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Fig. 1: Given a set of RGB views and a point cloud (top-left), our approach fits a neural descriptor to
each point (top-middle), after which new views of a scene can be rendered (top-right). The method
works for a variety of scenes including 3D portraits (top) and interiors (bottom).

Abstract. We present a new point-based approach for modeling the
appearance of real scenes. The approach uses a raw point cloud as the
geometric representation of a scene, and augments each point with a
learnable neural descriptor that encodes local geometry and appearance.
A deep rendering network is learned in parallel with the descriptors, so
that new views of the scene can be obtained by passing the rasteriza-
tions of a point cloud from new viewpoints through this network. The
input rasterizations use the learned descriptors as point pseudo-colors.
We show that the proposed approach can be used for modeling complex
scenes and obtaining their photorealistic views, while avoiding explicit
surface estimation and meshing. In particular, compelling results are ob-
tained for scenes scanned using hand-held commodity RGB-D sensors as
well as standard RGB cameras even in the presence of objects that are
challenging for standard mesh-based modeling.

Keywords: Image-based rendering, scene modeling, neural rendering,
convolutional networks
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1 Introduction

Creating virtual models of real scenes usually involves a lengthy pipeline of
operations. Such modeling usually starts with a scanning process, where the
photometric properties are captured using camera images and the raw scene
geometry is captured using depth scanners or dense stereo matching. The lat-
ter process usually provides noisy and incomplete point cloud that needs to be
further processed by applying certain surface reconstruction and meshing ap-
proaches. Given the mesh, the texturing and material estimation processes de-
termine the photometric properties of surface fragments and store them in the
form of 2D parameterized maps, such as texture maps [1], bump maps [2], view-
dependent textures [3], surface lightfields [4]. Finally, generating photorealistic
views of the modeled scene involves computationally-heavy rendering process
such as ray tracing and/or radiance transfer estimation.

The outlined pipeline has been developed and polished by the computer
graphics researchers and practitioners for decades. Under controlled settings,
this pipeline yields highly realistic results. Yet several of its stages (and, con-
sequently, the entire pipeline) remain brittle. Multiple streams of work aim to
simplify the entire pipeline by eliminating some of its stages. Thus, image-based
rendering techniques [5–8] aim to obtain photorealistic views by warping the
original camera images using certain (oftentimes very coarse) approximations
of scene geometry. Alternatively, point-based graphics [9–12] discards the esti-
mation of the surface mesh and use a collection of points or unconnected disks
(surfels) to model the geometry. More recently, deep rendering approaches [13–
17] aim to replace physics-based rendering with a generative neural network,
so that some of the mistakes of the modeling pipeline can be rectified by the
rendering network.

Here, we present a system that eliminates many of the steps of the classical
pipeline. It combines the ideas of image-based rendering, point-based graphics,
and neural rendering into a simple approach. The approach uses the raw point-
cloud as a scene geometry representation, thus eliminating the need for surface
estimation and meshing. Similarly to other neural rendering approaches, it also
uses a deep convolutional neural network to generate photorealistic renderings
from new viewpoints. The realism of the rendering is facilitated by the estima-
tion of latent vectors (neural descriptors) that describe both the geometric and
the photometric properties of the data. These descriptors are learned directly
from data, and such learning happens in coordination with the learning of the
rendering network (see Fig. 2).

We show that our approach is capable of modeling and rendering scenes that
are captured by hand-held RGBD cameras as well as simple RGB streams (from
which point clouds are reconstructed via structure-from-motion or similar tech-
niques). A number of comparisons are performed with ablations and competing
approaches, demonstrating the capabilities, advantages, and limitations of the
new method. In general, our results suggest that given the power of modern deep
networks, the simplest 3D primitives (i.e. 3D points) might represent sufficient
and most suitable geometric proxies for neural rendering in many cases.
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2 Related work

Our approach brings together several lines of works from computer graphics,
computer vision, and deep learning communities, of which only a small subset
can be reviewed due to space limitations.

