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Abstract. Simulation is increasingly being used for generating large
labelled datasets in many machine learning problems. Recent methods
have focused on adjusting simulator parameters with the goal of max-
imising accuracy on a validation task, usually relying on REINFORCE-
like gradient estimators. However these approaches are very expensive
as they treat the entire data generation, model training, and validation
pipeline as a black-box and require multiple costly objective evaluations
at each iteration. We propose an efficient alternative for optimal syn-
thetic data generation, based on a novel differentiable approximation
of the objective. This allows us to optimize the simulator, which may
be non-differentiable, requiring only one objective evaluation at each
iteration with a little overhead. We demonstrate on a state-of-the-art
photorealistic renderer that the proposed method finds the optimal data
distribution faster (up to 50×), with significantly reduced training data
generation and better accuracy on real-world test datasets than previous
methods.

Keywords: synthetic data, training data distribution, simulator, opti-
mization, rendering

1 Introduction

Massive amounts of data needs to be collected and labelled for training neural
networks for tasks such as object detection [36, 15], segmentation [45] and ma-
chine translation [25]. A tantalizing alternative to real data for training neural
networks has been the use of synthetic data, which provides accurate labels for
many computer vision and machine learning tasks such as (dense) optical flow
estimation [6, 39], pose estimation [51, 5, 53, 49, 22], among others [48, 11, 17, 34,
8, 41]. Current paradigm for synthetic data generation involves human experts
manually handcrafting the distributions over simulator parameters [23, 43], or
randomizing the parameters to synthesize large amounts of data using game
engines or photorealistic renderers [6, 39, 41]. However, photorealistic data gen-
eration with these approaches is expensive, needs significant human effort and
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Simulator ModelDtrain Ltrain(θ,ψ) θ̂(ψ) = argminθLtrain(θ,ψ) Lval(θ̂(ψ))

ψ̂ = argminψLval(θ̂(ψ))

Dval

pψ(ζ) hθ
Inner loop (training)

Outer loop (validation)

Fig. 1. Overview of the bilevel optimization setup. A simulator pψ(ζ) is used
to generate a synthetic dataset Dtrain; inner loop: a model hθ is then trained on this
dataset with training loss Ltrain(θ,ψ) to obtain optimal model paramaters θ̂(ψ); a real-
data validation set Dval is used to evaluate the performance of this trained model with
validation loss Lval(θ̂(ψ)), providing a measure of goodness of simulator parameter ψ;
outer loop: ψ is updated until we find optimal simulator parameters ψ̂.

expertise, and can be sub-optimal. This raises the question, has the full potential
of synthetic data really been utilized?

Recent approaches [24, 12, 42, 21] have formulated the setting of simulator
parameters as a learning problem. A few of these methods [24, 12] learn simula-
tor parameters to minimize the distance between distributions of simulated data
and real data. Ruiz et al.[42] proposed to learn the optimal simulator parame-
ters to directly maximise the accuracy of a model on a defined task. However
these approaches [21, 42] are very expensive, as they treat the entire data gener-
ation and model training pipeline (Figure 1, outer loop) as a black-box, and use
policy gradients [52], which require multiple expensive objective evaluations at
each iteration. As a result, learning synthetic data generation with photorealistic
renderers has remained a challenge.

In this work, we propose a fast optimization algorithm for learning synthetic
data generation, which can quickly optimize state-of-the-art photorealistic ren-
derers. We look at the problem of finding optimal simulator parameters as a bi-
level optimization problem (Figure 1) of training (inner) and validation (outer)
iterations, and derive approximations for their corresponding objectives. Our
key contribution lies in proposing a novel differentiable approximation of the
objective, which allows us to optimize the simulator requiring only one objective
evaluation at each iteration, with improved speed and accuracy. We also pro-
pose effective numerical techniques to optimize the approximation, which can
be used to derive terms depending on desired speed-accuracy tradeoff. The pro-
posed method can be used with non-differentiable simulators and handle very
deep neural networks. We demonstrate our method on two renderers, the Clevr
data generator [20] and the state-of-the-art photorealistic renderer Arnold [13].

