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Abstract. Kinship verification is a well-explored task: identifying whether
or not two persons are kin. In contrast, kinship identification has been
largely ignored so far. Kinship identification aims to further identify the
particular type of kinship. An extension to kinship verification run short
to properly obtain identification, because existing verification networks
are individually trained on specific kinships and do not consider the con-
text between different kinship types. Also, existing kinship verification
datasets have biased positive-negative distributions which are different
than real-world distributions.
To this end, we propose a novel kinship identification approach based on
joint training of kinship verification ensembles and classification modules.
We propose to rebalance the training dataset to become more realistic.
Large scale experiments demonstrate the appealing performance on kin-
ship identification. The experiments further show significant performance
improvement of kinship verification when trained on the same dataset
with more realistic distributions.

Keywords: kinship identification, kinship verification ensemble, joint
learning

1 Introduction

Kinship is the relationship between people who are biologically related with over-
lapping genes [17,18], such as parent-children, sibling-sibling, and grandparent-
grandchildren [1,20,21,28]. Image-based kinship identification is used in a variety
of applications including missing children searching [28], family album organiza-
tion, forensic investigation [21], automatic image annotation [17], social media
analysis [34,6,3], social behavior analysis [14,35,19,11], historical and genealogi-
cal research [15,6], and crime scene investigation [16].

While kinship verification is a well-explored task, identifying whether or not
persons are kin, kinship identification, which is the task to further identify the
particular type of kinship, has been largely ignored so far. Existing kinship veri-
fication methods usually train and test each type of kinship model independently
[24,20,28] and hence do not fully exploit the complementary information among
different kin types. Moreover, existing datasets have unrealistic positive-negative
sample distributions. This leads to significant limitations in real world applica-
tions. When conducting kinship identification, since there is no prior knowledge
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Fig. 1: Identification of kinship relationships using verification ensembles. (a) Ex-
isting verification networks are trained independently resulting in contradictory
outputs. (b) The output of our proposed joint training

of the distribution of images, all independently trained models are used to de-
termine the kinship type of a specific image pair. Fig. 1 shows an example of
providing an image pair to four individually trained verification networks based
on a recent state-of-the-art method by Yan et al. [33]. The network generates
contradictory outputs showing that the test subjects are simultaneously father-
daughter, father-son, mother-son and mother-daughter.

In this paper, a new identification method is proposed to learn the identifica-
tion and verification labels jointly i.e. combining the kinship identification and
verification tasks. Specifically, all kinship-type verification models are ensembled
by combining the binary output of each verification model to form a multi-class
output while training. The binary and multi-class models are leveraged in a
multi-task-learning way during the training process to enhance generalization
capabilities. Also, we propose a baseline multi-classification neural network for
comparison.

We test our proposed kinship identification method on the KinfaceWI and
KinfaceWII datasets and demonstrate state-of-the-art performance for kinship
identification. We also show that the proposed method significantly improves the
performance of kinship verification when trained on the same unbiased dataset.

To summarize, the contributions of our work are:

– We propose a theoretical analysis in metric space of relationships between
kinship identification and kinship verification.

– We propose a joint learnt network that simultaneously optimizes the perfor-
mance of kinship verification and kinship identification.

– The proposed method outperforms existing methods for both kinship iden-
tification and unbiased kinship verification.
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2 Related Work

Kinship Verification Fang et al. [10] are the first to use handcrafted feature de-
scriptors for kinship verification. Later, Xia et al. collected a new dataset with
young and old parent images to utilize the intermediate distribution using trans-
fer learning [29,30]. Lu et al. [18,36] propose a series of metric learning methods.
Other handcrafted feature-based methods can be found in [31,27,29,37,7,17,32,9].
Deep learning-based methods [35,33] exploits the advantages of deep feature rep-
resentations by using pre-trained neural networks in an off-the-shelf way. Zhang
et al. are the first to use deep convolutional neural networks [35], and Yan et
al. [33] are the first to add attention mechanisms in deep learning networks for
kinship verification. In recent years, there is a trend to combine different features
from both traditional descriptors [31,36] and deep neural networks [4,13,22] to
generate better representations [2]. (m)DML [8,25] combines auto-encoders with
metric learning. However, these methods focus on specific types of kinship and
train and test on the same kinship types separately, which may not be feasible
in real-world scenarios.