Point-based graphics. Using points as the modeling primitives for rendering
(point-based graphics) was proposed in [9, 10] and have been in active devel-
opment in the 2000s [18, 19, 11, 12]. The best results are obtained when each
point is replaced with an oriented flat circular disk (a surfel), whereas the ori-
entations and the radii of such disks can be estimated from the point cloud
data. Multiple overlapping surfels are then rasterized and linearly combined us-
ing splatting operation [18]. More recently, [16] has proposed to replace linear
splatting with deep convolutional network. Similarly, a rendering network is used
to turn point cloud rasterizations into realistic views by [20], which rasterizes
each point using its color, depth, and its semantic label. Alternatively, [21] uses
a relatively sparse point cloud such as obtained by structure-and-motion recon-
struction, and rasterizes the color and the high-dimensional SIFT [22] descriptor
for each point.

In our work, we follow the point-based graphics paradigm as we represent
the geometry of a scene using its point cloud. However, we do not use the sur-
face orientation, or suitable disk radii, or, in fact, even color, explicitly during
rasterization. Instead, we keep a 3D point as our modeling primitive and encode
all local parameters of the surface (both photometric and geometric) within neu-
ral descriptors that are learned from data. We compare this strategy with the
approach of [20] in the experiments.

Deep image based rendering. Recent years have also seen active convergence of
image-based rendering and deep learning. A number of works combine warping
of preexisting photographs and the use of neural networks to combine warped
images and/or to post-process the warping result. The warping can be estimated
by stereo matching [23]. Estimating warping fields from a single input image and
a low-dimensional parameter specifying a certain motion from a low-parametric
family is also possible [24, 25]. Other works perform warping using coarse mesh
geometry, which can be obtained through multi-view stereo [17, 26] or volumetric
RGBD fusion [27]. Alternatively, some methods avoid explicit warping and in-
stead use some form of plenoptic function estimation and parameterization using
neural networks. Thus, [15] proposes network-parameterized deep version of sur-
face lightfields. The approach [28] learns neural parameterization of the plenoptic
function in the form of low-dimensional descriptors situated at the nodes of a
regular voxel grid and a rendering function that turns the reprojection of such
desriptors to the new view into an RGB image.

Arguably most related to ours is the deferred neural rendering (DNR) system
[29]. They propose to learn neural textures encoding the point plenoptic function
at different surface points alongside the neural rendering convolutional network.
Our approach is similar to [29], as it also learns neural descriptors of surface
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elements jointly with the rendering network. The difference is that our approach
uses point-based geometry representation and thus avoids the need for surface
estimation and meshing. We perform extensive comparison to [29], and discuss
relative pros and cons of the two approaches.

Texture optimization methods. Our work is also related to a class of methods
that perform optimization of the color texture for mesh-based models [30–32].
Similarly to the optimization of point descriptors in our method, [30–32] optimize
texture parameters using objectives that go beyond simple pixelwise color differ-
ence minimization. Likewise, one of the baselines in our comparisons performs
mesh texture optimization using perceptual loss [33]. While improving signif-
icantly over simple texturing methods, texture-based optimization approaches
still require the mesh to approximate the scene geometry reasonably well and
may not produce plausible models when mesh reconstruction fails to recover
parts of the scene.

3 Methods

Below, we explain the details of our system. First, we explain how the rendering
of a new view is performed given a point cloud with learned neural descriptors
and a learned rendering network. Afterwards, we discuss the process that creates
a neural model of a new scene.
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Fig. 2: An overview of our system. Given the point cloud P with neural descriptors D
and camera parameters C, we rasterize the points with z-buffer at several resolutions,
using descriptors as pseudo-colors. We then pass the rasterizations through the U-net-
like rendering network to obtain the resulting image. Our model is fit to new scene(s)
by optimizing the parameters of the rendering network and the neural descriptors by
backpropagating the perceptual loss function.

3.1 Rendering

Assume that a point cloud P = {p1, p2, . . . , pN} with M -dimensional neural
descriptors attached to each point D = {d1, d2, . . . , dN} is given, and its render-
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ing from a new view characterized by a camera C (including both extrinsic and
intrinsic parameters) needs to be obtained. In particular, assume that the target
image has W ×H-sized pixel grid, and that its viewpoint is located in point p0.

