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Abstract. This is supplementary material for the paper, providing an
extended overview on our proposed normalcy suppression mechanism
for weakly supervised anomalous event detection. The document also
provides visualizations of suppression output from our trained model, as
well as the discussion on its behaviour. A comparison with conventional
attention mechanism is also provided to highlight the main differences
as well as the gains in performance by using the proposed suppression
approach.

1 Normalcy Suppression Module (NSM)

The role of normalcy suppression module in our proposed CLAWS Net is two-
fold:

– It learns to suppress the normal portions of an input batch.
– It holds back the backbone network from producing high anomaly scores for

all input features in the presence of noisy labels.

The ideal behavior of NSM is to minimize the output values as much as
possible if an input batch corresponds to a normal video.In the case that an
input batch corresponds to an anomalous, the NSM minimizes its values along
the normal segments. Another noticeable property that an NSM should posses
is to learn abnormal behavior based on the temporal order of the events in an
input batch.

In the following sections, we define several possible configurations of our
suppression module and analyze the performances. This study verifies the ef-
fectiveness of our proposed architecture by presenting various comparisons of
these configurations. Also, we present a detailed analysis highlighting significant
differences between our approach and the existing attention mechanisms which
have been widely used for various other problems.
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Table 1: Area under the curve (AUC) comparison of various normalcy suppression (NS)
configurations on UCF Crime dataset.

Normalcy suppression AUC %

Element-wise NS (CLAWS Net) 83.03

Temporal NS 81.24

Features NS 77.95

CLAWS Net without any NSM 76.81

1.1 Which type of normalcy suppression is better?

Element-wise NS: Keeping in view the above mentioned properties of an ideal
normalcy suppression module (NSM), in the CLAWS Net, we propose to utilize
an NSM which calculates probabilities temporally in an element wise fashion
(Fig. 1(a)). Our proposed technique, referred to as Element-wise NS in the rest
of the supplementary material, provides more freedom to the NSMs in mini-
mizing values if features belong to a normal portion of an input video, hence
complementing the backbone network (BBN) to produce low anomaly scores.
Temporal NS: Another possible choice for normalcy suppression is to calculate
suppression values temporally without element-wise application. It means one
value is computed for each feature vector within a batch, as shown in Fig. 1(b).
Features NS: Furthermore, in order to provide a contrastive comparison of
why learning temporal information is necessary for our proposed NSM, we also
experiment with a normalcy suppression which doesn’t consider temporal infor-
mation. This setting, referred to as Features NS (shown in Fig. 1(c)), computes
suppression values along each feature vector of the input batch. Detailed per-
formance evaluation and discussion on each of these configurations is provided
below:
Quantitative comparison: Table 1 summarizes the frame level AUC perfor-
mance of these three configurations. It can be seen that the element-wise NS
outperforms the other two counterparts with a noticeable margin. It is interest-
ing to observe that the performance of temporal NS is relatively closer to the
element-wise NS which is due to the reason that these two are quite similar in
essence. Both learn to minimize the effects of normal features towards anomaly
scoring however, the element-wise NS performs it with the additional freedom
to operate at each dimension of the input feature vectors in a batch. Another
important observation is that both of these suppression mechanisms utilizing
temporal properties outperform the third scheme, features NS, significantly.
Qualitative comparison: Detailed visualizations of the output on an anoma-
lous and a normal batch by the above mentioned suppression mechanisms are
provided in Figs. 3 & 4. Among these, (a)-(c) are the output of NSM-1 and
(d)-(f) are the output of NSM-2 (For NSM-1 and NSM-2, please see Fig. 1 of
the main manuscript). It can be seen that temporal NS, similar to element-wise
NS, learns to suppress the effects of normal features within an input batch. In
contrast, features NS computes its values across one feature vector at a time,
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Fig. 1: Visualization of the three types of suppression mechanisms including element-
wise NS (as proposed in the CLAWS Net), temporal NS and features NS.

hence it does not provide the desired effect of suppressing the features corre-
sponding to normal events. Instead, it assists the backbone network to learn
noisy labels for each individual input feature by essentially taking the form of
a feature-dimension reduction mechanism. Therefore, AUC performance of the
features NS is not much higher (1.14%) than the system without any suppres-
sion. This small difference can be attributed to the dimensionality reduction
property which assists the backbone network while computing scores.

