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Abstract. Deep neural networks with a massive number of layers have
made a remarkable breakthrough on single image super-resolution (SR),
but sacrifice computation complexity and memory storage. To address
this problem, we focus on the lightweight models for fast and accurate
image SR. Due to the frequent use of residual block (RB) in SR models,
we pursue an economical structure to adaptively combine RBs. Draw-
ing lessons from lattice filter bank, we design the lattice block (LB) in
which two butterfly structures are applied to combine two RBs. LB has
the potential of various linear combinations of two RBs. Each case of
LB depends on the combination coefficients which are determined by
the attention mechanism. LB favors the lightweight SR model with the
reduction of about half amount of the parameters while keeping the
similar SR performance. Moreover, we propose a lightweight SR model,
LatticeNet, which uses series connection of LBs and the backward fea-
ture fusion. Extensive experiments demonstrate that our proposal can
achieve superior accuracy on four available benchmark datasets against
other state-of-the-art methods, while maintaining relatively low compu-
tation and memory requirements.

Keywords: Super-resolution, Lattice Block, LatticeNet, Lightweight,
Attention

1 Introduction

Single image super-resolution (SISR) pursues to recover a high-resolution (HR)
image from its degraded low-resolution (LR) counterpart. The arise of convolu-
tional neural networks, accompanying with the residual learning [12], have paved
the way for the development of SISR. With the massive number of stacked resid-
ual blocks (RBs), the existing deep SR models [21, 26, 36] achieve great break-
through in accuracy. However, they cannot be easily utilized to real applications
for the high computational complexity and memory storage.
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Fig. 1. Parameters and accuracy trade-off with the SOTA lightweight methods on
Urban100 for 3× SR. LatticeNet achieves superior performance with moderate size

To reduce model parameters, most existing works still focus on the architec-
ture design, such as pyramid network [20], the recursive operation with weight
sharing [2, 5], channel grouping [17, 16] and neural architecture search [6]. As we
know, RB as a basic unit is often utilized in many SR methods. Therefore, we
aim to explore how to make a lightweight model in the view of RBs.

Inspired by the lattice filter bank [23] which is the physical realization of
Fast Fourier Transformation with the butterfly structure, we design the lattice
block (LB) with two butterfly structures, each of which accompanies with a RB.
LB is an economical structure with the potential of various linear combination
patterns of two RBs, which can help to expand representation space for
achieving a more powerful network. The series connection of two RBs is
only a special case of LB. Moreover, in order to obtain the appropriate combi-
nation of RBs for SR, the connection weights of pair-wise RBs in LB, named
combination coefficients, are learned with the attention mechanism for informa-
tion reweighting rather than from scratch.

Based on LB, we build a lightweight SR network named LatticeNet. Com-
pared with the recursive operation [5] and channel grouping [16], LB paves a
new way to a better architectural design of RB combination. Besides, a feature
fusion module is used to integrate multiple hierarchical features from different
receptive fields in a backward concatenation strategy, which helps to mine fea-
ture correlations of intermediate layers. Unlike the latest work IMDN [16], which
uses channel split similar to DenseNet for feature learning, LB is a more general
unit and can be used in the previous SR models to replace RBs, which leads to a
lightweight SR model. LatticeNet is superior to the state-of-the-art lightweight
SR models as shown in Fig. 1. To summarize, the main contributions are:

– The lattice block (LB) is elaborately designed based on the lattice filter
bank with two butterfly structure. With the help of this structure, the net-
work representation capability can be significantly expanded through diverse
combinational patterns of residual blocks (RBs).

– LB is adaptively combined by the learnable combination coefficients of the
RBs with the attention mechanism, which upweights the important channels
of feature maps to obtain the better SR performance.
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– LB favors lightweight model design. Based on the novel block, we build a
lightweight SR network dubbed LatticeNet with the backward fusion strat-
egy for extracting hierarchical contextual information.

– LB leads to the reduction of parameters by about half in the baseline SR
models while keeping the similar SR performance if RBs are replaced by
LBs. LatticeNet achieves the superior performance on several SR benchmark
datasets against the state-of-the-art methods while maintaining relatively
lower model size and computational complexity.

2 Related Work

2.1 Deep SR models

Numerous deep SR models have been proposed and achieved promising perfor-
mance. SRCNN [8] is the preliminary work for applying a three-layer convolu-
tional neural network to the SR task. VDSR [18] and MemNet [31] employ skip
connections for learning the residual information. RCAN [36] proposes a deep
residual network for SR with the residual-in-residual structure embedded with
the channel-wise attention mechanism. SAN [7] proposes a second-order atten-
tion SR network for the purpose of powerful feature expression and correlation
learning. SRFBN [25] proposes a feedback mechanism to address the feedback
connections and generate effective high-level feature representations. CFSNet
[32] adaptively learns the coupling coefficients from different layers and feature
channels for finer controlling of the recovered image. EBRN [34] proposes an
incremental recovering process for texture SR. Although these deep SR mod-
els can make significant performance quantitatively and qualitatively, they are
highly cost in memory storage and computational complexity.