2 Related Work

Expert Involvement and Random Generation One of the initial success-
ful work on training deep neural networks on synthetic data for a computer
vision problem was done on optical flow estimation, where Dosovitskiy et al.
[6] created a large dataset by randomly generating images of chairs using an
OpenGL pipeline by pasting objects onto randomly selected real-world images.
This strategy has been applied in other problems like object detection, instance
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segmentation and pose estimation [48, 17, 34, 49, 8]. Though this approach is sim-
ple to implement, the foreground objects are always pasted onto out-of-context
background images, thereby requiring careful selection of the background images
to achieve good accuracy as shown by Dvornik et al. [7]. Other issues with this
technique include these images not being realistic, objects not having accurate
shading, and shadows being inconsistent with the background.

Another line of work explores generation of photorealistic images with ob-
jects rendered within complete 3D scenes [38, 39, 19, 41, 11, 50, 14, 55]. Though
this is a well accepted approach for synthetic data generation, it suffers from
several issues. First, given the data generation process is independent of the
neural network training, these approaches synthesize a large set of redundant
training images, as shown in experiments section. This might add a massive re-
dundant burden on the rendering infrastructure. Second, this requires human
expert involvement, e.g., to set the right scene properties, material and texture
of objects, quality of rendering, among several other simulator parameters [19].
This hinders widespread adaptation of synthetic data to different tasks. Finally,
some sub-optimal synthesized data can corrupt the neural network training.

Learning Simulator Parameters In order to resolve these issues, recent re-
search has focused on learning the simulator parameters. The non-differentiability
of the simulators has posed a challenge for optimization. Louppe et al. [24] pro-
posed an adversarial variational optimization technique for learning parameters
of non-differentiable simulators, by minimizing the Jensen–Shannon divergence
between the distribution of the synthetic data and distribution of the real data.
Ganin et al. [12] incorporated a non-differentiable simulator within an adversar-
ial training pipeline for generating realistic synthetic images.

Ruiz et al. [42] focused on optimization of simulator parameters with the
objective of generating data that directly maximizes accuracy on downstream
tasks such as object detection. They treated the entire pipeline of data generation
and neural network training as a black-box, and used classical REINFORCE-
based [52] gradient estimation. However, this approach suffers from scalability
issues. A single objective evaluation involves generating a synthetic dataset,
training a neural network for multiple epochs, and calculating the validation
loss. And this method requires mutiple such expensive objective evaluations for
taking a single step. Thus it has a very slow convergence and is difficult to scale
to photorealistic simulators which have hundreds of parameters. In contrast,
our method AutoSimulate, requires only a single objective evaluation at each
iteration and works well with state-of-the-art photorealistic renderers. Making
an assumption that a probabilistic grammar is available, Kar et al. [21] proposed
to learn to transform the scene graphs within this probabilistic grammar, with
the objective of simulataneously optimizing performance on downstream task
and matching the distribution of synthetic images to real images. They also
use REINFORCE-based [52] gradient estimation for the first objective like [42],
whose limitations were discussed above.
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In bi-level optimization, differentiating through neural network training is a
challenge. [26] proposed to learn an approximation of inner loop using another
network. Concurrent work [54] makes an assumption that the neural network is
trained only for one or few iterations (not epochs), so they can store the compu-
tation graph in memory and back-propagate the derivatives, in a similar spirit
as MAML [9, 1]. In constrast, we proposed a novel differentiable approximation
of the inner loop using a Newton step which can handle many epochs without
memory constraints. We also proposed efficient approximations which can be
used for desired speed-accuracy tradeoff.

3 Problem Formulation

In supervised learning, a training set Dtrain = {z1, ..., zm} of input–output pairs
zi = (xi,yi) ∈ X ×Y is used to learn the parameters θ ∈ Rn of a model hθ that
maps the input domain X to the output codomain Y. This is accomplished by
minimizing the empirical risk 1

m

∑m
i=1 l(zi,θ), where l(z,θ) ∈ R denotes the loss

of model hθ on a data point z.
Our goal is to generate synthetic training data using a simulator such that

the model trained on this data minimizes the empirical risk on some real-data
validation set Dval. The simulator defines a data generating distribution pψ(ζ)
given simulator parameters ψ ∈ Rm, from which we can sample training data
instances ζ ∼ pψ(ζ), where we use ζ to denote simulated data as opposed to

real data z. The objective of finding optimal simulator parameters ψ̂ can then
be formulated as the optimization problem

min
ψ

Lval

(
θ̂(ψ)