Kinship Identification Different from kinship verification, kinship identification
attracted less attention [1]. [1,20] only slightly deal with kinship identification.
Guo et al. [12] propose a pairwise kinship identification method using a multi-
class linear logistic regressor. The method uses graph information from one image
with multi inputs. The paper is based on ”kinship recognition” and uses a strong
assumption that all the data is processed by a perfect kinship verification algo-
rithm. Since there is not sufficient data with family annotations, the method is
limited by using multi-input labels. In contrast, our method handles negative
pairs and focuses on pair-wise kinship identification. For example, in the context
of searching for missing children, we need to handle each potential pair online
and find the most likely pair for specific kinship types. In this case, we need
to filter the online data and test the most likely data after filtering. As for the
family photo arrangement or social media analysis, the aim is to understand the
relationships between persons in a picture. There are usually many faces and dif-
ferent kinship relations in a family picture. Hence, the goal is to verify the most
likely pairs among negative pairs. Previous methods are not able to cope with
this scenario. Fig 2 shows that kinship verification is closely related to kinship
identification. As a consequence, we propose a new approach by jointly learning
all independent models with kinship verification and identification information.

3 Kinship Identification through Joint Learning with
Kinship Verification

In this section, we first introduce the three types of relationship understanding:
kinship verification, kinship identification, and kinship classification. Based on
this, we introduce the current challenge on kinship identification. Finally, we in-
troduce the concept of conducting kinship identification by using a joint learning
strategy between kinship identification and kinship verification.
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Fig. 2: Flowchart of the relation between kinship verification and kinship iden-
tification. (a) Kinship verification is used as a preliminary process for kinship
identification. (b) The kinship identification process can be divided into two
steps: kinship identification and kinship verification on a specific type.

3.1 Definition of Kinship Verification, Kinship Identification and
Kinship Classification

Kinship recognition is the general task of kinship analysis based on visual in-
formation. There are mainly three sub-tasks [20,1]: kinship verification, kinship
identification, and kinship classification (e.g. family recognition). The goal of
kinship verification is to authenticate the relationship between image pairs of
persons by determining whether they are blood-related or not. Kinship identifi-
cation aims at determining the type of kinship relation between persons. Kinship
classification [28,20] is the recognition of the family to which a person belongs
to. Fig. 2 illustrates the relationship between these tasks. This paper focuses on
kinship identification, which is an important but not well-explored topic. Unlike
other kinship recognition methods [26,5,23,12], which take images of multiple
people as input to predict the relationships between them, the kinship identifi-
cation task targets at classifying the kin-type of image pairs (negative pairs also
included).

3.2 Relationship between Kinship Verification and Kinship
Identification and the Limitation of Existing Methods

Relation between the Two Tasks In the literature, kinship verification and
identification are two tasks which are studied separately but are closely related.
When analyzing the kinship relation between persons, verification is usually
applied first to determine whether these persons are kin or not. Then, the kinship
type is defined. Fig. 2.a shows the common process of kinship analysis, where
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Fig. 3: Feature space of models during training. Similar feature shapes indicate
that the samples are from the same family. Joint learning better represents the
context between different kinship relationships. Small circles are used to repre-
sent focused samples in feature space.

kinship verification is used as a preliminary process for kinship identification.
Furthermore, kinship identification can be divided into two steps, as shown in
Fig. 2.b. In the first step, the images are preliminarily classified by the kinship
identification model. Then, the classified images are sent to the corresponding
verification model. Due to the differences of inherited features among different
kin-type images, the kinship verification model provides a better representation
than a general kinship identification model. On the other hand, since the kinship
identification process filters out irrelevant samples, it provides a consistent and
similar feature distribution for kinship verification modelling. In this way, kinship
verification and identification are two complementary processes, and can benefit
from each other.