The rendering process first projects the points onto the target view, using
descriptors as pseudo-colors, and then uses the rendering network to transform
the pseudo-color image into a photorealistic RGB image. More formally, we
create an M -channel raw image S(P,D, C) of size W ×H, and for each point
pi which projects to (x, y) we set S(P,D, C)[[x], [y]] = di (where [a] denotes
a nearest integer of a ∈ R). As many points may project onto the same pixel,
we use z-buffer to remove occluded points. The lack of topological information
in the point cloud, however, results in hole-prone representation, such that the
points from the occluded surfaces and the background can be seen through the
front surface (so-called bleeding problem). This issue is traditionally addressed
through splatting, i.e. replacing each point with a 3D disk with a radius to be
estimated from data and projecting the resulting elliptic footprint of the point
onto an image. We have proposed an alternative rendering scheme that does not
rely on the choice of the disk radius.

Progressive rendering. Rather than performing splatting, we resort to
multi-scale (progressive) rendering. We thus render a point cloud T times onto
a pyramid of canvases of different spatial resolutions. In particular, we obtain a
sequence of images S[1], S[2] . . . S[T ], where the i-th image has the size of W2t ×H2t ,
by performing a simple point cloud projection described above. As a result, the
highest resolution raw image S[1] contains the largest amount of details, but also
suffers from strong surface bleeding. The lowest resolution image S[T ] has coarse
geometric detailization, but has the least surface bleeding, while the intermediate
raw images S[2], . . . , S[T−1] achieve different detailization-bleeding tradeoffs.

Finally, we use a rendering network Rθ with learnable parameters θ to map
all the raw images into a three-channel RGB image I:

I(P,D, C, θ) = Rθ(S[1](P,D, C), . . . , S[T ](P,D, C) ) . (1)

The rendering network in our case is based on a popular convolutional U-Net
architecture [34] with gated convolutions [35] for better handling of a potentially
sparse input. Compared to the traditional U-Net, the rendering network architec-
ture is augmented to integrate the information from all raw images (see Fig. 2).
In particular, the encoder part of the U-Net contains several downsampling lay-
ers interleaved with convolutions and non-linearities. We then concatenate the
raw image S[i] to the first block of the U-Net encoder at the respective res-
olution. Such progressive (coarse-to-fine) mechanism is reminiscent to texture
mipmapping [36] as well as many other coarse-to-fine/varying level of details
rendering algorithms in computer graphics. In our case, the rendering network
provides the mechanism for implicit level of detail selection.

The rasterization of images S[1], . . . , S[T ] is implemented via OpenGL. In
particular U-net network has five down- and up-sampling layers. Unless noted
otherwise, we set the dimensionality of descriptors to eight (M=8).
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3.2 Model creation

We now describe the fitting process in our system. We assume that during fitting
K different scenes are available. For the k-th scene the point cloud Pk as well as
the set of Lk training ground truth RGB images Ik = {Ik,1, Ik,2, . . . Ik,Lk} with
known camera parameters {Ck,1, Ck,2, . . . Ck,Lk} are given. Our fitting objective
L then corresponds to the mismatch between the rendered and the ground truth
RGB images:

L(θ,D1,D2, . . . ,DK) =

K∑
k=1

Lk∑
l=1

∆
(
Rθ
(
{S[i](Pk,Dk, Ck,l)}Ti=1)

)
, Ik,l

)
, (2)

where Dk denotes the set of neural descriptors for the point cloud of the k-th
scene, and ∆ denotes the mismatch between the two images (the ground truth
and the rendered one). In our implementation, we use the perceptual loss [37,
33] that computes the mismatch between the activations of a pretrained VGG
network [38].

The fitting is performed by optimizing the loss (2) over both the parameters θ
of the rendering network and the neural descriptors {D1,D2, . . . ,DK} of points
in the training set of scenes. Thus, our approach learns the neural descriptors
directly from data. Optimization is performed by the ADAM algorithm [39].
Note, that the neural descriptors are updated via backpropagation through (1)
of the loss derivatives w.r.t. S(P,D, C) onto di.