)
(1a)

s.t. θ̂(ψ) ∈ arg min
θ
Ltrain(θ,ψ) , (1b)

where Lval

(
θ̂(ψ)

)
=
∑
zi∈Dval

l
(
zi, θ̂(ψ)

)
is the validation loss, Ltrain(θ,ψ) =

Eζ∼pψ
[
l(ζ,θ)

]
is the training loss, θ̂(ψ) denote the optimum of model param-

eters after training on data generated from the simulator parameterised by ψ,
and ψ̂ denote the optimum simulator parameters that minimize Lval. In this
paper we will refer to Equations 1a and 1b as the outer and inner optimization
problems respectively. This formulation is illustrated in Figure 1.

Equations 1a and 1b represent a bi-level optimization problem [4, 10, 2], which
is a special kind of optimization where one problem is nested within another. To
compute the gradient of the objective Lval

(
θ̂(ψ)

)
with respect to ψ, one needs to

propagate derivatives through the training of a model and data generation from a
simulator, which is often impossible due to the simulator being non-differentiable
[24]. Even in the case of a differentiable simulator, backpropagating through en-
tire training sessions is impracticable because it requires keeping a large number
of intermediate variables in memory [27]. One technique to address this challenge
is to treat the entire system as a black-box and use off-the-shelf hyper-parameter
optimization algorithms such as REINFORCE [52], evolutionary algorithms [29]
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or Bayesian optimization [47], which require multiple costly evaluations of the
objective in each iteration. An important distinction from neural network hyper-
parameter optimization is that evaluating the objective Lval

(
θ̂(ψ)

)
at a given

ψ is much more expensive in our setting because it involves the expensive step
of running the simulation for synthetic dataset generation along with neural
network training.

In this paper we propose an efficient technique based on locally approximat-
ing the objective function Lval

(
θ̂(ψ)

)
at a point ψ, together with an effective

numerical procedure to optimize this local model, enabling the efficient tuning
of simulator parameters in state-of-the-art computer vision workflows.

4 AutoSimulate

We will derive differentiable approximations of the outer and inner optimization
problems (Figure 1) using Taylor expansions of the objectives Lval and Ltrain.

Outer Problem Our goal is to find ψ̂, the optimal simulator parameters
which minimise Lval(θ̂(ψ)) in the outer (validation) problem, so we construct a

Taylor expansion of Lval(θ̂(ψ)) around ψt at iteration t as

Lval

(
θ̂(ψt +∆ψ)

)
= Lval

(
θ̂(ψt)

)
+∆ψ

dθ̂(ψt)

dψ

dLval

(
θ̂(ψt)

)
dθ̂(ψt)

+ ...

= Lval

(
θ̂(ψt)

)
+∆θ̂ψ

dLval

(
θ̂(ψt)

)
dθ̂(ψt)

+ ... , (2)

where ∆θ̂ψ = ∆ψ dθ̂(ψt)
dψ ≈ θ̂(ψt + dψ)− θ̂(ψt).

Inner Problem To obtain parameter update ∆θ̂ψ for the inner (training)
problem, which requires retraining on the dataset generated with the new sim-
ulator parameter ψt +∆ψ, we write the loss function Ltrain(θ,ψt +∆ψ) as its

Taylor series approximation around the current θ̂(ψ) as

Ltrain

(
θ̂(ψt) +∆θ,ψt +∆ψ

)
= Ltrain

(
θ̂(ψt),ψt +∆ψ

)
+∆θ>

∂

∂θ
Ltrain

(
θ̂(ψt),ψt +∆ψ

)
+

1

2
∆θ>H

(
θ̂(ψt),ψt +∆ψ

)
∆θ + ... , (3)

where the Hessian H
(
θ̂(ψt),ψt +∆ψ

) def
= ∂2

∂θ2Ltrain

(
θ̂(ψt),ψt +∆ψ

)
∈ Rn×n.

