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Abstract. Siamese neural network has been well investigated by track-
ing frameworks due to its fast speed and high accuracy. However, very
few efforts were spent on background-extraction by those approaches. In
this paper, a Pixel to Global Matching Network (PG-Net) is proposed
to suppress the influence of background in search image while achiev-
ing state-of-the-art tracking performance. To achieve this purpose, each
pixel on search feature is utilized to calculate the similarity with global
template feature. This calculation method can appropriately reduce the
matching area, thus introducing less background interference. In addi-
tion, we propose a new tracking framework to perform correlation-shared
tracking and multiple losses for training, which not only reduce the com-
putational burden but also improve the performance. We conduct com-
parison experiments on various public tracking datasets, which obtains
state-of-the-art performance while running with fast speed.

1 Introduction

Visual object tracking is one of the fundamental problems in computer vi-
sion. It has been widely adopted in the field of intelligent transportation [25],
robotics [12], video surveillance [31] and human-computer interactions [21], etc.
Despite its rapid progress in recent decades, problems such as scene occlusion,
target deformation and background interference still remain to be investigated.
Recent years, convolutional neural network (CNN) has further improved the per-
formance of trackers. Among them, Siamese network based trackers [2,13, 18, 26—
28, 38,17] have drawn much attention in the community. The basic framework is
proposed by Bertinetto et al. [2]: features of search image and target template are
extracted by the same backbone network firstly, and then the cross-correlation
is calculated based on features. To get more precise positions, SiamRPN [18]
introduces RPN module to regress the bounding boxes. Based on SiamRPN,
Bo Li et al. [17] design a deeper network to perform layer-wise and depthwise
aggregations, which achieves higher accuracy and reduces the model size simul-
taneously.

Although Siamese network based algorithms excel in both accuracy and
speed, those trackers cannot resist background interference effectively. We find
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Fig. 1. Comparison result of SiamDW [36], SiamRPN++ [17], ATOM [5] and our
method on two challenging sequences. PG-Net is able to distinguish the targets in
chameleon and umbrella, even with strong background interference. The frame number
is marked at the upper left corner of the image.

the primary reason comes from similarity calculation. Almost all Siamese track-
ers, such as SiamRPN [18], implement the similarity matching with a simple
convolution operation on deep features. This results in matching region much
larger than target area, and thus introduces a great deal of noise from back-
ground. The noise may overwhelm the target feature and lead to inaccurate
matching.

To address these issues, we propose a Pixel to Global Matching Network (PG-
Net), which resists background interference and finds a more accurate location of
the target.Fig. 1 demonstrates such improvement — our PG-Net gives the most
similar results to the ground truth. Specifically, we design a Pixel to Global Mod-
ule (PGM) to realize similarity matching between template and search regions.
Instead of using large matching regions, we utilize spatial pixels to calculate
similarity of the template in feature domain. This operation reduces the size of
matching area effectively, so that less background information is brought in and
the network focuses more on target.

Further, we designed a new tracking framework to perform efficient and ac-
curate tracking. We replace the crosss-correlation with proposed Pixel to Global
matching correlation (PG-corr) to calculate the similarity of deep features. In
order to reduce the calculation burden brought by the similarity calculation
module, we calculate the classification and location with shared similarity maps.
In the training phase, multiple loss functions are applied to different stages of
backbone network to promote the tracking results.

Finally, we evaluate our PG-Net on four benchmark datasets, including VOT-
2018 [16], VOT2018-LT [16], LaSOT [7] and OTB2015 [30]. And it performs best
among other state-of-the-art trackers. In summary, the contributions of our work
mainly include the following aspects.

— We propose a pixel to global similarity matching module to suppress back-
ground interference during tracking process.
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— We design a new tracking framework based on proposed PGM, which not
only reduces the computational burden but also improves the performance.

— We conduct comparison experiments on various tracking datasets, the results
demonstrate that our method achieves state-of-the-art performance and fast
speed.

The remaining parts of the paper are organized as follows: Section 2 briefly
shows some relavant works in visual object tracking; Section 3 describes our
proposed PG-Net; Section 4 evaluates PG-Net on four benchmarks; Section 5
concludes the paper.

2 Related works

In this section, some typical visual trackers proposed in recent years are reviewed.
Existing tracking methods can be divided into: (i) correlation filter based [4, 15, 6]
and (ii) deep learning based [2, 13,18, 26-28, 38,17]. The correlation filter based
trackers includes: MOSSE [4] KCF [15], DSST [6], etc. They typically employ
correlation filters to locate the targets based on handcrafted features. Compared
with deep learning based counterparts, they are computationally efficient but
less accurate.