Representation of Kinship Relationships in Metric Feature Space and
Limitation of Existing Methods In the literature, metric learning is a pop-
ular approach for kinship verification. Ideally, the learnt metric space represents
kinship likeness for smaller distances. However, existing kinship verification mod-
els only consider specific kinship types and ignore the influence of other types.

As shown in Fig. 3a, when the father-daughter verification model is being
trained, the features of father and daughter samples will be congregated dur-
ing the training process and the negative daughter images will be pulled apart.
However, due to the negative samples of father-son pairs, which are not included
in the training data, the features of son images are less affected by the train-
ing process pulling father-son images apart. A narrow-down training of kinship
verification can improve the representation of each sample within a specific kin-
type. However, since the model does not thoroughly learn other types of negative
samples, the separate trained models can easily conflict with each other result-
ing in ambiguous results. In contrast, a multi-classification method not only
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Fig. 4: Structure of the approaches using four relationships as an example.

considers different types of images but also the interaction between different
types. As shown in Fig. 3b, the son features will be learned as negative features
for the father-daughter feature space, whereas the features of daughters will be
considered as negative features for the father-son space. The yellow arrows in
Fig. 3b indicate negative samples which will be separated from the matched
feature space. A multi-classification method may obtain a weaker representa-
tion for a specific kin-type because of the large difference of inherited features
among different kin-type images. A joint learning method has the advantage of
the generalization of multi-class training and the representation of individual
verification models. Hence, identification methods based on joint learning not
only repulse negative pairs of different kinship types but also push the potential
negative images to the target feature space, which is illustrated in Fig. 3c.

Real World Kinship Distribution and Dataset Bias Note that the pro-
portion of positive and negative samples is highly unbalanced for existing kinship
verification datasets. This unbalanced distribution has a negative impact on dif-
ferent applications. Take the online family picture organization application for
example. The problem is to determine the matched pairs of images for a spe-
cific kinship relationship when the number of kin-related samples only contains
a small portion of the entire dataset. Another example is that, when searching
for missing children, to retrieve a picture that looks the most like the son of the
parents in which the majority of these samples are negative samples.

4 Joint Learning of Kinship Identification and Kinship
Verification

We propose a joint learning network (JLNet) based on the learning strategy
shown in Fig. 4c aiming to utilize the representation capability of kinship veri-
fication models as well as making use of the advantages of multi classification.
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This approach consists of two major steps: the combination of different types of
images and joint learning.

The main ideas of the approach are summarized as follows:

1. We utilize all different kin-types of image pairs to train each kinship model,
not based on a specific type.

2. Different models are trained jointly to differentiate negative kinship feature
pairs from the matched model and to merge positive pairs as much as pos-
sible.

Note that naively using a single classification network (Fig. 4.a) or naively
combining multiple verification networks (Fig. 4.b) are not suitable approaches.
As described above, our network (Fig. 4.c) utilizes the advantage of both tasks.
Without loss of generality, we outline our approach for four relationships: father-
daughter (F-D), father-son (F-S), mother-daughter (M-D), mother-son (M-S).

4.1 Architecture of the Proposed Joint Learning Network (JLNet)

The new Joint Learning Network(JLNet) is illustrated in Fig. 5. The structure
of JLnet consists of two parts: the individual Verification Module and the Joint
Identification Module.

Individual Kinship Verification Module As shown in Fig. 4.c, each Individ-
ual Kinship Verification Module is defined as a binary classification problem. Let
S =

{(
Iαpi , I

α
ci

)
, i = 1, 2, . . . , N, α = 1, 2, 3, 4, β = 1, 2, 3, 4

}
be the training set of

N pairs of images. And α ∈ {1, 2, 3, 4} and β ∈ {1, 2, 3, 4} correspond to the fol-
lowing kinship types: father-daughter, father-son, mother-daughter, mother-son
respectively. Then, the Individual Verification Module is defined by:

ŷ = Dnθ
(
Iαpi , I

β
ci

)
, (1)
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where Iαpi ∈ RH×W×3 ith parent image from α type data set and Iαci ∈ RH×W×3
is the jth child image from β type data set. The output ŷ of each Individual
kinship verification Module is a 1× 2 vector. An Attention Network[33] is used
as the basic architecture for each Individual Kinship Verification Module. As
shown in Fig. 5, the Attention Network uses a bottom-up top-down structure
and consists of three attention stages. Each stage consists of one attention mod-
ule and one residual structure. To exploit the shared information between the
complimentary tasks, the parameters of the two stages of the Attention Network
are shared to learn low-level and mid-level features from the input images. This
forms the Basic-feature Extraction Sub-module. This Basic-feature Extraction
Sub-module extracts the basic, generic facial features. Then, high-level features
are extracted: four separate branches are added after the last layer (a max pool
layer) of the Basic-feature Extraction Sub-module. Each branch focuses on one
specific kin-type separately, resulting in four Kinship Mapping Sub-modules.
Each of this sub-Module obtains the third stage of the Attention Network and
focuses on different kinship types.

Joint Identification Module The binary outputs of each Individual Kinship
Verification Module are ensembled. The binary output is described in Eq. 1. The
multiple output Ô of the kinship identification module is defined by:

Ôm =

minn∈{1,2,3,4}Dnθ
(
Iαpi , I

β
cj

)
z=1

, if m = 0

Dmθ
(
Iαpi , I

β
cj

)
z=2

if m 6= 0
, (2)

where m ∈ {1, 2, 3, 4, 5} represents the mth item of vector Ô and z represents
zth item of the output vector of Dnθ . The output class C is defined by:

C = arg max
z∈{1,2,3,4,5}

σ(Ô)z, (3)

where σ(·) is the softmax function.
During the training, the Weighted Cross Entropy loss is used for both kinship

verification and identification:

L = −
n∑
i=1

wnlog(σ(·)n), (4)

where n is the class label of the kinship verification or identification output and
σ(·)n is the nth output of the softmax function. The loss of the joint learning
model is given by a weighted summation of the kinship verification loss (from
binary outputs) and the kinship identification loss (from multiple outputs):

L =

4∑
i=1

λiLkvi + λ5LkI , (5)

where LkI is the Weighted Cross Entropy loss of the kinship identification output
given by Eq. 4 and λi is the ith weight of each loss.
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4.2 Comparative Methods

Ensemble Method based on Kinship Verification Models (Ensemble
Net) Fig. 4.a shows the structure of the Ensemble Method based on Kinship
Verification Models (Ensemble Net). The Individual Kinship Verification Mod-
ules of the Ensemble Net have the same structure as JLNet. While testing, the
Ensemble Net feeds the images into four kinship verification models simultane-
ously and ensembles four binary outputs. The output class C is defined by:

C =

0 if maxn σ(Dnθ
(
Iαpi , I

β
cj

)
)z=2 < 0.5

argmaxn σ(Dnθ
(
Iαpi , I

β
cj

)
)z=2, otherwise

,

(6)
where Iαpi is the ith parent image from α type data set and Iβcj is the jth child
image from β type data set.

Multi-Classification Neural Network (Multi-class Net) The structure of
the Multi-Classification Neural Network (Multi-class Net) is shown in Fig. 4.b.
Similar to the Ensemble Net, Multi-class has the same backbone with the Indi-
vidual Kinship Verification Module of JLNet. The Multi-class Net handles the
kinship identification task as a multiple classification problem:

ŷ = Dθ
(
Iαpi , I

β
ci

)
, (7)

where S =
{(
Iαpi , I

β
ci

)
, i = 1, 2, . . . , N, α = 1, 2, 3, 4, β = 1, 2, 3, 4

}
and the output

ŷ is a 1× 5 vector.