We are interested in our local model in the limit ∆ψ → 0, implying that
our initial point θ̂(ψt) will be in close vicinity to the optimal θ̂(ψt +∆ψ). Thus
we utilize the local convergence of the Newton method [31] and approximate

Ltrain(θ,ψt +∆ψ) by the quadratic portion. Assuming the H
(
θ̂(ψt),ψt +∆ψ

)
is positive definite, and minimizing the quadratic portion with respect to ∆θ,
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we get

∆θ̂ψ ≈ arg min
∆θ

(
∆θ>

∂Ltrain

(
θ̂(ψt),ψt +∆ψ

)
∂θ

+
1

2
∆θ>H

(
θ̂(ψt),ψt +∆ψ

)
∆θ
)

= −H
(
θ̂(ψt),ψt +∆ψ

)−1 ∂Ltrain

(
θ̂(ψt),ψt +∆ψ

)
∂θ

. (4)

Fig. 2. Visualization of proposed differentiable approximation of objective
Lval(θ̂(ψ)) (blue). Red curves show the loss surface Ltrain(θ,ψ) for the current training
data and the loss surface Ltrain(θ,ψ + ∆ψ) for data after a small update ∆ψ in the
simulator parameters. We assume θ̂(ψ + ∆ψ) to be close to θ̂(ψ), and use a single
step of Newton’s method to update θ. This gives us an approximation for updates in
optimal θ̂. We then use these to construct an approximation (black) for updates in
optimal ψ.

Differentiable Approximation Putting this back into Equation 2, and
ignoring higher-order terms in ∆θ, we get the approximation for our objective
as

L̃val

(
θ̂(ψt +∆ψ)

)
= Lval

(
θ̂(ψt)

)
−

∂Ltrain

(
θ̂(ψt),ψt +∆ψ

)
∂θ

>

H
(
θ̂(ψt),ψt +∆ψ

)−1 dLval

(
θ̂(ψt)

)
dθ

, (5)

which is equivalent to writing

L̃val

(
θ̂(ψ)

)
= Lval

(
θ̂(ψt)

)
−
∂Ltrain

(
θ̂(ψt),ψ

)
∂θ

>

H
(
θ̂(ψt),ψ

)−1 dLval

(
θ̂(ψt)

)
dθ

,

(6)
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and is our local approximation of the objective. A visualization of this approxi-
mation is provided in Figure 2.

We propose to optimize our local model using gradient descent, and its deriva-
tive at point ψt (simulator parameter at iteration t) can be written as

∂L̃val

(
θ̂(ψ)

)
∂ψ

∣∣∣∣
ψ=ψt

= − ∂

∂ψ

[
∂Ltrain

(
θ̂(ψt),ψ

)
∂θ

>

H
(
θ̂(ψt),ψ

)−1 dLval

(
θ̂(ψt)

)
dθ

]∣∣∣∣
ψ=ψt

.

(7)

Using the definition of Ltrain

(
θ̂(ψt),ψ

)
and ignoring the higher order deriva-

tive ∂
∂ψH

(
θ̂(ψt),ψ

)
, we get

∂L̃val

(
θ̂(ψ)

)
∂ψ

∣∣∣∣
ψ=ψt

= − ∂

∂ψ
E

ζ∼pψ

[ ∂
∂θ
l
(
ζ, θ̂(ψt)

)]>∣∣∣∣
ψ=ψt

H
(
θ̂(ψt),ψt

)−1 d
dθ
Lval

(
θ̂(ψt)

)
.

(8)

Next we show how to approximate the term ∂
∂ψ Eζ∼pψ

[
∂
∂θ l
(
ζ, θ̂(ψt)

)]
∈

Rm×n which requires backpropagation through the dataset generation.

4.1 Stochastic Simulator (Data Generating Distribution)

ψ s ζ

N

We assume a stochastic simulator that involves a deter-
ministic renderer, which may be non-differentiable, and we
make the stochasticity in the process explicit by separating
the stochastic part of the simulator from the determinis-
tic rendering. Given the deterministic renderer component
ζ = r(s), we would like to find the optimal values of sim-
ulator parameters ψ that parameterize s ∼ qψ(s) repre-
senting the stochastic component, expressing the overall simulator as ζ ∼ pψ(ζ).
Thus we can write

pψ(ζ) =

∫
s∈{s|r(s)=ζ}

qψ(s)ds . (9)