Our system is amenable for various kinds of transfer/incremental learning.
Thus, while we can perform fitting on a single scene, the results for new view-
points tend to be better when the rendering network is fitted to multiple scenes
of a similar kind. In the experimental validation, unless noted otherwise, we fit
the rendering network in a two stage process. We first pretrain the rendering
network on a family of scenes of a certain kind. Secondly, we fit (fine-tune) the
rendering network to a new scene. At this stage, the learning process (2) starts
with zero descriptor values for the new scene and with weights of the pretrained
rendering network.

4 Experiments

Datasets. To demonstrate the versatility of the approach, we evaluate it on
several types of real scenes. Thus, we consider three sources of data for our
experiments. First, we take RGBD streams from the ScanNet dataset [40] of
room-scale scenes scanned with a structured-light RGBD sensor4. Second, we
consider RGB image datasets of still standing people captured by a mirrorless
camera with high resolution (the views capture roughly 180 degrees). Finally, we
consider two more scenes corresponding to two objects captured by a smartphone
camera. 360◦ camera flights of two selected objects (a potted plant and a small
figurine) of a different kind captured from a circle around the object.

4 https://structure.io/
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For all experiments, as per the two-stage learning scheme described in Sec. 3.2,
we split the dataset into three parts, unless noted otherwise: pretraining part,
fine-tuning part, and holdout part. The pretraining part contains a set of
scenes, to which we fit the rendering network (alongside point descriptors). The
fine-tuning part contains a subset of frames of a new scene, which are fitted
by the model creation process started with pretrained weights of the rendering
network. The holdout part contains additional views of the new scene that are
not shown during fitting and are used to evaluate the performance.

For the ScanNet scenes, we use the provided registration data obtained with
the BundleFusion [41] method. We also use the mesh geometry computed by
BundleFusion in mesh-based baselines. Given the registration data, point clouds
are obtained by joining together the 3D points from all RGBD frames and using
volumetric subsampling (with the grid step 1 cm) resulting in the point clouds
containing few million points per scene. We pretrain rendering networks on a set
of 100 ScanNet scenes. In the evaluation, we use two ScanNet scenes ’Studio’
(scene 0), which has 5578 frames, and ’LivingRoom’ (scene 24), which has
3300 frames (both scenes are not from the pretraining part). In each case, we
use every 100th frame in the trajectory for holdout and, prior to the fitting, we
remove 20 preceding and 20 following frames for each of the holdout frames from
the fine-tuning part to ensure that holdout views are sufficiently distinct.

For the camera-captured scenes of humans, we collected 123 sequences of 41
distinct people, each in 3 different poses, by a Sony a7-III mirrorless camera.
Each person was asked to stand still (like a mannequin) against a white wall
for 30–45 seconds and was photographed by a slowly moving camera along a
continuous trajectory, covering the frontal half of a body, head, and hair from
several angles. We then remove (whiten) the backround using the method [42],
and the result is processed by the Agisoft Metashape [43] package that pro-
vides camera registration, the point cloud, and the mesh by running proprietary
structure-from-motion and dense multi-view stereo methods. Each sequence con-
tains 150-200 ten megapixel frames with high amount of fine details and varying
clothing and hair style. The pretraining set has 102 sequences of 38 individuals,
and three scenes of three different individuals were left for validation. Each of
the validation scenes is split into fine-tuning (90% of frames) and holdout (10%
of frames) sets randomly.

In addition, we used a smartphone (Galaxy S10e) to capture 360◦ sequences
of two scenes containing an Owl figurine (61 images) and a potted Plant (92
images). All frames of both scenes were segmented manually via tools from
Adobe Photoshop CC software package. We split fine-tuning and holdout parts
in the same manner as in People dataset.

Comparison with state-of-the-art. We compare our method to several neu-
ral rendering approaches on the evaluation scenes. Most of these approaches
have a rendering network similar to our method, which takes an intermediate
representation and then is trained to output the final RGB image. Unless stated
otherwise, we use the network described in Section 3. It is lightweight with
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Point Cloud Mesh DNR Ours Nearest train

Fig. 3: Comparative results on the ’Studio’ dataset (from [40]). We show the textured
mesh, the colored point cloud, the results of three neural rendering systems (including
ours), and the ground truth. Our system can successfully reproduce details that pose
challenge for meshing, such as the wheel of the bicycle.