With the development of deep learning technology and the establishment
of large tracking datasets, many deep learning based tracking algorithms have
emerged. Different from handcrafted features, features extracted by CNNs are
more robust and contain more semantic information. Ran Tao et al. [26] first
apply Siamese network to visual tracking tasks. The tracker simply finds the
patch that matches best to the original patch of the target in the first frame.
After that, Bertinetto et al. [2] propose a fully-convolutional Siamese network
(SiamFC) to search the target from search image. Owing to the lightweight
structure and end-to-end training manner, SiamFC receives significant atten-
tions once it was proposed. Based on SiamFC, Valmadre et al. [27] embed a
trainable correlation filter into the Siamese network, so that the correlation fil-
ter can be trained as part of the network. Qing Guo et al. [11] also propose a
algorithm based on SiamFC. It learns appearance variation transformation and
background suppression transformation online, which gets a better result. How-
ever, all of these methods locate target by searching the maximum value in the
whole response map with no restriction of bounding box, leading to inaccuracy
and lack of robustness.

Recently, some researchers are committed to applying detection technology
to tracking tasks. Li et al. [18] combine Siamese network with Region Proposal
Network (RPN) and significantly improve the accuracy of bounding box. And
then, Zheng Zhu et al. [38] further increase the performance of SiamRPN by
balancing distribution of training data. Heng Fan et al. [9] extend this approach
by training a cascade of RPNs to solve the problem of class imbalance. The
cascade of RPNs focuses more on hard samples by filtering out simple ones and
makes the predicted bounding box more precise. Qiang Wang et al. [29] add a
semantic segmentation subnetwork to RPN module and get pixel-level tracking
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Fig. 2. Architecture of proposed network. It is composed of feature extraction subnet-
work and target localization subnetwork. PGM is the Pixel to Global matching Module
for similarity calculation. We utilize multiple PGMs to search target from different lev-
els of features.
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results. After that, Bo Li et al. [17] further propose SiamRPN++ which employs
a deeper feature extraction network and more RPN modules, achieving state-of-
the-art performance.

Although great progress has been made, these methods cannot suppress the
background effectively. Besides, multiple cross-correlation layers in RPN lead
to large computational complexity. In this work, we argue that the proposed
PG-Net can reduce background interference effectively and achieve significant
improvement on accuracy while reducing computational cost.

3 Pixel to Global Matching Network

In this section, we describe the proposed PG-Net in detail. First of all, we give the
overview on the whole architecture of PG-Net. Secondly, we analyze how back-
ground interferes with object tracking, and propose PGM to mitigate interfer-
ence. And then we elaborate the designed lightweight cross-correlation structure,
which is good at reducing time consumption. Finally, multiple loss mechanism
is introduced.

3.1 Overview

We design a Siamese network based tracker in this paper and its whole structure
is shown in Fig. 2. The proposed network is composed of feature extraction
subnetwork and target localization subnetwork. Here we employ ResNet50 [14]
as the feature extraction subnetwork, and 3 PGMs to compose the localization
subnetwork. For the loss function, we use multiple losses mechanism to further
imporve the tracking accuracy.

ResNet50 has been proved to be a robust feature extractor in many computer
vision tasks, such as object detection [37], classification [14] and semantic seg-
mentation [10]. We modify the ResNet50 according to siamRPN-++ [17] to make
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it more suitable for tracking tasks. The modified ResNet50 contains four residual
blocks and each residual block is composed of a series convolution layers, batch
normalization layers and activation layers. Different from original ResNet50,
Block2, Block3 and Block4 have the same resolution in this version. In order to
make pretrained weights available, Block3 and Block4 utilize dilated convolution
layers to replace some convolution layers. It is noticed that the template branch
and search branch have the same structure and share the same weights.

The localization subnetwork consists of 3 PGMs and each PGM outputs a set
of classification (Cls) and regression (Reg) results based on densely distributed
anchors. To increase the accuracy and robustness of the proposed algorithm, we
select shallow, middle and deep level features as the input of the corresponding
PGMs. These features are extracted from the last layers of Block2, Block3 and
Block4 of the adapted ResNet50.

3.2 Pixel to Global matching Module

Cross-correlation is the core operation in Siamese tracker. Therefore, we first
give a deep analysis on the cross-correlation, and illustrate several defects of it.
Then we proposed PGM to address these issues.