For example, lets say we want to optimize the location of an object in a scene.
Then ψ could be the parameters of a Gaussian distribution qψ(.) that is used
to sample the location of the object in world coordinates, and s denotes the
location of the object sampled as s ∼ qψ(s). Now this sampled location s is
given as input to the renderer to generate an image ζ as ζ = r(s). The overall
simulator, including the stochastic sampling and the deterministic renderer, thus
samples the images ζ as ζ ∼ pψ(ζ), where pψ(ζ) denotes the distribution over
the images, parameterized by ψ. Therefore we get

∂

∂ψ
E

ζ∼pψ

[ ∂
∂θ
l
(
ζ, θ̂(ψt)

)]
=

∂

∂ψ
E

s∼qψ

[ ∂
∂θ
l
(
r(s), θ̂(ψt)

)]
. (10)
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Algorithm 1: AutoSimulate

for number of iterations do
Sample dataset of size K: Dtrain ∼ pψt(ζ)
Fine-tune model for ε epochs on Dtrain

Compute H
(
θ̂(ψt),ψt

)−1 d
dθ
Lval

(
θ̂(ψt)

)
using CG

Compute gradient of expectation as
∑K
k=1

d
dψ

log qψ(sk).
[
∂
∂θ
l
(
r(sk), θ̂(ψt)

)]>
Update simulator by descending the gradient

− ∂
∂ψ Eζ∼pψ

[
∂
∂θ
l
(
ζ, θ̂(ψt)

)]>∣∣∣∣
ψ=ψt

H
(
θ̂(ψt),ψt

)−1 d
dθ
Lval

(
θ̂(ψt)

)
end for

The gradient of expectation term for continuous distributions can be com-
puted using REINFORCE [52] as

∂

∂ψ
E

s∼qψ

[ ∂
∂θ
l
(
r(s), θ̂(ψt)

)]
= E
s∼qψ

[
d

dψ
log qψ(s).

[ ∂
∂θ
l
(
r(s), θ̂(ψt)

)]>]
≈

K∑
k=1

d

dψ
log qψ(sk).

[ ∂
∂θ
l
(
r(sk), θ̂(ψt)

)]>
, (11)

where sk denotes samples drawn from the distribution qψ. This can be derived
similarly for discrete distributions [44, 37], and we provide a derivation in the
supplementary material. Therefore we can write the update rule as

ψt+1 ← ψt + α
∂

∂ψ
E

ζ∼pψ

[ ∂
∂θ
l
(
ζ, θ̂(ψt)

)]>∣∣∣∣
ψ=ψt

H
(
θ̂(ψt),ψt

)−1 d
dθ
Lval

(
θ̂(ψt)

)
.

(12)

It can be seen that we have transformed our original bi-level objective in
Equation 1a, into iteratively creating and minimizing a local model L̃val(θ̂

(
ψt +

∆ψ)
)
. An overview of the method can be found in algorithm 1.

4.2 Efficient Numerical Computation

The benefit of the proposed approximation is that it enables us to use techniques
from unconstrained optimization. The update rule in Equation 12 requires an
inverse Hessian computation at each iteration, which is common in second-order
optimization. We now discuss an efficient strategy for optimizing our model.

Regularization for Hessian The first challenge is that the Hessian might
have negative eigenvalues. Thus the inverse of the Hessian may not exist. We
regularize the Hessian using the Levenberg method [30] and use H+λI, where λ
is the regularization constant and I denotes the identity matrix. This is common
in second-order optimization of Neural Networks [3, 16, 28].

Inverse Hessian–vector product computation Secondly, to compute

the update term in Equation 12, we split it as follows: we first compute vψt
def
=
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H−1
θ̂(ψt)

gval and then compute ∂
∂ψ L̃val

(
θ̂(ψ)

)∣∣∣∣
ψ=ψt

= −vψt .∇ψ gtrain, where

gval
def
= d

dθLval

(
θ̂(ψt)

)
and gtrain

def
= d

dθLtrain

(
θ̂(ψt),ψ

)
.

