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In this supplementary material, we present additional quantitative and quali-
tative analysis of the zero-shot recognition performance of our TF-VAEGAN frame-
work. While the additional quantitative results are presented in Sec. 1, the qual-
itative results are discussed in Sec 2 of this supplementary.

1 Quantitative Results

In this section, we present the ablation studies with respect to the feedback
design choices and the choice of latent embeddings.
Feedback design choices: Here, we explore the effect of changing the input
to the feedback module F and its associated training strategy on CUB. Orig-
inally, the input to F is taken from discriminator D and the training of F is
performed in a two-stage strategy. This setup is denoted by TwoStage+D and ob-
tains classification performance of 61.4% and 53.3% for ZSL and GZSL. Instead,
in our approach, the input to F is taken from SED Dec. This setup is denoted by
TwoStage+Dec and achieves performance of 62.0% and 53.8% for ZSL and GZSL.
Further, we utilize an alternate training strategy combined with TwoStage+Dec

to facilitate the generator training, thereby improving feature synthesis. This
setup, denoted by Our Feedback, achieves improved performance of 62.8% and
54.8% for ZSL and GZSL. These results show that (i) TwoStage+Dec provides
improved performance over original TwoStage+D and (ii) the best results are
obtained by Our Feedback, demonstrating the impact of our modifications for
improved zero-shot recognition.
Choice of latent embeddings for T-feature: Here, we evaluate the impact of
concatenating different embeddings from SED to the baseline features. We com-
pare our proposed concatenation (T-feature) of baseline features with latent
embeddings h of SED with both the original baseline features (OrigFeat) and the
baseline features concatenated with the reconstructed attributes (ConcatFeat).
On CUB, OrigFeat achieves 61.2% and 53.5% on ZSL and GZSL tasks, re-
spectively. ConcatFeat achieves gains of 1.6% and 2.0% over OrigFeat. In case
of ConcatFeat, the reconstructed attributes have single feature representations
per-class with inter-class separability but no intra-class diversity. Different to
reconstructed attributes, the latent embeddings h possess both intra-class di-
versity (multiple feature instances per class) and inter-class separability. Our
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T-feature exploits these properties of latent embeddings with improved results
over both OrigFeat and ConcatFeat. Compared to OrigFeat, T-feature ob-
tains gains of 2.8% and 3.4% on ZSL and GZSL tasks, respectively.

2 Qualitative Analysis

2.1 Feature Visualization Comparison

Here, we present the implementation details and additional qualitative results
for the visualization of synthesized features discussed in Sec. 4.2 of the paper.
Implementation details: The image generator, which inverts the feature in-
stances to images of size 64x64, consists of a fully-connected (FC) layer followed
by five upconvolutional blocks. Each upconvolutional block contains an Upsam-
pling layer, a 3x3 convolution, BatchNorm and ReLu non-linearity. An `1 loss
between the ground truth and inverted images, along with a perceptual loss (`2
loss between the corresponding feature vectors at conv5 of a pre-trained ResNet-
101) and an adversarial loss are employed to construct good quality images. The
discriminator, required for adversarial training, takes image and feature embed-
ding as inputs. The input image is processed through four downsampling blocks
to obtain an image embedding, while the feature embedding is passed through
an FC layer and spatially replicated to match the spatial dimensions of the ob-
tained image embedding. The resulting two embeddings are concatenated and
passed through convolutional and sigmoid layers for predicting whether the in-
put image is real or fake. The model is trained on all the real feature-image pairs
of the 102 classes of FLO [1].
Visualization: The comparison between Baseline and our Feedback synthe-
sized features on eight example flowers is shown in Fig. 1. For each flower class, a
ground-truth (GT) image along with three images inverted from its GT feature,
Baseline and Feedback synthesized features, respectively are shown. Generally,
inverting the Feedback synthesized feature yields an image that is semantically
closer to the GT image than inverting the Baseline synthesized feature. In-
verting the feature instances from our Feedback improves the color of bud and
shape of petals (Californian poppy, Globe flower and Osteospermum), struc-
ture of the flower (Hippeastrum), in comparison to the Baseline synthesized
features. A considerable improvement for our Feedback over the Baseline is
visible in these flowers (Californian poppy, Globe flower, Hippeastrum and Os-
teospermum). However, there are a few challenging cases (e.g., Globe thistle,
Windflower, Sweet william, Moon orchid), where a semantic gap still exists be-
tween the inversion of real features (denoted as Reconstructed) and inversion
of Feedback synthesized features, even though there is a marginal improvement
for our Feedback over the Baseline. These qualitative observations suggest that
our Feedback improves the feature synthesis stage over the Baseline, where no
feedback is present, resulting in improved zero-shot classification.
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Fig. 1: Qualitative comparison between inverted images of Baseline synthesized
features and our Feedback synthesized features on eight example classes of FLO [1].
The ground-truth image (GT) and the reconstructed inversion (Reconstructed) of
its real feature are also shown for each example. Inverting the feature instances from
our Feedback improves the color of bud and shape of petals (Californian poppy, Globe
flower and Osteospermum), structure of the flower (Hippeastrum), in comparison to the
Baseline synthesized features. Semantic gap still exists between the inversion of real
features (denoted as Reconstructed) and inversion of Feedback synthesized features for
a few challenging cases (e.g., Globe thistle, Windflower, Sweet william, Moon orchid),
even though there is some improvement for our Feedback over the Baseline. These
observations suggest that our Feedback improves the quality of synthesized features
over the Baseline, where no feedback is present. Best viewed in color and zoom.
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2.2 Classification Performance Comparison