2.2 Lightweight SR models

Lightweight models have attracted widespread attention for saving computing
resources. They can be approximately divided into three classes: the architec-
tural design related methods [30, 17], the knowledge distillation based methods
[11], and the neural architecture search based methods [6]. The first kind of
lightweight SR methods mainly focus on recursive operation and channel split-
ting. DRCN [19] first applies the recursive neural network to SR. DRRN [30]
adopts a deeper network with the recursive operation. CARN [2] utilizes a recur-
sive cascading mechanism for learning multi-level feature representations. BSRN
[5] employs a block state-based recursive network and performs well in quality
measures and speed. IDN [17] utilizes group convolution and combines the lo-
cal long and short-path features effectively. IMDN [16] introduces information
multi-distillation blocks to enlarge receptive field for extracting hierarchical fea-
tures. Recently, knowledge distillation is used to learn a lightweight student SR
network from a deep and powerful teacher network in [11]. Besides, FALSR [6]
applies neural architecture search to SR and performs excellently. Although the
researches of lightweight SR models have made great progress, it is still in the
primary stage and more discussions are required.
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2.3 Attention mechanism

Nowadays, the attention mechanism emerges in numerous deep neural networks.
SENet [14] firstly proposes a lightweight module to treat channel-wise features
differently according to the respective weight responses. The attention module
is introduced for low-level image restoration in [36, 24]. It has also been im-
plemented on many other tasks. DANet [10] introduces two parallel attention
modules to model the semantic interdependencies in spatial and channel dimen-
sions respectively for scene segmentation. CBAM [33] also infers attention maps
along two separate dimensions including channel and spatial. Due to the effec-
tiveness of attention models, we also embed the attention mechanism into the
lattice block to combine the RBs adaptively.

3 Proposed Method

In this section, we first present our lattice block based on the lattice filter. The
lattice block includes two components: the topological structure and the connec-
tion weights. The former is a butterfly structure, and the latter is computed by
using the attention mechanism. Then, we describe the overall network architec-
ture. Next, the loss function is defined to optimize the model. Finally, we discuss
the differences between the proposed method and its related works.

3.1 From lattice filter to lattice block

Suppose there are two signals x and y, the linear combination O between them
has the following types: 1) O = ax + y; 2) O = x + by; 3) O = ax + by, where a,
b denote different weights. Generally, the three formulations are equivalent. The
first two types are similar to the form of the identity mapping residual learning
[13]. Therefore, we consider to employ such combination.

Lattice filter. The structure of lattice filter is a variant of the decimation-
in-time butterfly operation of FFT, which decomposes the input signal to multi-
order representations. Fig. 2 (a) shows the basic unit of the standard lattice
structure for a 2-channel filter bank, and the relationship between the input and
output is formalized in Eq. (1) and Eq. (2). Here, z represents the variable of the
z-transformation. z−1 corresponds to the delay of one unit of the signal in the
time domain. The high-order components Pi(z) and Qi(z) can be synthesized
from low-order inputs Pi−1(z) and Qi−1(z) by a crossed way. ai denotes the
coefficient which defines the combination between two components. It can achieve
high-speed parallel processing of FFT for the modular structure [23].

Pi(z) = Pi−1(z) + aiz
−1Qi−1(z), (1)

Qi(z) = aiPi−1(z) + z−1Qi−1(z). (2)

Lattice block. Inspired by the lattice filter bank, we design the lattice
block (LB) which contains two such butterfly structures with a RB per butterfly
structure, as shown in Fig. 2 (b). The butterfly structure favors multiple combi-
nation patterns of RBs. Thus, LB is an economical structure with the potential
of various combinations of two RBs. In detail, a collection of features maps X
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Fig. 2. (a) The basic unit of a standard lattice structure for a 2-channel filter bank.
(b) The structure of proposed lattice block

is fed into in the lower branch which contains three convolutional layers with a
Leaky Rectified Linear Unit (LReLU) activation function per layer. The nonlin-
ear function implicitly induced by all these operators is denoted as H(·). Then,
the first combination between X and H(X ) can be formulated as

Pi−1(X ) = X +Ai−1H(X ), (3)

Qi−1(X ) = Bi−1X +H(X ), (4)

where Ai−1 and Bi−1 are two vectors of combination coefficients, which are
adaptively computed according to the responses of features (i.e., H(X ), X )
for information reweighting. Considering a convolutional layer contains multi-
ple channels, each channel can be viewed as a signal. Therefore, the combination
coefficients Ai−1 and Bi−1 are vectors, whose length is equal to the number of
feature maps.

