNN classification accuracies
for the models trained with the proposed self-supervised framework.
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Table 2. Accuracy results for models on ACIVW dataset. Results are averaged over
5 runs. (H): HearNet model, (D): DualCamNet model.

Features Training Test accuracy

L3 Audio Subnetwork [1] supervised 0.6424 ± 0.2857
HearNet supervised 0.8779 ± 0.0145
HearNet w/ transfer [28] supervised 0.8578 ± 0.0198

L3 Vision Subnetwork [1] supervised 0.4647 ± 0.0225
ResNet18 supervised 0.5123 ± 0.0521

DualCamNet supervised 0.8378 ± 0.0187

L3 Audio Subnetwork [1] self-supervised 0.3605 ± 0.0265
HearNet self-supervised w/o transfer 0.7573 ± 0.0278
HearNet self-supervised w/ transfer α = 0.1 0.7697 ± 0.0147
HearNet self-supervised w/ transfer α = 0.3 0.7896 ± 0.0092
HearNet self-supervised w/ transfer α = 0.5 0.7946 ± 0.0137
HearNet self-supervised w/ transfer α = 0.7 0.7810 ± 0.0206
HearNet self-supervised w/ transfer α = 0.9 0.7867 ± 0.0093

L3 Video Subnetwork [1] self-supervised 0.5444 ± 0.0839

Audio-visual (H) self-supervised w/o transfer 0.6670 ± 0.0446
Audio-visual (H) self-supervised w/ transfer α = 0.1 0.7061 ± 0.0496
Audio-visual (H) self-supervised w/ transfer α = 0.3 0.7144 ± 0.0223
Audio-visual (H) self-supervised w/ transfer α = 0.5 0.7125 ± 0.0200
Audio-visual (H) self-supervised w/ transfer α = 0.7 0.7191 ± 0.0285
Audio-visual (H) self-supervised w/ transfer α = 0.9 0.7322 ± 0.0070
Audio-visual (D) self-supervised 0.5837 ± 0.0468

DualCamNet self-supervised 0.7457 ± 0.0292

For supervised models we choose the model with best validation accuracy
and provide its test performance. For self-supervised models we fix a number of
iterations (20 epochs). Averages and standard deviations are computed over 5
independent runs. Results show that the videos in our dataset are quite chal-
lenging to classify. Audio models perform instead much better than video ones.

When training in a self supervised manner, audio models naturally experience
a drop in performance. Such drop is partially recovered when training with the
additional supervision of DualCamNet features. Hearnet w/ transfer for α = 0.5
is indeed boosted by ∼ 4%.

Audio-visual features, although obtained with self-supervision, are better
than visual features obtained with supervision using ResNet18. This is due to
the fact that audio information can help to better discriminate the class. Also in
this case the transfer is beneficial, increasing performance by ∼ 6% for α = 0.9.
This is true also for self-supervised video subnetwork [1], which performs better
than supervised one. This shows that when one modality is difficult to classify,
self-supervision is able to improve accuracy.

Different values of the imitation parameter α ∈ {0, 1; 0, 3; 0, 5; 0, 7; 0, 9} are
investigated. We notice that both audio and audio-visual accuracies are always
improved by the transferring, for all values of α.



Leveraging Acoustic Images 13

Table 3. Accuracy results for models trained on ACIVW dataset and tested on AVIA.
Results are averaged over 5 runs. (H): HearNet model, (D): DualCamNet model.

Features Training Test accuracy

L3 Audio Subnetwork [1] supervised 0.3713 ± 0.0233
HearNet supervised 0.3108 ± 0.0114
HearNet w/ transfer [28] supervised 0.3556 ± 0.0181

L3 Vision Subnetwork [1] supervised 0.0287 ± 0.0013
ResNet18 supervised 0.0263 ± 0.0073

DualCamNet supervised 0.4783 ± 0.0224

L3 Audio Subnetwork [1] self-supervised 0.0571 ± 0.0175
HearNet self-supervised w/o transfer 0.4103 ± 0.0248
HearNet self-supervised w/ transfer α = 0.1 0.4393 ± 0.0097
HearNet self-supervised w/ transfer α = 0.3 0.4749 ± 0.0305
HearNet self-supervised w/ transfer α = 0.5 0.4817 ± 0.0165
HearNet self-supervised w/ transfer α = 0.7 0.4851 ± 0.0214
HearNet self-supervised w/ transfer α = 0.9 0.4592 ± 0.0271