Here, we qualitatively illustrate the performance of our TF-VAEGAN framework,
in comparison to the baseline f-VAEGAN [3] method, on two fine-grained object
recognition datasets: CUB and FLO. Fig. 2 and 3 present the comparison on
CUB and FLO, respectively. For each dataset, images from five most confusing
categories (with respect to the baseline f-VAEGAN) are shown. The comparison is
illustrated for five image instances in each category. The ground truth instances
are shown in the top row for each category, followed by the classification results
of the baseline and proposed frameworks in second and third rows, respectively.
Correctly classified images are marked with a green border, while the incorrectly
classified images are marked with a red border. For the misclassifications, the
name of the incorrectly predicted class is denoted below the instance for the
respective methods.
CUB: The qualitative comparison between the baseline and the proposed ap-
proaches for the CUB [2] dataset is shown in Fig. 2. Five categories of birds that
are most confusing for the baseline approach are presented. The categories are
Prairie warbler, Great crested flycatcher, Grovve billed ani, Herring gull and Cal-
ifornia gull. Generally, for all these categories, the baseline f-VAEGAN approach
confuses with similar looking bird categories in the dataset. Our TF-VAEGAN re-
duces this confusion between similar looking classes and improves the classifi-
cation performance. In Fig. 2, we observe that the baseline approach confuses
Prairie warbler class with other similar looking warbler categories such as Blue
winged warbler, Magnolia warbler and Orange crowned warbler. This confusion
is reduced in the predictions of our TF-VAEGAN. Similarly, the confusion present,
in the baseline method, between the Great crested flycatcher and other flycatcher
categories is reduced for the proposed method. As a result, the overall classifi-
cation performance improves for the proposed method over the baseline.
FLO: Fig. 3 shows the qualitative comparison for five categories of flowers from
the Oxford Flowers [1] dataset that are most confusing for the baseline method.
The categories are Dafodil, Pink primrose, Siam tulip, King Protea and Com-
mon dandelion. For all these categories, the proposed TF-VAEGAN reduces the
confusion present between the similar looking classes in the baseline f-VAEGAN

approach and improves the classification performance. In general, we observe
that the instances are misclassified to other similar looking categories in the
dataset. E.g., instances of Common dandelion are commonly misclassified as ei-
ther Colt’s foot or Yellow iris. All three categories have yellow flowers and share
similar appearance. We observe that the baseline makes confused predictions
with respect to these classes. However, the confusion is less in the predictions of
the proposed TF-VAEGAN. This leads to a favourable improvement in the zero-
shot classification performance for the proposed approach. Similar observations
can also be made in the case of other categories. The baseline f-VAEGAN gener-
ally confuses Dafodil with Globe flower and Yellow iris due to the yellow colour,
while Pink primrose is mostly confused with Petunia and Monkshood due to the
pinkish petals in the flowers. The misclassifications are reduced when using the
proposed TF-VAEGAN for classification, resulting in an improved performance.
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Fig. 2: Qualitative comparison between the baseline and our proposed approach on
the CUB [2] dataset. The comparison is based on the most confusing categories as
per the baseline performance. For each category, while the top row denotes different
variations of ground truth class instances, the second and third rows show the classi-
fication predictions by the baseline and proposed approaches, respectively. The green
and red boxes denote correct and incorrect classification predictions, respectively. The
class names under each red box show the corresponding incorrectly predicted label.
In general, we observe that the instances are misclassified to other similar looking
categories in the dataset. For instance, Prairie warbler is confused with Blue winged
warbler, while Groove billed ani is confused commonly with Common raven. For all
these categories, the proposed TF-VAEGAN reduces the confusion among similar looking
classes in the baseline f-VAEGAN and improves the classification performance over the
baseline. See associated text for additional details. Best viewed in color and zoom.
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Fig. 3: Qualitative comparison between the baseline and our proposed approach on
the Oxford Flowers [1] dataset. The comparison is based on the most confusing cate-
gories as per the baseline performance. For each category, while the top row denotes
different variations of ground truth class instances, the second and third rows show
the classification predictions by the baseline and proposed approaches, respectively.
The green and red boxes denote correct and incorrect classification predictions, re-
spectively. The class names under each red box show the corresponding incorrectly
predicted label. In general, we observe that the instances are misclassified to other
similar looking categories in the dataset. For instance, Common dandelion is confused
with Colt’s foot, while Pink primrose is confused with Petunia. For all these categories,
the proposed TF-VAEGAN reduces the confusion among similar looking classes in the
baseline f-VAEGAN and improves the classification performance over the baseline. See
associated text for additional details. Best viewed in color and zoom.
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