Ours Ground truth Ours Ground truth

Fig. 4: Results on the holdout frames from the ’Person 1’ and ’Person 2’ scenes. Our
approach successfully transfers fine details to new views.

1.96M parameters and allows us to render real-time, taking 62ms on GeForce
RTX 2080 Ti to render a FullHD image. For all the approaches we use the same
train time augmentations, particularly random 512x512 crops and 2x zoom-in
and zoom-out.

The following methods were compared:

– Ours. During learning, we both optimize the neural descriptors and fine-
tune the rendering network on the fine-tuning part.

– Pix2Pix. In this variant, we evaluate an ablation of our point-based system
without neural descriptors. Here, we learn the rendering network that maps
the point cloud rasterized in the same way as in our method. However,
instead of neural descriptors, we use the color of the point (taken from the
original RGBD scan/RGB image). The rendering network is then trained
with the same loss as ours.

– Pix2Pix (slow). We observed that our method features neural descriptors
which increases the number of parameters to be learned. For the sake of fair
comparison, we therefore evaluated the variant of Pix2Pix with the rendering
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Fig. 5: Comparative results on the holdout frame from the ’Plant’ scene. Our method
better preserves thin parts of the scene.

network with doubled number of channels in all intermediate layers (resulting
in ∼4x parameters and FLOPs).

– Neural Rerendering in the Wild. Following [20], we have augmented the
input of the Pix2Pix method with the segmentation labels (one-hot format)
and depth values. We have not used the appearance modeling from [20],
since lightning was consistent within each dataset.

– Neural Rerendering in the Wild (slow). Same as previous, but twice
larger number of channels in the rendering network. Due to the need to have
meaningful segmentation labels, we have considered this and the previous
methods only for ScanNet comparisons, where such labels are provided with
the dataset.

– Mesh+Texture. In this baseline, given the mesh of the scene obtained
with either BundleFusion or Metashape (depending on the dataset used),
we learn the texture via backpropagation of the same loss as used in our
method through the texture mapping process onto the texture map. This
results in a “classical” scene representation of the textured mesh.

– Deferred Neural Rendering (DNR). We implemented the mesh-based
approach described in [29]. As suggested, we use hierarchical neural textures
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Table 1: Comparison with the state-of-the-art for all considered hold-out scenes from
various sources: two scenes from ScanNet, two people captured by a professional cam-
era, and two objects photographed by a smartphone. We assess all methods with re-
spect to widely used perceptual metrics correlated with visual similarity of predicted
and ground truth images (LPIPS, FID) and to VGG loss used in our experiments.

ScanNet - LivingRoom ScanNet - Studio
Method VGG ↓ LPIPS ↓ FID ↓ VGG ↓ LPIPS ↓ FID ↓
Pix2Pix 751.04 0.564 192.82 633.30 0.535 127.49

Pix2Pix (slow) 741.09 0.547 187.92 619.04 0.509 109.46
Neural Rerendering 751.52 0.580 206.90 634.93 0.529 119.16

Neural Rerendering (slow) 739.82 0.542 186.27 620.98 0.507 108.12
Textured mesh 791.26 0.535 152.02 690.67 0.540 97.95

Deferred Neural Rendering 725.23 0.492 129.33 603.63 0.484 84.92

Ours (splatting) 726.50 0.485 139.90 591.87 0.470 81.94
Ours 727.38 0.488 138.87 595.24 0.472 76.73

People - Person 1 People - Person 2
Method VGG ↓ LPIPS ↓ FID ↓ VGG ↓ LPIPS ↓ FID ↓
Pix2Pix 209.16 0.1016 51.38 186.89 0.1642 114.93

Pix2Pix (slow) 204.45 0.0975 47.14 179.99 0.1566 102.62
Textured mesh 155.37 0.0698 60.62 163.73 0.1404 96.20

Deferred Neural Rendering 184.86 0.0659 34.41 163.13 0.1298 78.70

Ours (splatting) 186.06 0.0664 44.63 162.56 0.1174 80.60
Ours 181.11 0.0602 32.63 161.18 0.1131 77.92