Next, Pi−1(X ) is fed into in the upper branch to go through the same con-
volutional structure as H(·) defined by G(·). Then, the second combination of
Pi(X ) and Qi(X ) can be formulated as

Pi(X ) = G(Pi−1(X )) +AiQi−1(X ), (5)

Qi(X ) = BiG(Pi−1(X )) +Qi−1(X ). (6)

where Ai and Bi are also the combination coefficients corresponding to Qi−1(X )
and G(Pi−1(X )). After that, Pi(X ) and Qi(X ) are concatenated in channels and
followed by a 1× 1 convolution for channel alignment.

Potential combinations in LB. Here, we mainly analyse the multiple
combinations of RBs in LB. Given input feature maps X , the output Y before
the 1× 1 convolution of LB is denoted as

Y = concat(Ai(H(X ) + Bi−1X ) + G(X + Ai−1H(X )),

H(X ) + Bi−1X + Bi(G(X + Ai−1H(X )))).
(7)

In a unrolled view, an LB contains the potential of multiple combination
patterns corresponding to different combination coefficients. Note that 1 and
0 denote the vectors whose elements are 1 and 0, respectively. Assuming the
following special cases:

(1) Ai−1 = Bi−1 = Ai = Bi = 1. Pi−1 = Qi−1 = X + H(X ), Pi = Qi =
Pi−1 +G(Pi−1). The two branches are identical, so that the LB can be simplified
to series connection of two RBs as shown in Fig. 3 (a).
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Fig. 3. Examples of various combination patterns of an LB, where the blue block
denotes a RB. (a) Two sequential RBs. (b) Two parallel RBs followed by a RB. (c) A
RB followed by two parallel RBs. (d) Two parallel RBs followed by two parallel RBs

(2) Ai−1 6= Bi−1,Ai = Bi = 1. Pi−1 = X + Ai−1H(X ), Qi−1 = H(X ) +
Bi−1X , and Pi−1 is not equal to Qi−1. Pi = G(Pi−1) + Qi−1, Qi = Qi−1 +
G(Pi−1). Note that Pi is equal to Qi. As shown in Fig. 3 (b), the LB is degraded
to two parallel scaling RBs with weights sharing followed by a RB.

(3) Ai−1 = Bi−1 = 1,Ai 6= Bi. Pi−1 = Qi−1 = X+H(X ), Pi = G(Pi−1)+
AiQi−1, Qi = Qi−1 + BiG(Pi−1). Note that Pi is not equal to Qi. As shown in
Fig. 3 (c), LB is degraded to a RB followed by two parallel scaling RBs with
weights sharing.

(4) Ai−1 6= Bi−1,Ai 6= Bi. Pi−1 6= Qi−1, Pi 6= Qi. As shown in Fig. 3 (d),
the LB is equivalent to two parallel scaling RBs with weights sharing followed
by two parallel scaling RBs with weights sharing.

There still exist other combination patterns. For example, when all the coef-
ficients are equal to 0, the LB is equivalent to two parallel stacks of convolution
layers. These special cases can be approximately achieved by normalized coeffi-
cients. Therefore, the proposed LB can be viewed as diverse combination pat-
terns of RBs to expand the representation space with the learnable combination
coefficients. The diverse structures of LB favor lightweight model design.

Combination coefficient learning. The vectors Ai and Bi of combination
coefficients actually play the role of the connection weights in LB, as shown in
Fig. 2 (b). As mentioned above, the special vectors of combination coefficients are
related to the special cases of LB in the unrolled view. Rather than brute-force
searching all the potential structures in LB, we adopt the attention mechanism
to compute the combination coefficients. Inspired by the success of SENet [14]
and IMDN [16], we utilize two statistics to compute the combination coefficients:
the mean and the standard deviation of a feature map.

As Fig. 4 shows, given a group of feature maps, in the upper branch, we
get the mean value of each feature map by global average pooling, and in the
lower branch, we compute the standard deviation of each feature map. After
that, the statistic vector in each branch is passed to two 1×1 convolution layers,
each of which is followed by the ReLU activation layer and Sigmoid activation
layer, respectively. Finally, the output vectors of two branches are averaged as
the combination coefficients.
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Fig. 4. The combination coefficient learning. Mean and standard deviation of each
channel are used to describe the statistics of input features

3.2 Network architecture

Based on the lattice block, we propose a lightweight SR network dubbed Lat-
ticeNet, which contains four components: the shallow feature extraction, multiple
cascaded lattice blocks (LB), the backward fusion module (BFM), and the up-
sampling module as shown in Fig 5. Here, the input LR images and the output
SR images are denoted as X and Y , respectively.