The element-wise NS, as proposed in the CLAWS Net, takes the advantage
of both temporal and the feature level suppression. Due to its freedom to select
various elements of features along the temporal order, such mechanism learns to
minimize its values for the normal input as well as it also possesses the capa-
bility of learning to reduce the effect of non-contributing elements of a feature
vector which helps the backbone network in producing better scores. Further
visualization of the output from the NSM-1 and NSM-2 of our trained network
on several normal and abnormal test batches are shown in Fig. 5.
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Table 2: AUC comparison of our proposed multiplicative suppression mechanism with
the residual suppression. The residual suppression does not produce the desired effect
of minimizing anomaly scores for the normal regions, hence demonstrates low perfor-
mance.

Normalcy suppression AUC %

Multiplicative suppression (CLAWS Net) 83.03

Residual suppression 77.91

CLAWS Net without any NSM 76.81

1.2 Normalcy Suppression Vs. Attention?

Compared to attention [4, 1, 3, 6, 2, 5], attributed to the rare occurrence of anoma-
lies, our proposed formulation approaches the problem in terms of suppress-
ing certain features as opposed to highlighting [6, 2, 5]. In addition, we define
the problem by relying on the special characteristics of the training labels in
which we have noise-free annotations for normal videos and noisy annotations
for anomalous videos. Therefore, given an input batch x, we calculate the sup-
pressed results H(x) by performing an element-wise multiplication ⊗ between
NSM output Sφ(x) and backbone output Bθ(x) as:

H(x) = Sφ(x) ⊗Bθ(x), (1)

where φ and θ represent the parameters of NSM and backbone, respectively (Fig.
2(a)). For the conventional attention, such multiplication have been reported to
produce the undesirable effect of dissipating features inside a model [5]. It is
because attention computes probabilities which, when multiplied directly with
the features, can reduce the values significantly. Therefore, various attention
mechanisms are based on residual connections in which attention-applied fea-
tures are added back to the original features [4, 5]. In order to experiment with
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such residual-attention-like mechanism in our normalcy suppression modules, we
design a formulation in which suppressed results H(x) are calculated as:

H(x) = Bθ(x) ⊕ Sφ(x) ⊗Bθ(x), (2)

where ⊕ is an addition operation. We refer to this scheme as residual suppression
(Fig. 2(b)).

Table 2 shows a comparison of the results between residual suppression and
our multiplicative approach, demonstrating importance of the latter. Compared
with the model without any NSM, the residual suppression shows only a slight
improvement of 1.1% whereas the proposed multiplicative suppression shows an
improvement of 6.22%.

We believe that the superiority of multiplicative suppression is based on two
factors: first, because we approach the problem as features suppression instead
of highlighting, our proposed method exploits the property of multiplicative sup-
pression to reduce the impact of features inside the network during a forward
pass. It means, in case of a normal input batch (where noise-free labels are avail-
able), the suppression module learns to minimize its output, hence dissipating
the features and helping the backbone network to produce low anomaly scores.
On the other hand, in the case of an input with anomalous features having noisy
labels, even if the backbone network tries to produce high anomaly scores on
all these features, it gets limited by the NSM which cannot produce high values
across a whole batch. Hence, to reduce the overall training loss, our multiplica-
tive configuration forces the NSM towards learning to suppress only the normal
features, consequently assisting the backbone network to produce high anomaly
scores on anomalous portions of an input batch.