The inverse Hessian vector productH−1g is computed by using the conjugate
gradient method [46] to solve minv{ 12v

>Hv−g>v}. This is common in second-
order optimization. Thus the update term in Equation 12 can be obtained as

vψt ≡ arg min
v
Q(v)

def
= {1

2
v>Hθ̂(ψt)

v − g>valv} , (13a)

ψt+1 ← ψt + α vψt .∇ψgtrain . (13b)

The CG approach only requires the evaluation of Hθ̂v. Using automatic differ-
entiation, Hessian-vector product requires only one forward and backward pass,
same as a gradient. In practise, a good approximation for the inverse hessian
vector product can be obtained with few iterations.

Approximations for ∆θ̂ψ We proposed a novel approximation for the solu-
tion of the inner problem. To further reduce the compute overhead, we propose
approximations for ∆θ̂ψ. Table 1 shows some other alternative approximations
for the inner problem, which can be obtained by using a linear approximation
for the inner problem or using an approximate quadratic approximation. Us-
ing automatic differentiation, Hessian-vector product requires only one forward
and backward pass, same as a gradient. Another baseline we try is a constant
approximation for the inner problem where the method does not use the real
validation set at all and just finds data which gives minimum model loss.

Table 1. Proposed approximations for ∆θ̂ψ.

Approximation (∆θ̂ψ) Derivative Term ( ∂
∂ψ
L̃val(θ̂(ψ)))

Quadratic −H(θ̂(ψt),ψ)−1 ∂
∂θ
Ltr.(θ̂(ψt),ψ) − ∂

∂ψ Eζ∼pψ
[ ∂
∂θ
l(ζ, θ̂(ψt))]

>
∣∣∣∣
ψ=ψt

H(θ̂(ψt),ψt)
−1 d

dθ
Lval(θ̂(ψt))

Approx.
Quadratic

H(θ̂(ψt),ψ) ∂
∂θ
Ltr.(θ̂(ψt),ψ) ∂

∂ψ Eζ∼pψ
[ ∂
∂θ
l(ζ, θ̂(ψt))]

>
∣∣∣∣
ψ=ψt

H(θ̂(ψt),ψt)
d
dθ
Lval(θ̂(ψt))

Linear − ∂
∂θ
Ltr.(θ̂(ψt),ψ) − ∂

∂ψ Eζ∼pψ
[ ∂
∂θ
l(ζ, θ̂(ψt))]

>
∣∣∣∣
ψ=ψt

d
dθ
Lval(θ̂(ψt))

No Val 1 − ∂
∂ψ Eζ∼pψ

[ ∂
∂θ
l(ζ, θ̂(ψt))]

>
∣∣∣∣
ψ=ψt

5 Experiments

In this section, we demonstrate the effectiveness of the proposed method in learn-
ing simulator parameters in two different scenarios. First we evaluate our method
on a simulator with the goal of performing a per-pixel semantic segmentation
task. Second, we also conduct experiments with physically based rendering for
solving object detection task on real world data. In supplementary material we
provide more details about the data generation process from a simulator. In
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our experiments, we have used two physically based simulators: Blender-based
CLEVR and the Arnold renderer.

Baselines In all our experiments, we compare our proposed method for
learning simulator parameters against three state-of-the-art baseline algorithms.
The main baseline is “learning to simulate” (LTS) [42] which uses the REIN-
FORCE gradient estimator. As the code for this is not public, we implemented
it. Please note that Meta-sim [21] also uses REINFORCE. In addition, we also
compare against the two most established hyper-parameter optimization algo-
rithms in machine learning; for Bayesian optimization we use the opensource
Python package bayesian-optimization [32] and for random search we used
the Scikit-learn Python library [33]. Please note that prior work [42, 21, 54] did
not compare against these two approaches and in our results we found that
out-of-the-box BO and Random search outperform REINFORCE [42].

5.1 CLEVR Blender

In this experiment, we use the CLEVR simulator [20] which generates physically
based images. The main task is semantic segmentation of the three classes present
in the CLEVR benchmark, namely, Sphere, Cube and Cylinder. The images are
generated using the CLEVR dataset generator. We optimize multiple CLEVR
rendering parameters including the intensity of ambient light, back light, number
of samples, number of bounces of light, image size, location of the objects in the
scene, and materials of objects. The validation set is composed of synthetic
images generated with a particular simulator configuration shown in Figure 5.