Firstly, we obtain the shallow features F0 by applying two cascaded 3 × 3
convolutional layers without activation to the LR input X:

F0 = R0(X), (8)

where R0(·) denotes the shallow convolution operation.
Several LBs are followed for deep feature interaction and mapping, which

can be formulated as

Fk = Rk(Fk−1), k = 1, . . . ,M, (9)

where Rk(·) indicates mapping function of the k-th LB, Fk−1 represents the
features from the previous adjacent LB, and M is the total number of LBs.

BFM is used to integrate features from all LBs for extracting hierarchical
frequency information:

Ff = Rf (F1, F2, ..., FM ), (10)

where Rf (·), Ff are the backward feature fusion function and the fused fea-
tures, respectively. Finally, the upsampling layer with sub-pixel convolution [28]
is utilized for generating the SR image Y :

Y = Rup(Ff + F0), (11)

where Rup(·) denotes the upsampling function.

3.3 Backward fusion module

The hierarchical information is very important for SR. Thus, we fuse features
from multiple layers to obtain more contextual information. In this paper, we
adopt a backward sequential concatenation strategy for feature fusion of different
receptive fields like [29]. The core operation of our feature fusion module is the
1× 1 convolution followed by the ReLU activation function (omitted in Fig. 5)
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Fig. 5. The overall network architecture of the proposed LatticeNet

for reducing feature dimension by half. Here, we denote the output of the i-th
LB as Fi. As shown in Fig. 5, there are four LBs. The features of each LB are
firstly convolved by 1 × 1 kernel which results in dimension reduction by half.
Let Fi (i = 1, 2, 3, 4) denote the obtained features with the index increasing from
the left to right in Fig. 5. The fusion operation is formulated as

Hi =

{
Fi, i = 4,

Conv(Concat(Fi, Hi+1)), i = 3, 2, 1
(12)

where Concat(Fi, Hi+1) denotes the operation that concatenates Fi and Hi+1

and Conv() denotes 1 × 1 convolution. In detail, the last two adjacent groups
of feature maps Fi and Fi−1 are concatenated and then convolved with 1 × 1
kernel. After that, the obtained feature group Hi is concatenated with Fi−1,
which follows a 1×1 convolution, and so forth. The final fused features H1 adding
the shallow features F0 are propagated to the upsampling layer to generate SR
images. By such a backward sequential concatenation way, the feature fusion
module can integrate the features from all the LBs, which helps to extract more
hierarchical contextual information.

3.4 Loss function

Mean Absolute Error (MAE) and Mean Squared Error (MSE) loss are the most
frequently used loss functions for low-level image restoration tasks. Here, we only
adopt MAE loss for measuring the differences between the SR images and the
ground truth. Specifically, the loss function is

L =
1

N

N∑
i=1

∥∥∥xgt
i −R(xlr

i )
∥∥∥
1
, (13)

where xlri , xgti denote the i-th LR patch and the corresponding ground truth. N
is the total number of training samples. R(·) represents the output of LatticeNet.

3.5 Discussions

In this section, we discuss the differences between the proposed model and the
related works, e.g., SRResNet [22] and RDN [37].
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LatticeNet vs. Residual Network. Residual blocks are popularly used in
for image restoration. SRResNet [22] and RCAN are two typical residual models
for SISR. The former adopts cascaded RBs as feature mapping and the later
proposes a residual-in-residual structure with channel attention. In LatticeNet,
the structure of two cascaded RBs is just a special case of LB. The proposed
block can represent more diverse structure patterns and can be embedded in any
SR networks with RBs as basic block.

LatticeNet vs. RDN. In RDN [37], the feature fusion adopts 1× 1 convo-
lution for concatenating previous features directly. In LatticeNet, BFM is used
to combine those features by gradual concatenation approach.

The proposed lattice structure is not just another kind of residual and dense
connection. The insight behind it is a kind of network architecture
search for finding reasonable combinations of RBs to make a lightweight
SR model. Rather than exhausted search, LB is a butterfly structure borrowed
from signal processing and never investigated in SR before.

4 Experiments

4.1 Datasets

The model is trained with a high-quality dataset DIV2K [1], which is widely used
for image SR task. It includes 800 training images and 100 validation images with
rich textures. The LR images are obtained in the same way as [2, 36]. Besides,
we evaluate our model on four public SR benchmark datasets: Set5 [4], Set14
[35], B100 [3], and Urban100 [15].

4.2 Implementation details

During training, 48 × 48 RGB image patches are input to the network. The
training data is augmented by random flipping and rotation. We use Adam
optimizer with β1 = 0.9, β2 = 0.999 to train the model. The mini-batch size is
16. The learning rate is initialized as 2e− 4 and reduced by half per 200 epochs
for 1000 epochs totally. The kernel size of all convolutional layers is set to 3× 3
except for 1 × 1 convolutional layer. The number of convolutional kernels for
each non-linear function in the LB is set to 48, 48 and 64, respectively. We use
PyTorch to implement our model with a GTX 1080 GPU. It takes about one
day for training LatticeNet.