Disadvantages of cross-correlation In existing methods, we observe that
cross-correlation operation brings lots of background information in deep net-
work. In tracking tasks, the given template is usually large to support backbone
network to extract robust target features, which leads to a large output size of
template subnetwork and might cause potential problems. Fig. 3(a) shows the
process of searching a target and illustrates such problems. Directly mapping
the coordinates of template feature to search image is expected to produce ideal
matching region (green box), which has the same scale with target. However,
this matching method ignores the influence of the receptive field which is one of
the main factors to decide the real matching region (red box). With the network
depth increasing, especially in deep network such as ResNet50, even a feature
point in the final output corresponds a large receptive field of the input. Consid-
ering the large size of template feature, as shown in Fig. 3(a), the corresponding
real matching region (red box) is much larger than ideal matching region. And
thus, lots of background information will be brought in and overwhelms the fea-
ture of the target, making it hard to distinguish the target from similar objects
in background.

We further find that the large matching region generates distributed response
points, which increases the uncertainty of target localization. As demonstrated
in Fig. 3(b), when searching the target (marked by the blue mask), a series of
matching regions will be generated in search image. Here we take three matching
regions as examples. The response (red point) is expected to appear only when
the target locates in the center of matching region (red box), since this point
can describe the location of the target best. However, the response points (yellow
ones) are still generated even the region shifts a large range (yellow dotted box),
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Fig. 3. We demonstrate how large matching region influence the tracking results. (a)
explains why the real matching region is much larger than target. And (b) shows the
influence of large matching region on results.

because the target is still in matching region. And more response points can be
produced in a larger matching region, leading to inaccurate localization.

To avoid these problems, we propose the Pixel to Global correlation (PG-
corr) to calculate the similarity, which can replace cross-correlation operation.
And the improvements are visualized in next subsection.

Pixel to Global matching Module Based on analysis above, we propose a
Pixel to Global matching Module to calculate the similarity between each pixel
on search feature and global template feature. Specifically, a pixel is a point
whose length equals to the channel number of feature at a certain position. This
module is composed of PG-corr and detector head for bounding box generation.

PG-corr has strong ability to suppress the interference of background, which
outperforms the existing cross-correlation operation. This is mainly achieved by
narrowing matching area in each search operation. Down-sampling the target
feature is a straightforward method to reduce the area, but it causes substantial
performance drop. In this paper, we reduce the match region by decomposing the
template feature into spatial and channel kernels with size of 1 x 1, which sup-
presses the background interference effectively and gathers the response points
on the target area accurately. This further improves the accuracy of predicted
bounding box.

As shown in Fig. 4(a), the template feature Zy is cut in height and width,
forming a set of Zy, = {2}, 23, ..., 2} }, which has n, kernels with length of ¢
in spatial dimension, with

n, =w, X h,. (1)

w, and h, are the width and height of template feature. Meanwhile, to enhance
the channel correlation, the template feature is also cut in channel dimension,
generating a set of Zy, = {Z}C,Z)%C, ey zjcc}7 which has ¢ kernels with size of
1 x 1 X n,. The similarity calculation process is shown in 4(b), w, and h, are
the width and height of search features X . For the position xSf’J ) at rows j and
columns 7 in Xy, we first calculate its similarity with spatial kernels. The m-th
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Fig. 4. The process of template feature decomposing and similarity matching. (a) shows
the template feature is decomposed in spatial and channel dimensions respectively. (b)
explains the matching process with decomposed kernels.

value in produced responses SY’j ) represents the similarity between 2% and

the m-th positions in spatial dimension of Z¢, which can be represented by

Siw)[m] :xy’j) 2 om=1,2,...,n,. (2)

To further acquire the similarity between 2% and global template Z¢, we
utilize channel kernels Z;, to unify the local positions similarity. After calculat-
ing similarity of all positions in X, the similarity map S5 is obtained as

Sé%])[n] — SY’J) . Z?C n = 17 2, ...,C. (3)

For convenience, we define the PG-corr operation Sy = PG(Xy, Zy) as

Soli,jon] = > Xyli, 5, k1 Z;[p, 4, K1 Z¢[p, 4, ). (4)

p,q;k

Where Sy is the output feature of PG-corr with the same size of Xy. In order to
reduce the difficulty of training, we concatenate search feature X; and similarity
feature S5 in the channel dimension, and an 1 x 1 convolution layer follows to
reduce the dimension. Following the PG-corr, to generate the target bounding
box, we use fully convolutional layers to assemble the detector head.