5 Experiments

5.1 Unbias Dataset for Training and Testing

Three types of benchmark datasets are generated from the KinfaceWI and Kin-
faceWII datasets [17,18] consisting of four kinship types: father-daughter (F-D),
father-son (F-S), mother-daughter (M-D), mother-son (M-S). To conduct the
experiment on unbiased datasets, we re-balance the KinfaceWI and KinfaceWII
datasets into three different benchmark datasets as follows:

1. Independent Kin-type Image Set : This dataset has four independent subsets,
where each subset contains one specific kinship type. This dataset simulates
a dataset obtained by an ideal kinship classifier. The split of this image
set is the same as KinfaceWI or KinfaceWII. The positive samples are the
parent-children pairs with the same type of kinship. The negative samples
are the pairs of unrelated parents and children within the same kin-type
distribution. The positive and negative ratio is 1 : 1.
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2. Mixed Kin-Type Image Set : This dataset combines four different kin-type
images taken from the KinfaceWI or KinfaceWII datasets resulting in the
type ratio (father-daughter: father-son: mother-daughter: mother-son: neg-
ative pairs) to be 1 : 1 : 1 : 1 : 4. This image set is used for both training
and testing. Image pairs with kinship relations are denoted as positive sam-
ples. Negative samples are random image pairs without kinship relation but
within the same type of distribution.

3. Real-Scenario Kin-Type Image Set : This dataset simulates the data distribu-
tion for real-world scenarios (e.g. retrieval of missing children). All the images
in the kinfaceWI or KinfaceWII datasets are paired one by one, which leads
to a highly unbalanced positive-negative rate. Taking KinfaceWII as an ex-
ample, in each cross-validation, there will be 400 images (200 positive pairs)
to be tested. All these images are paired one by one. The ratio of positive
and negative pairs is 1 : 398.

5.2 Experimental Design

All methods are trained on the Mixed Kin-Type Image Set. The dataset is di-
vided into 5-folds and verified by a 5-cross validation. We use the same data
augmentation for all methods. The data is augmented by randomly changing
the brightness, contrast, and saturation of the image. Random grayscale vari-
ations, horizontal flipping, perspective changes, and resizing and cropping are
also included. All images have the same size 64 × 64 × 3, and the batch size is
set to be 64.

Proposed Joint Learning Method (JLNet) The training scheme of JLNet
is divided into two phases. The first one is to train the network parameters for
the four models independently. The weighted cross entropy is used for updat-
ing and the weight list is set to be [0.25, 8] for each verification output. The
second phase is to update network parameters jointly by using both binary and
multiple-outputs. The weight matrix of the cross-entropy of the multiple outputs
is set to [0.18, 2, 2, 2, 2], and λi of the total loss is 1 : 1 : 1 : 1 : 10 respectively.
Adam is used as optimizer and the learning rate is set to 10−4. Since there is no
public code available for the attention network, we re-implemented the attention
network from scratch. During testing of the kinship verification of each individ-
ual kin-type, the binary output of the matched Individual Kinship Verification
Module is taken as the final result. During testing of the kinship identification
task, both the binary outputs (for kinship verification) and multiple outputs (for
kinship identification) are used. A combined result based on the confidence of
these two types of outputs are taken as the final result.

Ablation Study

– Joint Learning without Backpropagation of Multiple Outputs (JLNet†): To
assess the performance of additional multi-classification outputs, the struc-
ture of JLNet† is kept the same as JLNet. Further, JLNet† is trained in the
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same way as JLNet, but without using multiple output results for parameter
updating.

– Joint Learning using Multiple Outputs for Kinship Identification (JLNet‡):
We use the trained model of JLNet directly but only the multiple output is
taken as the final result during testing.

Experiments and Comparison

Ensemble Net For Ensemble Net, we provide two ways to train the models:

– Ensemble Net* : Each verification model is trained separately on the Inde-
pendent Verification Image Set, which is the same as [33]. This means that
each independent kinship verification module is only trained on matched
data.

– Ensemble Net : Each verification model is trained on the Mixed-Type Image
Set, which is the same as the training data of JLNet and Multi-class Net.
Adam is used and the learning rate was set to be 10−4. The weights of the
cross entropy are 0.25, 8.

Multi-Class Net Also for the Multi-Class Net, Adam is used as an optimizer. The
learning rate is again 10−4. A weight list of [0.1,1,1,1] is used for the weighted
Cross Entropy loss.