Plant Owl
Method VGG ↓ LPIPS ↓ FID ↓ VGG ↓ LPIPS ↓ FID ↓
Pix2Pix 85.47 0.0443 52.95 34.30 0.0158 124.63

Pix2Pix (slow) 82.81 0.0422 48.89 32.93 0.0141 101.65
Textured mesh 101.56 0.0484 95.60 36.58 0.0145 141.66

Deferred Neural Rendering 77.55 0.0377 49.61 28.12 0.0096 54.14

Ours 75.08 0.0373 41.67 29.69 0.0103 78.55

with five scales (maximum 2048×2048) each having eight channels (same as
the descriptor size M in our method). The rendering network is then trained
with the same loss as ours. Generally, this method can be seen as the analog
of our method with point-based geometric proxy replaced with mesh-based
proxy.

We compare the methods on ScanNet (two scenes following pretraining on
100 other scenes), on People (two people following pretraining on 102 scenes of 38
other people), as well as on ’Owl’ and ’Plant’ scenes (following the pretraining
on People). The quantitative results of the comparison are shown in Table 1.
All comparisons are measured on the holdout parts, for which we compare the
obtained and the ground truth RGB images. We stress that we keep the holdout
viewpoints sufficiently dissimilar from the viewpoints of images used for fine-
tuning. For all experiments nearest train view is defined as follows. Given a novel
view, we sort train views by angle deviation from the novel view, then leave top
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5% closest by angle and pick the view closest by distance. Angle proximity is
more critical since we use zoom augmentation in training which compensate
distance dissimilarity.

We report the value of the loss on the holdout part (VGG) as well as two
common metrics (Learned Perceptial Similarity – LPIPS [44] and Frechet Incep-
tion Distance – FID [45]). We also show qualitative comparisons on the holdout
set frames in Figures 3–5, where we also show the point cloud, and renderings
from completely different viewpoints in Figures 6–7. Further comparisons can
be found in Supplementary video.

Generally, both the quantitative and the qualitative comparison reveals the
advantage of using learnable neural descriptors for neural rendering. Indeed, with
the only exception (VGG metric on Person 1), Deferred Neural Rendering and
Neural Point-Based Graphics, which use such learnable descriptors, outperform
other methods, sometimes by a rather big margin.

The relative performance of the two methods that use learnable neural de-
scriptors (ours and DNR) varies across metrics and scenes. Generally, our method
performs better on scenes and parts of the scene, where meshing is problematic
due to e.g. thin objects such as ’Studio’ (Fig. 3) and ’Plant’ (Fig. 5) scenes.
Conversely, DNR has advantage whenever a good mesh can be reconstructed.

In support of this observations, user study via Yandex.Toloka web platform
was conducted for ScanNet ’Studio’ scene and ’Plant’ scene. As for ’Studio’, we
took 300 half image size crops in total uniformly sampled from all holdout images.
Labelers were asked to evaluate which picture is closer to a given ground truth
crop — produced by our method or the one produced by DNR. As for ’Plant’,
100 random crops of 1

6.5 original image size were selected. Users have preferred
Ours vs. Deferred in 49.7% vs. 50.3% cases for ’Studio’ and in 69% vs. 31%
for ’Plant’. As before, our method performs significantly better when meshing
procedure fails in the presence of thin objects and yields results visually similar
to DNR when the mesh artefacts are relatively rare.

Ablation study. We also evaluate the effect of some of the design choices
inside our method. First, we consider the point cloud density and the descriptor
size. We take an evaluation scene from ScanNet and progressively downsample
point cloud using voxel downsampling and get small, medium and large variants
with 0.5, 1.5, and 10 million points respectively. For each variant of point cloud
we fit descriptors with sizes M equal to 4, 8 (default) and 16. Table 2 shows
evaluation results. It naturally reveals the advantage of using denser point clouds,
yet it also shows that the performance of our method saturates at M = 8. The
same observation is supported by the qualitative comparison shown in Figure 8.
Additionally, we investigate what is the most important add-on introduced as a
part of our method. As Table 3 shows, all the features of the pipeline are helpful,
while the use of learnable per-point descriptors results in the most dramatic
improvement.
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Fig. 6: Novel views of People generated by our method (large picture: our rendered
result, small overlaid picture: nearest view from the fitting part). Both people are from
the holdout part (excluded from pretraining).