In order to intuitively present the improvement of PGM on background sup-
pression, we visualize the classification score map produced by different similarity
matching methods. Examples from comparison results are shown in Fig. 5. The
top rows are produced by PGM and the bottom rows based on depthwise corre-
lation (DW-corr) operation. In Fig. 5(a) and 5(b), we obverse that the response
region in score map of PGM is concentrated on target itself and the response in
non-target areas is weak, while the response of DW-corr based module is strong
in non-target areas. Especially when the background is complex as shown in
Fig. 5(b), the response intensity in non-target areas is so close to it in the target
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Fig. 5. Classification response maps of different sequences generated by PGM (top
rows) and DW-corr based similarity matching module (bottom rows) respectively. We
can find that the responses produced by PGM are more concentrated, and the responses
of background are weak.

area, that the wrong detection is hard to avoid in this situation. According to
Fig. 5(c) and 5(d), DW-corr based module is confused when there are similar
objects in background, while PGM is still able to distinguish the targets. This
mainly benefits from the pixel-level similarity matching method in PGM, which
reduces the matching region to achieve precise matching.

3.3 Shared correlation architecture

Some Siamese network based trackers, such as SiamRPN [18] and Siamese Cas-
cade RPN [9], apply regression branches to increase the accuracy of bounding
box. As is shown in Fig. 6(a), the most popular mode is to perform a specific
cross-correlation operation for each branch. For example, there are two cross-
correlation layers in SiamRPN for classification and regression respectively. And
the following SiamMASK [29] employs three cross-correlation layers for track-
ing and segmentation. The structure with multiple cross-correlation layers is
computationally expensive.

Focus on this problem, we propose a shared correlation architecture to reduce
time consumption. Different from existing methods in which each branch has the
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individual cross-correlation layer, we use just one shared correlation for both
classification and regression branches. As is shown in Fig. 6(b), the extracted
template and search features are first adjusted to squeeze the channel number by
an 1x 1 convolution layer (adjust layer). Then, the adjusted features are sent into
PG-corr to perform similarity matching. In the final, we use the similarity map
as the input of regression branch and classification branch to generate bounding
box.

T T T @

BoxHead | | ClsHead || BoxHead | ClsHead |
) ) ) B (] )
!
f, f| f, f|
(a) (b)

Fig. 6. Different connected methods between cross-correlation layers and two predict
branches. (a) shows the connected method used in existing tracking network in which
regression and classification branches have the individual cross-correlation layers. (b) is
the shared connection method used in PGM. The regression and classification branches
share the same PG-corr.

3.4 Multiple losses mechanism

Most existing methods just constrain the final feature with the corresponding loss
function. However, only one optimized feature is difficult to perform perfectly
though fusing multi-level features. In our method, we propose multiple losses
mechanism to improve tracking performance. As is shown in Fig. 2, we apply loss
functions on different stages of backbone network. Each loss function promotes
corresponding features to be more robust and output more accurate regresses
bounding boxes and classification scores. The loss function of single stage i is
defined as

£stagei - ECZS(}D’U P*) + )\ﬁreg(Bia B*)v (5)

where A is a hyper-parameter used to balance the two parts. L. is the Cross
Entropy loss and L,.4 is the Smooth L1 loss [18]. P; and B; represent the classi-
fication possibility and the predicted bounding box of the corresponding stage 1.
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P* and B* are the ground truth of classification and bounding box. Besides,
we fusing the preliminary tracking results as our final output and optimize the
fusion results as

['fusion = Ecls (Pfusiovu P*) + )\Ereg(Bfusionv B*), (6>

where
Pfusion = Z‘Sz P (7)
Bfusion = Z'Y’i Bi- (8)

0; and ~; are hyper-parameters optimized in training stage automatically. Our
final loss function can be defined as follows

loss = Efusion + Z £stagei . (9)

In inference stage, we only take the fusion output as our final outputs when
tracking object.

4 Experiment

In this section, we first introduce the training details and hyper-parameters set-
ting of the proposed method. After that, we evaluate our network on four public
tracking test datasets, including VOT2018 [16], VOT2018-LT [16], LaSOT [7]
and OTB2015 [30], and compare it with state-of-the-art trackers.