We use objective criteria, i.e., peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM) to evaluate our model performance. The two metrics are
both calculated on the Y channel of the YCbCr space as adopted in the previous
work [36]. Besides, we use Mult-Adds to evaluate the computational complexity
of a model, which denotes the number of composite multiply-accumulate opera-
tions for a single image. Similar to [2], we also assume the size of a query image
is 1280× 720 to calculate Mult-Adds.
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Table 1. Quantitative evaluation in PSNR on four benchmark datasets for 4× SR.
SRResNet* is the reimplemented results with DIV2K dataset. The best PSNR (dB)
values are bold

Models Set5 Set14 B100 Urban100 Params

SRResNet 31.92 28.39 27.52 - 1.52M
SRResNet* 32.18 28.64 27.59 26.19 1.52M

SRResNet LB 32.20 28.62 27.56 26.14 0.96M

RCAN 32.63 28.87 27.77 26.82 15.6M
RCAN LB 32.59 28.88 27.75 26.78 8.6M

4.3 The contribution of Lattice Block for lightweight

As mentioned in Section 3.5, we embed LB in large models for validating its
effectiveness. Every four consecutive RBs are replaced with an LB in SRResNet
[22] and RCAN [36] (called SRResNet LB and RCAN LB). For a fair comparison,
the combination coefficients are calculated only by global average pooling for the
same configuration with RCAN.

As Table 1 shows, SRResNet LB achieves the comparable performance on
all the datasets against SRResNet* with 0.96M parameters and the PSNR value
even outperforms SRResNet* by +0.02 dB on Set5. Moreover, RCAN LB also
obtains the similar PSNR values against RCAN with only 8.6M parameters,
which has aprroximately half amount of parameters than RCAN.

4.4 Ablation analysis

In this subsection, we discuss LatticeNet and first analyse the effects of lattice
block (LB), backward fusion module (BFM) and combination coefficients (CC).
The baseline only contains four basic blocks, each of which only contains two
cascaded RBs with three convolution layers (the number of kernels is 48, 48,
64, respectively) without BFM, and other components are similar to LatticeNet.
Then, we discuss the performance of several combination patterns of pair-wise
RBs. Finally, we give how the number of LBs affects SR performance and the
related comparison in running time.

Lattice block (LB). To demonstrate the effect of LB, we replace the basic
block in the baseline with LB. As Table 2 shows, the PSNR values of the baseline
on Set5 and Set14 for 2× SR are the lowest. After adding the butterfly structure
of LB, the PSNR values are increased by +0.12 dB, +0.16 dB on Set5 and Set14
with only ∼50K parameters increased as the column “1st” illustrates. Besides,
the baseline with LB gains 0.12 dB in Set5 while the baseline with BFM only
gains 0.04 dB, which shows that LB contributes more to the SR performance
than BFM. It indicates that LB improves the expression of the network through
the butterfly combination patterns.

Backward fusion module (BFM). To evaluate the effect of the BFM, we
add BFM to the baseline network. As the “3rd” column shows in Table 2, the
PSNR values with BFM are both increased by +0.04 dB on Set5 and Set14 with
only ∼12K parameters increased upon the baseline. Besides, we also compare
BFM with 1×1 convolution fusion that is used in RDN [37] for fusing all features
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Table 2. Ablation studies of the effects of lattice block (LB), backward fusion module
(BFM). We give the best PSNR (dB) values on Set5 and Set14 for 2× SR in 500 epochs

Options Baseline 1st 2nd 3rd 4th
LB × X × × X

BFM × × 1× 1 X X
Params 692K 743K 709K 704K 756K

PSNR on Set5 37.84 37.96 37.85 37.88 38.01
PSNR on Set14 33.43 33.59 33.45 33.47 33.65

Table 3. Analysis of the effect of different combination coefficients (CC). We give the
best PSNR (dB) values on four benchmark datasets for 2× SR in 500 epochs

CC Set5 Set14 B100 Urban100 Params

MP 37.985 33.621 32.099 32.086 747K
SDP 37.988 33.628 32.106 32.099 747K

MP & SDP 38.012 33.647 32.124 32.145 756K

from all LBs directly. It is observed that BFM is superior to the fusion strategy
using 1× 1 convolution with less parameters. Moreover, BFM is similar to FPN
[27] which is proven to be effective in object detection. The baseline combined
with BFM and LB achieves better SR performance whose PSNR is increased
from 37.84 dB to 38.01 dB on Set5. The experiments show the effectiveness of
the lightweight fusion module.