L3 Vision Subnetwork [1] self-supervised 0.3347 ± 0.0638

Audio-visual (H) self-supervised w/o transfer 0.2660 ± 0.0309
Audio-visual (H) self-supervised w/ transfer α = 0.1 0.2759 ± 0.0163
Audio-visual (H) self-supervised w/ transfer α = 0.3 0.3200 ± 0.0204
Audio-visual (H) self-supervised w/ transfer α = 0.5 0.3070 ± 0.0294
Audio-visual (H) self-supervised w/ transfer α = 0.7 0.3091 ± 0.0351
Audio-visual (H) self-supervised w/ transfer α = 0.9 0.3162 ± 0.0310
Audio-visual (D) self-supervised 0.2927 ± 0.0234

DualCamNet self-supervised 0.5132 ± 0.0167

In detail, our models perform better than both supervised and self-supevised
audio and video models of L3net subnets [1]. Our supervised audio network
HearNet does not have an improvement using distillation [28] maybe because
our dataset is much more challenging than the AVIA Dataset presented in [28].
In fact, ACIVW data presents many different scenarios with different noise types
and as stated by [28], the acoustic images distillation works well in cases with
almost no noise.

AVIA Dataset. Features learned on ACIVW are also tested on a public mul-
timodal dataset containing acoustic images, namely Audio-Visually Indicated
Action Dataset (AVIA) [28].

We compare the result of the audio and audio-visual features extracted using
this dataset in Table 3. We have a general drop in accuracy because we are
testing on a different dataset, however, in this case DualCamNet has the best
results, proving better generalization performance than monaural features. The
improvement by the the self-supervision w/ transfer is again confirmed. Different
values of the imitation parameter α ∈ {0, 1; 0, 3; 0, 5; 0, 7; 0, 9} are investigated.
In particular, we notice that α = 0.5 for audio features and α = 0.9 for audio-
visual features are still good values of α. Self-supervised models generalize better
than the supervised trained ones apart from Audio subnetwork [1]. In particular,
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Table 4. Accuracy for audio models tested on DCASE 2018.

Features Supervision Training Dataset Test accuracy

Mesaros et al. [22] supervised DCASE 2018 0.5970 ± 0.0070

L3 Audio Subnetwork [1]
supervised ACVIW

0.3576 ± 0.0127
HearNet w/ transfer [28] 0.2989 ± 0.0106
HearNet 0.3022 ± 0.0088

L3 Audio Subnetwork [1]
self-supervised ACVIW

0.3231 ± 0.0473
HearNet 0.3535 ± 0.0188

HearNet

α = 0.1

ACVIW

0.3653 ± 0.0079
α = 0.3 0.3757 ± 0.0094

self-supervised α = 0.5 0.3737 ± 0.0068
(w/ transfer) α = 0.7 0.3696 ± 0.0098

α = 0.9 0.3638 ± 0.0072

HearNet self-supervised is more general than the one trained with distillation
[28].

DCASE 2018. In Table 4 we report classification accuracies (KNN) for DCASE
2018 using it for testing the generalization and transfer capabilities of the learned
features. In other words, in our setup, DCASE was used for testing only. Specif-
ically, we used the test set (development dataset) for the acoustic scene classi-
fication task for device A [22]. Classification is carried out by running KNN on
both supervised and self-supervised features extracted from models pre-trained
on ACIVW Dataset with supervised and self-supervised training.

We do not use DCASE training data for learning any model. For this reason,
the reported accuracies are below that in [22], which is reported just for reference.

Self-supervised learned representations provide a better accuracy than su-
pervised models, showing that learning from concurrence of two modalities can
lead to better generalization than learning from labels and with supervised dis-
tillation [28]. Transferring is useful to obtain more general features and the best
result is that of α = 0.3. For [1] this does not happen. However, even if the result
of supervised case is better than the self-supervised submodule, it has a lower
accuracy than our audio models self-supervised with acoustic image transfer.

6 Conclusions

In this paper, we have investigated the potential of acoustic images in a novel
self-supervised learning framework and with the aid of a new multimodal dataset,
specifically acquired for this purpose. Evaluating the trained models on classifi-
cation and cross-modal retrieval downstream tasks, we have shown that acoustic
images are a powerful source of self-supervision and their information can be dis-
tilled into monaural audio and audio-visual representation to make them more
robust and versatile. Moreover, features learned with the proposed method can
generalize better to other datasets than representations learned in a supervised
setting.
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