Supplementary Material

PG-Net: Pixel to Global Matching Network for Visual Tracking

Bingyan Liao, Chenye Wang, Yayun Wang, Yaonong Wang, and Jun Yin

A. Network architecture

The detailed architecture of backbone network is shown in Table 1. Backbone network has the same structure with Resnet50 before Block2. In Block3 and Block4, we replace the down-sample operation with a series of dilated convolutions. The dilations are set to 2 and 4 respectively in Block3 and Block4. Table 2 presents the detailed architecture of target location network. It is a fully convolutional network for calculating similarity and locating the target.

	La	Number			
Input	Search: 255	template: 127			
	Conv: k7 s2 n64 p0	BN	ReLU	× 1	
	Maxpool: k2 s2 p1			× 1	
Size	Search: 63	template: 31			
Block 1	Conv: k1 s1 n64 p0	BN	ReLU		
	Conv: k3 s1 n64 p1	BN	ReLU	× 3	
	Conv: k1 s1 n256 p0	BN			
	Adjusted Sum		ReLU		
Size	Search: 63	template: 3			
Block 2	Conv: k1 s1 n128 p0	BN	ReLU	× 4	
	Conv: k3 s2/1/1/1 n128 p1	BN	ReLU		
	Conv: k1 s1 n256 p0	BN			
	Adjusted Sum		ReLU		
Size	Search: 31	template: 15			
Block 3	Conv: k1 s1 n256 p0	BN	ReLU		
	Conv: k3 s1 n256				
	d1/2/2/2/2/2	BN	ReLU		
	p1/2/2/2/2/2			~ 0	
	Conv: k1 s1 n1024 p0	BN			
	Adjusted Sum		ReLU		
Size	Search:31				
Block 4	Conv: k1 s1 n512 p0	BN	ReLU	× 2	
	Conv: k3 s1 n512				
	d2/4/4	BN	ReLU		
	P2/4/4			× 3	
	Conv: k1 s1 n2048 p0	BN			
	Adjusted Sum		ReLU		
Size	Search:31	template: 15			

Table 1. Backbone network architecture. Where k, s, n, d, p denote kernel size, stride, convolutional number, dilation and padding respectively. The parameter d is omitted when it is 1 before Block2. Adjusted Sum denotes element-wise sum operation between input and output of each residual block. A convolution layer will be used to adjust the number of channel in element-wise sum process if necessary.

	Layers						
Adjusted layer				Crop to: 7x7			
	Search	Conv: k3 s1 n256 p0	Template	Conv: k3 s1 n256 p0			
	Feature1/2/3	BN	Feature1/2/3	BN			
		ReLU		ReLU			
	PG-Corr						
	Conv: k3 s1 n256 p0 + BN + ReLU						
	Conv: k3 s1 n256 p0 + BN + ReLU						
Detection head	Cls1/2/3	Conv: k3 s1 n256 p1	Reg1/2/3	Conv: k3 s1 n 256 p1			
		BN		BN			
		ReLU		ReLU			
		Conv: k1 s1 n10 p1		Conv: k1 s1 n20 p1			
		Cls1/2/3		Reg1/2/3			
Enhanced	Weighted Sum: Cls1/2/3		Weighted Sum: Reg1/2/3		× 1		
detection	Conv	Conv: k3 s1 n10 p1 Conv: k3 s1 n20 p1					
Output	Cls		Reg				

Table 2. Target location network architecture, Where k, s, n, p denote kernel size, stride, convolutional number and padding respectively. The weights in Weighted sum operation are learned from training data.

B. Tracking results on LaSOT

We present some qualitative results of the proposed method and compare them with other state-of-the-art trackers on LaSOT dataset, as shown in Figure 1. It can be observed that our method has outstanding performance.

Figure 1. Qualitative comparison on ten challenging sequences (from top to bottom: *airplane-9, bird-3, cat-20, kite-6, shark-2, turtle-16, bicycle-2, bottle-12, surfboard-5, sepia-13, turtle-9, umbrella-19*) of LaSOT.