Task Network For the task network, we use a UNet [40] with eight con-
volutional layers. UNet is very common for segmentation and we have used an
openly available Pytorch implementation3 of UNet. The performance is mea-
sured in terms of mean IoU (intersection over union).

Results Quantitative results are shown in Table 2. BO and LTS methods to
learn simulator parameters achieve similar test accuracy to ours. However, both
these methods generate significantly more images to reach a similar accuracy.
Essentially, to reach to the same level of test accuracy, the proposed approach
requires 2.5× and 5× less data than BO and LTS methods respectively. This
translates into saving time and resources required for the data generation and
CNN training steps. Figure 5 shows some qualitative examples for this task.

Table 2. Segmentation on Clevr. Comparison of time, number of images, and test
accuracy achieved by different methods.

Method Time Images Test mIoU

REINFORCE (LTS) 3h2m 3,750 61.0
Random search 2h38m 2,090 60.8
BO 43m 960 62.9
AutoSimulate 53m 390 62.9

3 https://github.com/jvanvugt/pytorch-unet
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5.2 Photorealistic Renderer Arnold

We next evaluate the performance of our proposed method on real-world data.
For this, we use LineMod-Occluded (LM-O) dataset [18] for object detection
task that consists of 3D models of objects. The dataset consists of eight object
classes that includes metallic, non-Lambertian objects, e.g., metallic cans. The
data has recently been used for benchmarking object detection problem [19]. We
use the same test split for evaluating the performance of our method. Further,
we use the same simulator as Hodan et al. [19], based on Arnold [13], to generate
photo-realistic synthetic data for training an object detector model. Note that
Hodan et al. [19] heavily relied on human expert knowledge to correctly decide
the distributions for different simulator parameters. In comparison, we show
how our approach can be used to instead learn the optimal distribution over the
simulator parameters without sacrificing accuracy.

In this experiment, we are given three scenes and nine locations within each
scene. These locations signify the locations within the scene where objects can be
placed. They can be arbitrarily chosen or can be selected by a human. Further,
there are two rendering quality settings (high and low). The task is to optimize
the categorical distribution for finding the fraction of data to be generated from
each of these locations from different scenes under the two quality settings. Thus,
the problem requires optimising 54 simulator parameters. Some of the images
generated during simulator training have been shown in Figure 3.

Fig. 3. Synthetic images generated with Arnold renderer used for training.

Task Network For this task we use Yolo [35], which is an established method
for object detection and the code is freely available and easy to use4. We use Yolo-
spp which has 112 layers with default parameter setting. The object detection
performance is measured in terms of mean average precision (mAP@0.50).

Results Quantitative results are provided in Table 3 where we compare the
presented method against the baselines. We evaluate these methods on three

4 https://github.com/ultralytics/yolov3
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Table 3. Object Detection. Comparison of methods. We run each method for a
1,000 epochs and report: Val. mAP : maximum validation mAP, Images and Time:
number of images generated and time spent to reach maximum validation mAP, Test
mAP : test mAP of the result.

Method Val. mAP Images Time(s) Test mAP

REINFORCE (LTS) 40.2 86,150 114,360 37.2
Bayesian Optimization 39.3 9,200 83,225 37.5
Random Search 40.3 34,300 134,318 37.0
AutoSimulate 37.1 8,950 23,193 36.1
AutoSimulate(Approx Quad) 40.1 2,950 2,321 37.4
AutoSimulate (Linear) 41.4 17,850 30,477 45.9

different criteria: mAP accuracy achieved on the object detection test set, total
images generated during training of the simulator, and total time taken to com-
plete simulator training. AutoSimulate provides significant benefit over the base-
line methods on all the criteria. Our method, AutoSimulate (Linear), achieves
a remarkable improvement of almost 8 percent in mAP on test set. Further, it
requires much lesser data (Figure 6) generation in comparison to baseline meth-
ods, and takes almost 2.5–4× less time to train simulator parameters compared
to all the baselines including LTS, BO and random search. Our AutoSimulate
(Approx Quad) is almost 35–60× faster than the baselines while also achieving
the same mAP accuracy. This shows the effectiviness of the proposed method
for learning simulator parameters. In Figure 4, we show qualitative examples of
object detections in real-world images from the LM-O dataset, using a neural
network trained on synthetic images generated by Arnold renderer optimized
using AutoSimulate.