5.3 Results & Evaluation

The methods are evaluated on the different datasets. Five-cross validation is
used as the evaluation protocol. As a reminder, Ensemble Net* is trained on
the Independent Kin-Type Kinship Image Set, JLNet† is trained without Back-
propagation of Multiple Outputs, and JLNet‡ uses multiple outputs as the final
result. The results are shown in Table 1-5.

Table 1: The accuracy of different methods through 5-fold cross-validation on
the Independent Kin-Type Image Set.

KinfaceWI KinfaceWII
Methods

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Ensemble Net* 0.7017 0.7506 0.7410 0.615 0.7021 0.746 0.7440 0.7520 0.7320 0.7435

Multi-class Net 0.6463 0.6797 0.6650 0.5770 0.6420 0.5880 0.6240 0.6200 0.5920 0.6060
Ensemble Net 0.6425 0.6321 0.6382 0.577 0.6224 0.6060 0.6000 0.5860 0.6260 0.6045

JLNet† 0.6534 0.6991 0.6539 0.5772 0.6459 0.6160 0.6100 0.600 0.6500 0.6190
JLNet 0.6608 0.7309 0.7207 0.5897 0.6755 0.6800 0.7140 0.6860 0.7060 0.6965
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Table 2: F1 scores of different methods through 5-fold cross-validation on Inde-
pendent Kin-Type Image Set

KinfaceWI KinfaceWII
Methods

F-D F-S M-D M-S Mean F-D F-S M-D M-S Mean

Ensemble Net* 0.6915 0.7472 0.7566 0.6648 0.7150 0.7671 0.7589 0.7690 0.7607 0.7639

Multi-class Net 0.6084 0.6563 0.6767 0.5766 0.6295 0.5629 0.6000 0.6143 0.5062 0.5709
Ensemble Net 0.6639 0.6737 0.6735 0.6083 0.6548 0.6213 0.6439 0.6051 0.6399 0.6276

JLNet† 0.6301 0.6952 0.6496 0.5816 0.6391 0.6396 0.6166 0.6061 0.6191 0.6203
JLNet 0.6320 0.7087 0.7052 0.5657 0.6529 0.6585 0.7211 0.6939 0.6847 0.6896

Table 3: Macro F1 score and accuracy of kinship identification for the Mixed
Kin-Type Kinship Image Set

KinfaceWI KinfaceWII
Methods

macro F1 Accuracy macro F1 Accuracy

Ensemble Net* 0.3240 0.3723 0.2846 0.3319

Multi-class Net 0.5291 0.5494 0.4861 0.5225
Ensemble Net 0.4837 0.4887 0.4464 0.4564

JLNet† 0.5155 0.5487 0.4648 0.4875

JLNet‡ 0.5507 0.5880 0.5285 0.5535
JLNet(full) 0.5506 0.5993 0.5343 0.5790

Results for the Independent Kin-Type Image Set Table 1 shows the
verification results for the different methods based on the Independent Kin-
Type Kinship Image Set. For this image set, accuracy and F1 scores are used
to evaluate the performance of kinship verification. All methods are trained on
the Mixed Kin-type Image Set except for ensemble Net*. The results show that
when trained on the same dataset, JLNet outperforms all other approaches.
When tested on the KinfaceWII dataset, JLNet outperforms Multi-Class Net
with 9% and Ensemble Net by 9.2% on average accuracy. Considering the F1
score, JLNet outperforms Multi-Class Net with 11.9% and Ensemble Net with
6.2% on average. When comparing JLNet†and JLNet, it is shown that additional
multi-outputs improve the results of the ensembled models. When compared
with Ensemble Net, the accuracy of JLNet is lower than Ensemble Net. One of
the reason is that each of the verification module of Ensemble Net is trained
on one specific dataset. This may result in overfitting. JLNet provides better
generalization than Ensemble Net*, as shown in the next session.