Second, given the forward pass in Equation 1, gradients of the multiplicative
suppression with respect to the backbone parameters are given as:

∂H(x)

∂θ
= Sφ(x)

∂Bθ(x)

∂θ
(3)

Whereas, based on the forward pass in Equation 2, gradients of the residual
suppression with respect to the backbone parameters can be computed as:

∂H(x)

∂θ
=
∂Bθ(x)

∂θ
+ Sφ(x)

∂Bθ(x)

∂θ
(4)

In the case of multiplicative suppression (Equation 3), it can be seen that the
Sφ(x), as a normalcy suppressor, prevents wrong gradients from flowing into the
backbone when the network encounters noisy labels in anomalous videos (some

segments are normal). In the residual suppression case, since the gradients ∂Bθ(x)
∂θ

in Equation 4 are not suppressed by Sφ(x), the loss from noisy labels can flow
into the backbone network, consequently degrading its performance. This partial
suppression is particularly the reason why residual suppression only achieves
a slightly better performance than the network without any NSM (Table 2).
On the other hand, our proposed multiplicative approach, which suppresses the
gradients to minimize the impact of noisy labels, achieves significant performance
gains (See Figure 6).



6 M. Z. Zaheer et al.

(a) Element-wise NS (as proposed in CLAWS Net)

b

(b) Temporal NS

(c) Features NS

Suppression response length zGT

b
 T

em
p

o
ra

ll
y
 

C
o
n

si
st

en
t 

S
eg

m
en

ts

S
eg

m
en

t 
N

o
.

1 512
1

64

0

0
.3

Suppression response length zGT

b
 T

em
p

o
ra

ll
y
 

C
o
n

si
st

en
t 

S
eg

m
en

ts

S
eg

m
en

t 
N

o
.

1 512
1

64

0

0
.3

Suppression response length zGT

b
 T

em
p

o
ra

ll
y
 

C
o
n

si
st

en
t 

S
eg

m
en

ts

S
eg

m
en

t 
N

o
.

1 512
1

64

0

0
.3

(d) Element-wise NS

(CLAWS Net)

GT
Suppression response

length z1 32

S
eg

m
en

t 
N

o
.

1

64 0

0.3

(e) Temporal NS

GT
Suppression response

length z1 32

S
eg

m
en

t 
N

o
.

1

64 0

0.3

(f) Features NS

GT
Suppression response

length z1 32

S
eg

m
en

t 
N

o
.

1

64 0

0.3

Anomaly Ground truth 

Video: Anomaly - Arrest001

Fig. 3: Output (Sφ) comparison of various NSM-1 (a)-(c) and NSM-2 (d)-(f) configu-
rations. z is the output dimension of FC layer corresponding to each NSM and b is the
input batch size. Actual temporal NS output by both modules is of size 1× b however,
it is repeated to create a z× b vector for better and consistent visualization.
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Fig. 4: Output (Sφ) comparison of various NSM-1 (a)-(c) and NSM-2 (d)-(f) configu-
rations on a normal batch.
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Fig. 6: Anomaly scores of the proposed CLAWS Net on different videos from UCF
Crime Dataset. Note that in some videos, actual anomalous frames than the annotated
ones as the annotation is only for the event itself. For Example, in shooting011 video,
abnormal situation starts around 1000 and continues much later than the annotated
window which only contains the shooting event.



10 M. Z. Zaheer et al.

References

1. Chen, X., Xu, C., Yang, X., Tao, D.: Attention-gan for object transfiguration in wild
images. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 164–180 (2018)

2. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. pp. 7132–7141 (2018)

3. Shen, Y., Ni, B., Li, Z., Zhuang, N.: Egocentric activity prediction via event mod-
ulated attention. In: Proceedings of the European Conference on Computer Vision
(ECCV). pp. 197–212 (2018)

4. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

5. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.:
Residual attention network for image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 3156–3164 (2017)

6. Woo, S., Park, J., Lee, J.Y., So Kweon, I.: Cbam: Convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 3–19 (2018)