Fig. 4. Sample detections on real images from LM-O dataset, using a network trained
on synthetic images generated by Arnold renderer, which is optimized with AutoSim-
ulate using real-world images.

In supplementary material, we also show results on training simulator along
with Faster-rcnn [36] another popular object detection model.
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Fig. 5. Images Rendered with the
Clevr Simulator. Top: samples from
validation set. Bottom: images rendered
during the simulator training, showing
variation in the quality of images, light-
ing in the scene, and location of objects.
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Fig. 6. Comparison of the number of syn-
thetic images required during training us-
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5.3 Additional Studies

Approximations for θ In this ablation, we analyse the different possible ap-
proximations for ∆θ̂. The quantitative results are provided in Table 4. We ob-
serve that linear approximation of ∆θ̂ achieves the best test accuracy (mAP).
Further, our Approximate Quadratic takes the least time to converge and re-
quires the least amount of data generation. Thereby giving the user freedom to
select the approximation based on their speed–accuracy requirements.

Table 4. Effect of Approximations

Method Test mAP Time(s) Images

Exact Quadratic (Ours) 36.1 2,3193 8,950
Approximate Quadratic (Ours) 37.4 2,321 2,950
Linear (Ours) 45.9 30,477 1,7850
No Validation 29.3 5,539 6,400

Effect of Freezing Layers It is a common practise to train on synthetic
data with the initial layers of the network frozen and trained on real data.
For this ablation, we use networks pretrained on COCO dataset. The effect of
freezing different numbers of layers are shown in Table 5. In particular, we show
the effect of freezing 0, 98 and 104 layers out of the total 112 layers. We observe
that freezing no layers achieves better accuracy than freezing layers of the CNN
model. However, it leads to higher convergence time. The faster convergence of
frozen layers can be attributed to fast Hessian approximation computation.

Generelization and Effect of Network Size In this ablation, we study
whether a simulator trained on a shallow network generalizes to a deeper net-
work. We first examine the effect of network depth on simulator training. In
particular, we show results of using two networks: YOLO-spp with 112 layers
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Table 5. Effect of Freezing Layers

0 frozen layers 98 frozen layers 104 frozen layers

Method mAP Time(s) Images mAP Time(s) Images mAP Time(s) Images

REINFORCE (LTS) 37.2 114,360 86,150 33.0 114,360 86,150 31.9 145,193 104,600
Bayesian Optimization 37.5 83,225 9,225 31.7 13,940 3,550 31.7 30,538 6,050
Random Search 36.8 134,137 34,300 30.2 8,913 3,500 28.9 73,411 21,650
Ours 45.9 30,477 17,850 37.1 2,321 2,950 35.8 958 1,000

and YOLO-tiny with 22 layers in Table 6. Our approach on shallow network
takes almost 7×, 15×, 135× less time to converge than LTS, random search
and BO methods respectively. On the other hand, our method on deep network
takes 4×, 2.5× and 4× less time than the three baseline methods. This highlights
that the relative improvement of our method with the shallow network is much
better than the deeper network. Further, in the supplementary material we also
show the generalization of simulator parameters trained using shallow network
on generating data for training deeper network. It gives users freedom to select
size of network according to resources available for training the simulator.

Table 6. Effect of Network Size

Yolo-spp Yolo-Tiny

Method mAP Time(s) Images mAP Time(s) Images

REINFORCE (LTS) 37.2 114,360 86,150 24.7 3,475 11,550
Bayesian Optimization 37.5 83,225 9,225 19.5 65,760 35,700
Random Search 36.8 134,137 34,300 20.6 7,319 11,620
Ours 45.9 30,477 17,850 21.2 484 280

6 Conclusion

Recent methods optimize simulator parameters with the objective of maximis-
ing accuracy on a downstream task. However these methods are computationally
very expensive which has hindered the widespread use of simulator optimization
for generating optimal training data. In this work, we propose an efficient al-
gorithm for optimally generating synthetic data, based on a novel differentiable
approximation of the objective. We demonstrate the effectiveness of our approach
by optimising state-of-the-art photorealistic renderers using a real-world valida-
tion dataset, where our method significantly outperforms previous methods.
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