4.1 Implementation details

In training stage, the input size of search images is set to 255 x 255. And the tem-
plate image size is set to 127 x 127, which is much larger than target area. After
processing template image with feature extract network, we crop the center 7x 7
regions as the template feature to reduce the influence of padding. Besides some
common data argumentations, we add 10% negative sample pairs to improve the
ability of network for discriminating difficult samples. The training loss is de-
fined as Eq. (9) with balance factor A = 1.2. The modified ResNet50 is initialized
with pre-trained parameters on ImageNet and the other parts with random pa-
rameters. We train the proposed network with 430000 iterations with batch size
of 28. For the first 110000 iterations, we train target localization subnetwork
with warmup learning rate of 0.001 to 0.005. The following 320000 iterations
are trained with learning rate decay from 0.005 to 0.0005. For the last 215000
iterations, the whole network is trained end-to-end.

The proposed method is trained on PyTorch deep learning framework with
8 TITANV GPUs and tested one TITAN X GPU. We utilize two large track-
ing datasets, including ImageNet VID [24] and YouTube-BoundingBoxes [23]
datasets, and two large object detection datasets, including COCO [20] and Im-
ageNet DET [24] datasets to train the network. Specifically, we crop the same im-
age into template and search images respectively in ImageNet DET and COCO.
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4.2 Ablation experiments

To investigate the impact of different similarity calculating methods, we train
networks with depthwise correlation (DW-Corr) and PG-corr respectively. Eval-
uation results on VOT2018 are presented in Table 1. Network with PG-corr
yields a great improvement compared with DW-Corr. The evidence shows that
our PG-corr is a more efficient method for similarity matching.

To verify the improvement of applying multiple losses mechanism in our
network, we use features from Stages, Stages and Stage, respectively to track
targets. Table 1 shows the EAO evaluated results on VOT2018. “Stage;” shows
the tracking results only from the coresponding stage 7. And “Output” is our
final tracking output from fusion results. “PG-Net” means PG-Net only trained
with loss function (6). “PG-Net-mult-loss” means our network is traind with
loss function (9). Experiment shows that results of each stage have obvious
improvement after constraining each stage, which further promotes the final
tracking results more accurate.

Table 1. Expected Average Overlap (EAO) comparation results on VOT2018 dataset
for different similarity calculating methods and training strategies.

Stages Stages Stages Output
DW-Corr / / / 0.408
PG-Net 0.146 0.264 0.029 0.427
PG-Net-mult-loss| 0.299 0.344 0.313 0.447

4.3 Evaluation on VOT2018

We test the proposed network on VOT 2018 test dataset and compare it with 8
state-of-the-art methods, including Siamese network based algorithms and corre-
lation filter based algorithms. VOT2018 is a public dataset for evaluating short-
term performance of trackers, which contains 60 sequences totally with different
challenging factors. We compare different trackers on Expected Average Over-
lap (EAO), Accuracy (A) and Robustness (Ro). The detailed comparison results
are presented in Table 2. From Table 2, we observe that the proposed method

Table 2. Comparison results on VOT2018 dataset with performance measures of EAO,
Accuracy and Robustness.

DaSiam UPDT SiamRPN MFT LADCF CFS-DCF ATOM SiamRPN++ Ours

(38] (3] (18] ]33] (32] [5] (17]
EAOT| 0.326 0.378 0.383 0.385 0.389  0.397  0.401 0.414  0.447
At 0.569 0.536  0.586 0.505 0.503  0.511  0.590 0.600  0.618

Rol 0.337 0.184 0.276  0.140 0.159 0.143 0.204 0.234 0.192
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achieves the best performance on EAO and Accuracy compared with existing
methods. Especially in EAO score, our method achieves 0.447, which outper-
forms the state-of-the-art tracker SiamRPN++ with 0.414. The improvement
mainly comes from the intelligent design of PGM. As for Roubustness, although
weaker than online updating based methods, our network outperforms all of-
fline tracking methods. Fig. 7 shows the evaluation results of EAO on VOT2018
dataset with respect to the Frames-Per-Second (FPS). According to the plot, the
proposed method achieves the best performance among the compared methods
while running with 42 FPS on one TITAN X GPU.

Speed vs EAO on VOT2018
@

PG-Net
ECO
UPDT
CFCF
SiamMask
ATOM

» H LADCF
‘ SiamRPN++
MFT
SiamRPN
SA_Siam_R
0-34 | DeepSTRCF

A
oVAe <O

30 40 50 60
FPS

Fig. 7. The comparison of the quality and the speed with state-of-the-art trackers on
VOT2018. We compare the EAO with respect to FPS.