(a) ’Owl’ and ’Plant’. Large picture:
render from a novel point, small over-
laid picture: nearest train view

Ours Nearest train view

(b) ’Studio’. First row: render from a
novel point, second row: nearest train
view

Fig. 7: Various results obtained by our method. For each of the scenes, we show the
view from the nearest camera from the fine-tuning part (nearest train view).

Scene editing. To conclude, we show a qualitative example of creating a com-
posite of two separately captured scenes (Fig. 9). To create it, we took the
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Table 2: Dependency of the loss function values on the descriptor size and the point
cloud size. Comparison is made for the ’Studio’ scene of Scannet.

Descriptor size 4 Descriptor size 8 Descriptor size 16
Point Cloud size VGG ↓ LPIPS ↓ VGG ↓ LPIPS ↓ VGG ↓ LPIPS ↓
small 635.74 0.543 632.39 0.505 622.06 0.508
medium 622.05 0.506 616.49 0.486 614.90 0.500
large 610.76 0.509 609.11 0.485 611.38 0.488

Table 3: Ablation study w.r.t. the add-ons of our pipeline. Comparison is made for the
Person 1 fitted from scratch.

FID ↓ LPIPS ↓ VGG ↓
Ours 197.54 0.526 918.79
Ours w/o mipmapping (1 scale input) 196.27 0.527 920.11
Ours w/ vanilla convs instead of gated 192.92 0.527 924.25
Ours w/ L1 loss instead of VGG loss 350.10 0.682 1053.4
Ours w/o per-point feature 476.17 0.798 1222.5

’Person 2’ and the ’Plant’ datasets and fitted descriptors for them while keep-
ing the rendering network, pretrained on People, frozen. We then align the two
point clouds with learned descriptors by a manually-chosen rigid transform and
created the rendering.

Anti-aliasing. We have found that in the presence of camera misregistrations in
the fitting set (such as ScanNet scenes), our method tends to produce flickering
artefacts during camera motion (as opposed to [29] that tends to produce blurry
outputs in these cases). At least part of this flickering can be attributed to
rounding of point projections to the nearest integer position during rendering.
It is possible to generate each of the raw images at higher resolution (e.g. 2×
or 4× higher), and then downsample it to the target resolution using bilinear
interpolation resulting in smoother raw images. This results in less flickering
with a cost of barely noticeable blur (see supplementary video). Note that
the increase in time complexity from such anti-aliasing is insignificant, since it
does not affect the resolution at which neural rendering is performed.

5 Discussion

We have presented a neural point-based approach for modeling complex scenes.
Similarly to classical point-based approaches, ours uses 3D points as modeling
primitives. Each of the points in our approach is associated with a local descrip-
tor containing information about local geometry and appearance. A rendering
network that translates point rasterizations into realistic views, while taking the
learned descriptors as an input point pseudo-colors. We thus demonstrate that
point clouds can be successfully used as geometric proxies for neural render-
ing, while missing information about connectivity as well as geometric noise and
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small cloud medium cloud large cloud

Fig. 8: Variation of rendering quality w.r.t. the number of points the scene. Comparison
is made for a crop of a holdout image corresponding to the ’Studio’ scene of Scannet.

original scene
Person 2 + Plant: point

cloud composition
Person 2 + Plant: ours

Fig. 9: A novel view for the composed scenes. A point cloud from ’Plant scene was
translated and rotated slightly to be placed on the left hand of the ’Person 2’. The
world scale of objects was kept unchanged.

holes can be handled by deep rendering networks gracefully. Thus, our method
achieves similar rendering quality to mesh-based analog [29], surpassing it wher-
ever meshing is problematic (e.g. thin parts).

Limitations and further work. Our model currently cannot fill very big
holes in geometry in a realistic way. Such ability is likely to come with additional
point cloud processing/inpainting that could potentially be trained jointly with
our modeling pipeline. We have also not investigated the performance of the
system for dynamic scenes (including both motion and relighting scenarios),
where some update mechanism for the neural descriptors of points would need
to be introduced.
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