Combination coefficients (CC). To fully employ the statistical character-
istics of data, we compute combination coefficients by integrating mean pooling
(MP) and standard deviation pooling (SDP). The experimental results show that
a little gain can be achieved on four benchmark datasets if we put them together
as illustrated in Table 3. Note that the combination coefficients in Table 2 adopt
the mean and standard deviation. It shows that the attention mechanism for
low-level vision tasks can be further investigated.

0 200 400 600 800 1000
Epoch

32.0

32.2

32.4

32.6

32.8

33.0

33.2

33.4

33.6

33.8

PS
N

R
(d

B
)

4RBs
LB
2RBs+R2
2RBs+R1
2RBs

Fig. 6. Comparisons of four different RB structures: 2RBs, 2RBs+R1, 2RBs+R2, 4RBs
with LB on Set14 for 2× SR

Comparisons of different RB structures. Considering that the reason
for the PSNR improvement of LB may be the increase of parameters, we compare
several RB structures with LB for the amount of computation and parameters.
We place these structures as basic block in LatticeNet, which are defined as:

(1) 2RBs: two cascaded RBs, which has slightly fewer parameters and com-
putation amount than an LB structure.
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Table 4. Trade-off between parameters, accuracy and speed of LatticeNet for 4× SR.
We give the best PSNR values and execution time on Set5 and Set14 in 500 epochs

Num Params
Set5 Set14

PSNR(dB)/Time(s) PSNR(dB)/Time(s)

2 438K 32.03 / 0.0328 28.50 / 0.0159
4 777K 32.18 / 0.0355 28.61 / 0.0203
8 1455K 32.29 / 0.0471 28.68 / 0.0301
10 1794K 32.35/ 0.0515 28.74 / 0.0343

(2) 2RBs+R1: two cascaded RBs, each of which goes through a recursive
operation. It has slightly fewer parameters and approximately twice computation
amount than an LB structure.

(3) 2RBs+R2: two cascaded RBs with once recursive operation, which has
the same parameters and computation amount with 2RBs+R1.

(4) 4RBs: four cascaded RBs, which has approximately twice parameters and
computation amount than an LB.

The quantitative evaluation of these structures in PSNR for 2× SR is illus-
trated in Fig. 6. The experimental results show an LB is not only superior to
2RBs, but also better than 2RBs+R1 and 2RBs+R2. Moreover, LB can even
obtain comparable performance with 4RBs, which has near twice parameters
than an LB. Therefore, it can demonstrate that the performance improvement
really comes from the lattice structure and LB favors lightweight model design.

Number of lattice blocks. For better balancing the model size, perfor-
mance and execution time, we compare the proposed model with different num-
ber of LBs, i.e., 2, 4, 8, 10. As shown in Table 4, with the number of LBs
increasing, the SR performance can be improved, accompanying with parame-
ters and execution time rising up. Therefore, we use 4 LBs in our experiments.
Besides, the average running time comparison in our experimental environment
between IMDN [16] and LatticeNet is shown in Table 5, where the testing code
is given by IMDN. It shows that the differences of running time are negligible
although the parameter of LatticeNet is slightly larger than IMDN.

Table 5. Average inference time (ms) comparisons between IMDN and LatticeNet on
four benchmark datasets for 4× SR

Model Set5 Set14 B100 Urban100 Depth

IMDN 34.1 22.1 9.3 39.9 34
LatticeNet 35.5 20.3 11.1 12.0 32

4.5 Comparisons with the state-of-the-arts

In this section, we conduct extensive experiments on four publicly available SR
benchmark datasets and compare with 12 state-of-the-art lightweight SR models:
SRCNN [8], FSRCNN [9], VDSR [18], DRCN [19], LapSRN [20], DRRN [30],
MemNet [31], IDN* [17] 4, CARN [2], BSRN [5], FALSR [6], and IMDN [16].

4 IDN* refers to the results given in https://github.com/Zheng222/IDN-tensorflow,
which is retrained on DIV2K dataset.
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Table 6. Average PSNR/SSIM for 2×, 3×, 4× SR. The best results are highlighted
in red color and the second best is in blue

