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1 CLEVR Blender

The different simulator parameters optimized for the Clevr experiment and the
underlying distributions are shown in Table 1. The validation set of 30 images is
composed of synthetic images generated with a particular simulator configuration
which involved a particular lighting configuration, quality of images, image size,
location and material of images. This is shown in the right column of the last
row of Fig.1. This configuration is hidden during the simulator training and only
the validation set is available.

Table 1. Distributions over Clevr simulator parameters

Parameter Distribution Range
Number of Samples (Quality) Categorical 2, 128, 512
Number of Bounces (Quality) Bernoulli 8, 128
Image Size Categorical  32x32, 128x128, 256x256
Ambient Light Intensity Gaussian 0 to 100
Back Light Intensity Gaussian 0 to 100
Each Object Location (3 Objects) Gaussian -10 to 10
Each Object Material (3 Objects) Bernoulli Rubber, Metal

The test set and validation set are generated from the same hidden simulator.
The simulator is initialized from a different configuration than the validation
simulator. During training, the simulator learns to generate data which is optimal
for training a neural network for perforimng well on the validation set. Figure
1 shows the evolution of the simulator with training. It can be seen that the
simulator starts from poor lighting, quality and location of objects and improves
itself during training, along with improving the segmentation performance on
the validation set.
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Fig. 1. Evolution of CLEVR simulator during training using AutoSimulate.
Left: rows show the images generated by the simulator at different iterations during
simulator training. It can be seen that the simulator evolves from poor lighting and low
quality (Row 1 and 2) to good lighting and quality (Row 4) and also learns the object
positions, as are in the validation set. Row 4 shows images generated from the final
trained simulator. These images are used to train a semantic segmentation model. Right:
semantic segmentation model output on 3 validation images (Row 4) across simulator
training iterations. Row 3 provides outputs from the final trained segmentation model.

2 Photorealistic Renderer

We briefly describe the rendering technique used to generate photo-realistic
images in the main set of experiments. There are three essential components to
the rendering system. First component is acquiring accurate 3D CAD models
of objects; which involves assigning accurate geometric properties, along with
material, texture and color to the objects. Then, these 3D objects models are
rendered within a realistic scene, which is essential for capturing the context
around these objects. A realistic scene should also have accurate geometric shapes,
background objects, along with accurate materials, texture and lights.

Second component is the proper placement of these objects and camera within
a scene such that the images renderer are plausible. Objects are placed in the
scene such that rigid body properties are not violated, for example, they should
not intersect with each other. A physics engine (Nvidia PhysX) is used to generate
possible object arrangements. A set of camera positions is randomly generated
for each object arrangement.

Finally, in order to generate photorealistic images, accurate simulation of
reflectance and light properties, including shadows, soft shadows, inter-reflections
ete, is necessary. Physically based rendering method, for example Arnold [1], is
then used to generate highly photorealistic images. This system uses ray tracing
which relies on shooting rays through within a scene. The quality of rendered
images depends on the number of rays sampled and the number of bounces of
lights from (diffused and specular) surfaces. A user can control the quality of
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images by specifying the values for these parameters. More details about data
generation with the simulator can be found in the work of Hodan et.al., [2] and
Arnold [1].

Implementation Details For calucation of the inverse hessian vector product
using the Conjugate Gradient (CG) algorithm, we used the fmin ncg function
from python library scipy.optimize . Furthermore, a standard implementation
of Grid Search from Scikit-learn Python library [3] was used to tune the hyper-
parameters for all the baselines and our algorithm, and the best results are
reported for every algorithm. The size of the dataset K generated in each
iteration is tuned over the values 20,50 and 70. The simulator learning rate
« is tuned over the values 0.01,0.1 and 10. For LTS, the number of datasets
generated at each iteration is tuned over the values 5,10,40 and 50. The weight
decay regularization \ of the hessian is tuned over 0.1 and 10. We observed a
standard deviation of around 3% in the Test mAP with this hyper-parameter
tuning.

2.1 More Ablation Studies

We now show another experiments to compare and evaluate the robustness and
performance of different algorithms.

Effect of Network Architecture In this experiment we evaluate the effect of
the network architecture on simulator training for different methods. In particular,
we show results using two networks: Faster-rcnn with Resnet50-fpn backbone
and YOLO with 112 layers in Table 2. We observe that our methods is much
better than all the other baseline methods across different network architectures,
thereby demonstrating the generality of the method.

Table 2. Effect of Network Architecture

Method mAP (Faster-rcnn) mAP (Yolo)
REINFORCE (LTS) 51.8 37.2
Bayesian Optimization 46.0 37.5
Random Search 50.3 36.8
Ours 55.1 45.9

3 Gradient of Expectation for different distributions

We discuss a technique to compute the term ﬁ Es~p,, [f(s)] which is the gradient
of expectation of a function over a distribution, with respect to parameters of

3 https://het.as.utexas.edu/HET /Software/Scipy/generated /scipy.optimize.fmin_ncg.html
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the distribution. For continuous distributions we can directly use REINFORCE
[6], as follows:

g )= E [f(S)%logm(S)]

dip s~py s~py

(1)

Gaussian Distribution For the mean of Gaussian distribution, we have
% log py(z) = X1 (x — 1)), where ¢ is the mean and X is the covariance matrix.
Putting this into Eq. 1 we get:

d -1
0 E )= E [/(5) 57 (s ) ®

For discrete distributions we can derive it similarly [5,4]. Here we give the
derivations for Bernoulli and Categorical distributions which we used in our
experiments.

Bernoulli Distribution Let s take value 1 with probability ¥ and value 0
with probability 1 — v, defined as py(s) = ¥*(1 —¢)1~). The gradient over
expecation term can be computed as:

0 0 0
o SNJEm[f(S)] = %(1 —¥)f(0) + %W(l)
= f(1) = f(0)

3)

Categorical Distribution Let the parameter be 1) = (1, ¢, ..., k) 8.t 1 +
o + ... + Y = 1 where 1; is the probability of seeing element i. Let [s = 4] be 1
if s =14 and 0 otherwise, then:

K
puls =) = o™
'L;(l
E )=l = dif(s)
0 0
500 JE W) = 5l = i (5)
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