4.4 Evaluation on VOT2018-LT

In VOT2018 challenge, a long-term tracking dataset (VOT2018-LT) is intro-
duced. This dataset is composed of 35 long sequences. Targets in these sequences
may be obscured completely or moved out of the lens for a long period. Accord-
ing to the statistics, the target in each video will disappear 12 times on average.
There are three metrics used to evaluate the method, including Precision (P),
Recall (R) and a combined F-score (F). According to the results shown in Ta-
ble 3, the proposed PG-Net ranks 1st compared with state-of-the-art trackers on
all metrics. Especially, our method significantly outperforms the state-of-the-art
tracker SiamRPN++ by 3% on Precision.

4.5 Evaluation on LaSOT dataset

To further verify the performance of proposed method, we evaluate it on Large-
scale Single Object Tracking (LaSOT). This dataset is composed of large scale
high quality sequences. There are totally 280 videos and 70 categories in the
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Table 3. Comparison with state-of-the-art trackers on VOT2018-LT tracking dataset.

SiamVGG FuCoLoT PTAVplus LTSINT MMLT DaSiam MBMD SPLT SiamRPN++ Ours
[19) [22) 8] n6] (1] [38]  [35 [34] [17)

Fr 0.459 0.480 0.481 0.536 0.546  0.607 0.610 0.616 0.629 0.642

Pt 0.552 0.538 0.595 0.566 0.574 0.627 0.634 0.633 0.649 0.679

Rt 0.393 0.432 0.404 0.510 0.521 0.588 0.588 0.600 0.610 0.610

Success plots of OPE on LaSOT Testing Set Normalized Precision plots of OPE on LaSOT Testing Set
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Fig. 8. Evaluation results on LaSOT dataset. (a) is the success rate curves and (b) is
precision curves.

dataset. Similar to VOT2018-LT, it focuses on long-term tracking with aver-
age sequence length of 2512 frames. Fig. 8 reports the evaluation results of the
proposed method and the comparison methods. We compare success rate and
normalized precision among these methods. Our method achieves success rate
of 53.1% which outperforms ATOM by 1.6%. And the normalized precision sur-
passes other method by 2.9%.

4.6 Evaluation on OTB2015

We also compare the performance with other state-of-the-art methods on OTB-
2015 dataset. OTB2015 is a widely used tracking benchmark consists of 100
sequences. Notice that there is no any reset and updating in the whole tracking
process, which provides a fair testbed on robustness. Here we measure success
rate and precision for comparison. The evaluated results are shown in Fig. 9. Our
method achieves a comparable results with state-of-the-art method SiamRPN++
on success rate.

5 Conclusion

In this paper, we present a novel Pixel to Global Matching Network to achieve
high performance similarity matching by suppressing the influence of back-
ground. We show theoretical and empirical evidence that how PGM suppresses
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Success plots of OPE on OTB2015 Testing Set Precision plots of OPE on OTB2015 Testing Set
1.0 1.0
0.9 0.9 e
0.8 0.8 77
—— 10.696] SiamRPN++ 7 — 10.923] SlamDW
% 0.71 — [0.6011 PG-Net - 0.7 % — (0917 ViTAL
© — [0.688] DiMP —— (0.915] SiamRPN++
7 087 = tossavma 2 0.6 —— [0.909] MDNet
& 0.5 — [0.678] MDNet G 0.5 —— 0.900] DIMP.
I¥] — [0.671] ATOM @ —— [0.892] PG-Net
O 0.4 — [0.666] SiamdW & 0.4 —— 10.887] DAT
a — [0.663] DAT — [0.882] ATOM
03 10.658] DaSiamAPN 0.3 10.880] DasiamRPN
—— 10.658] TADT —— [0.863] TADT
0-29 10,632 Meta-racker 0.2 — [0.848] Meta-tracker
0.1 — 106231 cresT \ 0.1 —— (0837 CREST
| — 10,6191 upTpIUS . —— [0.824] UDTplus
0.0 0.0
0.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0 0 5 10 15 20 25 30 35 40 45 50
Overlap threshold Location error threshold
(a) (b)

Fig. 9. Success plots and precisions plots show the comparison of our method with
other state-of-the-art methods on OTB2015 dataset.

background in similarity matching. And by employing a lightweight network
structure and multiple losses mechanism, our approach can reduce the compu-
tational complexity and further improve the tracking accuracy. Comprehensive
experiments are conducted on VOT2018, VOT2018-LT, LaSOT and OTB2015
tracking benchmarks. The results show that our approach achieves state-of-the-
art performance.
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