Scale Method Params Mult-Adds
Set5 Set14 B100 Urban100

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

2×

Bicubic - - 33.66 / 0.9299 30.24 / 0.8688 29.56 / 0.8431 26.88 / 0.8403
SRCNN [8] 57K 52.7G 36.66 / 0.9542 32.45 / 0.9067 31.36 / 0.8879 29.50 / 0.8946
FSRCNN [9] 12K 6.0G 37.05 / 0.9560 32.66 / 0.9090 31.53 / 0.8920 29.88 / 0.9020
VDSR [18] 665K 612.6G 37.53 / 0.9590 33.05 / 0.9130 31.90 / 0.8960 30.77 / 0.9140
DRCN [19] 1,774K 17,974.3G 37.63 / 0.9588 33.04 / 0.9118 31.85 / 0.8942 30.75 / 0.9133
LapSRN [20] 813K 29.9G 37.52 / 0.9591 33.08 / 0.9130 31.80 / 0.8950 30.41 / 0.9101
DRRN [30] 297K 6,796.9G 37.74 / 0.9591 33.23 / 0.9136 32.05 / 0.8973 31.23 / 0.9188
MemNet [31] 677K 2,662.4G 37.78 / 0.9597 33.28 / 0.9142 32.08 / 0.8978 31.31 / 0.9195
IDN* [17] 579K 124.6G 37.85 / 0.9598 33.58 / 0.9178 32.11 / 0.8989 31.95 / 0.9266
CARN [2] 1,592K 222.8G 37.76 / 0.9590 33.52 / 0.9166 32.09 / 0.8978 31.92 / 0.9256
BSRN [5] 594K 1666.7G 37.78 / 0.9591 33.43 / 0.9155 32.11 / 0.8983 31.92 / 0.9261
FALSR-A [6] 1,021K 234.7G 37.82 / 0.9595 33.55 / 0.9168 32.12 / 0.8987 31.93 / 0.9256
FALSR-B [6] 326k 74.7G 37.61 / 0.9585 33.29 / 0.9143 31.97 / 0.8967 31.28 / 0.9191
FALSR-C [6] 408k 93.7G 37.66 / 0.9586 33.26 / 0.9140 31.96 / 0.8965 31.24 / 0.9187
IMDN [16] 694K 158.8G 38.00 / 0.9605 33.63 / 0.9177 32.19 / 0.8996 32.17 / 0.9283
LatticeNet (Ours) 756K 169.5G 38.15 / 0.9610 33.78 / 0.9193 32.25 / 0.9005 32.43 / 0.9302

3×

Bicubic - - 30.39 / 0.8682 27.55 / 0.7742 27.21 / 0.7385 24.46 / 0.7349
SRCNN [8] 57K 52.7G 32.75 / 0.9090 29.30 / 0.8215 28.41 / 0.7863 26.24 / 0.7989
FSRCNN [9] 12K 5.0G 33.18 / 0.9140 29.37 / 0.8240 28.53 / 0.7910 26.43 / 0.8080
VDSR [18] 665K 612.6G 33.67 / 0.9210 29.78 / 0.8320 28.83 / 0.7990 27.14 / 0.8290
DRCN [19] 1,774K 17,974.3G 33.82 / 0.9226 29.76 / 0.8311 28.80 / 0.7963 27.15 / 0.8276
DRRN [30] 297K 6,796,9G 34.03 / 0.9244 29.96 / 0.8349 28.95 / 0.8004 27.53 / 0.8378
MemNet [31] 677K 2,662.4G 34.09 / 0.9248 30.00 / 0.8350 28.96 / 0.8001 27.56 / 0.8376
IDN* [17] 588K 56.3G 34.24 / 0.9260 30.27 / 0.8408 29.03 / 0.8038 27.99 / 0.8489
CARN [2] 1,592K 118.8G 34.29 / 0.9255 30.29 / 0.8407 29.06 / 0.8034 28.06 / 0.8493
BSRN [5] 779K 761.1G 34.32 / 0.9255 30.25 / 0.8404 29.07 / 0.8039 28.04 / 0.8497
IMDN [16] 703K 71.5G 34.36 / 0.9270 30.32 / 0.8417 29.09 / 0.8046 28.17 / 0.8519
LatticeNet (Ours) 765K 76.3G 34.53 / 0.9281 30.39 / 0.8424 29.15 / 0.8059 28.33 / 0.8538