Results on Mixed Kin-Type Kinship Image Sets Table 3 shows the re-
sults of macro F1 scores and accuracy for the kinship identification task using the
Mixed Kin-Type Kinship Image Set. The results show that the performances of
JLNet outperforms the ensemble and multi-class net methods. Moreover, macro
F1 scores show that JLNet(full) outperforms Ensemble Net* with 22.7% on
KinfaceWI and with 25.0% on KinfaceWII. Moreover, JLNet(full) outperforms
Ensemble Net* with 22.7% on KinfaceWI and 24.7% on KinfaceWII. As shown in
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Fig. 6: Confusion matrix for different experiments on the Mixed Kin-Type Image
Set using the KinfaceWI dataset. Negative samples are excluded)

Table 4: F10 score and accuracy for different methods on the Real-Scenario Set
using KinfaceWI dataset. F10(all) represents the average of F10 scores for all
different labels (the negative label is also included)

KinfaceWI
methods

F-D F-S M-D M-S mean F10(all) Accuracy

Ensemble Net* 0.0886 0.1179 0.1236 0.1003 0.1076 0.1830 0.4807

Multi-class Net 0.1548 0.2951 0.3047 0.1539 0.2271 0.2947 0.5618
Ensemble Net 0.1508 0.2791 0.2740 0.1378 0.2104 0.2596 0.4537

JLNet† 0.1522 0.2966 0.2937 0.1569 0.2249 0.2985 0.5901

JLNet‡ 0.1742 0.3235 0.3123 0.1620 0.2430 0.3287 0.6681
JLNet(full) 0.1715 0.3241 0.3198 0.1669 0.2456 0.3459 0.7439

Fig. 6, Ensemble Net* may lead to indecisive results. The independently trained
verification models can lead to overfitting and results in weak generalization ca-
pabilities. JLNet obtained the highest performance. In Fig. 6, it is shown that
the joint learning method provides indecisive results. To this end, the joint learn-
ing method JLNet(full) obtains the best performance for kinship identification
on the Mixed Kin-type Kinship Image Set.

Results on Real Scenario Sample Set Tables 4 and 5 show the results of the
F10 score and accuracy for the kinship identification task in a real-world scenario.
We focus more on recall than precision, so the F10 score is used to emphasize on
the recall rate. The results show that JLNet(full) obtains the best performance on
both KinfaceWI-based Real-Scenario data and KinfaceWII-based Real-Scenario
data. The results show that the JLNet(full) outperforms all the other approaches
for both KinfaceWI and KinfaceWII. From the confusion matrix in Fig. 7, it
is interesting to note that father-son and mother-daughter relations are more
distinguishable than other kin-types. We argue that the manifold of pairs with
the same gender is easier to be learned.
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Fig. 7: Confusion matrix for different experiments on the Real-Senario Image set
using the KinfaceWI dataset. Negative samples are excluded)

Table 5: F10 score and accuracy for different methods on the Real-Scenario Set
using KinfaceWII dataset. F10(all) represents the average of F10 scores for all
different labels (the negative label is also included)

KinfaceWII
methods

F-D F-S M-D M-S mean F10(all) Accuracy

Ensemble Net* 0.0469 0.0713 0.0726 0.0904 0.0703 0.1498 0.4647

Multi-class Net 0.1468 0.1972 0.1853 0.1076 0.1592 0.2528 0.6240
Ensemble Net 0.1399 0.1681 0.1496 0.0900 0.1369 0.2075 0.4874

JLNet† 0.1413 0.1757 0.1624 0.0962 0.1439 0.2303 0.5730

JLNet‡ 0.1620 0.2133 0.2127 0.1225 0.1776 0.2735 0.6547
JLNet(full) 0.1867 0.2134 0.2296 0.1296 0.1898 0.3003 0.7398

6 Conclusion

In this paper, we presented a new approach for kinship identification by joint
learning. Experimental results show that joint learning with kinship verification
and identification improves the performance of kinship identification. To our
knowledge, this is the first approach to handle the kinship identification tasks
by using deep neural networks jointly. Since this method is not restricted to any
neural network, a better architecture can further improve the performance for
kinship identification.
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