4×

Bicubic - - 28.42 / 0.8104 26.00 / 0.7027 25.96 / 0.6675 23.14 / 0.6577
SRCNN [8] 57K 52.7G 30.48 / 0.8628 27.50 / 0.7513 26.90 / 0.7101 24.52 / 0.7221
FSRCNN [9] 12K 4.6G 30.72 / 0.8660 27.61 / 0.7550 26.98 / 0.7150 24.62 / 0.7280
VDSR [18] 665K 612.6G 31.35 / 0.8830 28.02 / 0.7680 27.29 / 0.7260 25.18 / 0.7540
DRCN [19] 1,774K 17,974.3G 31.53 / 0.8854 28.02 / 0.7670 27.23 / 0.7233 25.14 / 0.7510
LapSRN [20] 813K 149.4G 31.54 / 0.8850 28.19 / 0.7720 27.32 / 0.7270 25.21 / 0.7560
DRRN [30] 297K 6,796.9G 31.68 / 0.8888 28.21 / 0.7720 27.38 / 0.7284 25.44 / 0.7638
MemNet [31] 677K 2,662.4G 31.74 / 0.8893 28.26 / 0.7723 27.40 / 0.7281 25.50 / 0.7630
IDN* [17] 600K 32.3G 31.99 / 0.8928 28.52 / 0.7794 27.52 / 0.7339 25.92 / 0.7801
CARN [2] 1,592K 90.9G 32.13 / 0.8937 28.60 / 0.7806 27.58 / 0.7349 26.07 / 0.7837
BSRN [5] 742K 451.8G 32.14 / 0.8937 28.56 / 0.7803 27.57 / 0.7353 26.03 / 0.7835
IMDN [16] 715K 40.9G 32.21 / 0.8948 28.58 / 0.7811 27.56 / 0.7353 26.04 / 0.7838
LatticeNet (Ours) 777K 43.6G 32.30 / 0.8962 28.68 / 0.7830 27.62 / 0.7367 26.25 / 0.7873

The quantitative comparisons for 2 × , 3×, and 4× SR are shown in Table
6. When compared with all given methods, our LatticeNet performs the best
on the four datasets. Meanwhile, we also give the network parameters for all
the comparison methods. Our model is at the medium level of the model com-
plexity with less than 800K parameters and the performance is comparable with
CARN and IMDN. Besides, Mult-Adds of LatticeNet is also relatively lower. It
demonstrates that our method is superior to other SR methods in comprehensive
performance.

The visual comparisons on scale 4× on B100 and Urban100 are depicted in
Fig. 7. For Image “148026” in B100, our method can recover the correct texture
of the wooden bridge well than other methods. Besides, for image “img044” and
“img067” in Urban100 dataset, we can also observe that our results are more
favorable and can recover more details. Though our method achieves comparable
performance against IMDN in PSNR and SSIM, our method is obviously superior
to IMDN with a large margin in the visual effect.

5 Conclusions

In this paper, we propose the lattice block which is an economical structure
favoring the lightweight model design. It has the potential of multiple combi-
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148026 from B100

HR Bicubic SRCNN [8] VDSR [18] FSRCNN [9] DRCN [19]
PSNR/SSIM 18.83/0.4647 21.52/0.6370 21.51/0.6351 21.73/0.6616 21.65/0.6545

LapSRN [20] IDN* [17] CARN [2] BSRN [5] IMDN [16] LatticeNet
21.74/0.6658 22.14/0.6901 22.12/0.6918 22.16/0.6941 22.14/0.6924 22.31/0.6981

img012 from Urban100

HR Bicubic SRCNN [8] FSRCNN [9] VDSR [18] DRCN [19]
PSNR/SSIM 21.10/0.5470 23.21/0.6719 23.28/0.6771 23.44/0.6961 23.49/0.6987

LapSRN [20] IDN* [17] CARN [2] BSRN [5] IMDN [16] LatticeNet
23.48/0.6985 23.82/0.7263 23.86/0.7329 23.83/0.7288 23.82/0.7303 23.91/0.7338

img067 from Urban100

HR Bicubic SRCNN [8] FSRCNN [9] VDSR [18] DRCN [19]
PSNR/SSIM 15.04/0.6056 18.31/0.7947 18.15/0.7923 18.52/0.8245 18.39/0.8218

LapSRN [20] IDN* [17] CARN [2] BSRN [5] IMDN [16] LatticeNet
18.60/0.8367 19.11/0.8622 19.38/0.8722 19.48/0.8722 19.60/0.8716 19.82/0.8743

img092 from Urban100

HR Bicubic SRCNN [8] FSRCNN [9] VDSR [18] DRCN [19]
PSNR/SSIM 15.96/0.4001 17.56/0.5413 17.70/0.5528 18.13/0.0.6004 18.20/0.6069

LapSRN [20] IDN* [17] CARN [2] BSRN [5] IMDN [16] LatticeNet
18.20/0.6078 18.86/0.6503 18.91/0.6592 18.93/0.6588 18.95/0.6606 19.13/0.6636

Fig. 7. Visual comparisons of the state-of-the-art lightweight methods and our Lat-
ticeNet on B100 and Urban100 for 4× SR. Zoom in for best view

nations of two RBs benefited by the combination coefficients. The combination
coefficients of the lattice block are learned with the attention mechanism for
better SR performance. It can embed in any SR networks using RBs as basic
block. Based on the lattice block, we also build LatticeNet which is a lightweight
SR model. Moreover, we adopt a backward sequential concatenation strategy
to integrate more contextual information from different receptive fields. Experi-
mental results on several benchmark datasets also demonstrate that our method
can achieve superior performance with moderate parameters.
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