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Abstract. In this paper, as we aim to construct a semi-supervised learn-
ing algorithm, we exploit the characteristics of the Deep Convolutional
Networks to provide, for an input image, both an embedding descrip-
tor and a prediction. The unlabeled data is combined with the labeled
one in order to provide synthetic data, which describes better the input
space. The network is asked to provide a large margin between clus-
ters, while new data is self-labeled by the distance to class centroids, in
the embedding space. The method is tested on standard benchmarks for
semi–supervised learning, where it matches state of the art performance
and on the problem of face expression recognition where it increases the
accuracy by a noticeable margin.

Keywords: margin loss; semi–supervised learning; data mixup; face ex-
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1 Introduction

In the latest period, deep learning techniques acknowledged great advance. One
of the ingredients that favored this advance is the collection and annotation of
large data corpora [20]. Ordinarily, the data comes in two variants: labeled, when
each instance xi has the related label yi and unlabeled, when the instances miss
their labels (i.e. there are no yi). Learning within the case of labeled information
is less demanding and it is favored as it has been thoroughly explored. However
there are circumstances when labeling is either costly (for instance locating boxes
around particular objects in images), or it requires highly trained personnel (en-
countered, for instance, in the case of medical imaging). In such situations, only
a portion of the data is annotated and Semi–Supervised Learning (SSL) algo-
rithms that produce robust solutions using only the limited amount of available
annotated data are used to annotate the large volumes of unlabeled data [6].

Our SSL proposal is built upon two principles. The first principle refers to
the deep convolutional networks (DCN) characteristic to provide simultaneously
decision layers and feature descriptors of the input image [11]. The second prin-
ciple is that SSL favors the borders through a low density area [6]. Our algorithm
seeks to cluster data and create low density areas between borders.
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Fig. 1. Examples of the two problems approached. The images from different classed in
CIFAR-like databases (top rows) are more different than are face expressions (bottom
row).

A particular field that may greatly benefit from semi-supervised learning
algorithms is face expression recognition (FER). The topic contains many pre-
vious development and areas of interest. For a thorough introduction we kindly
refer the reader to the reviews on the topic [33,8]. In this paper, we concentrate
our efforts towards the expression categorization into fundamental classes as de-
fined by Ekman et al.. [12]: “neutral”, “anger”, “fear”,“disgust”, “happy”,“sad”,
“surprise”; sometimes “contempt” is also included.

With respect to the FER problem, a particular characteristic is the fact that
human annotation of such data is hard and costly. “Hard” refers to the fact that
the average person has difficulties in differentiating between expressions. In this
direction, Susskind et al. [35] showed that an experienced observer (psychology
student) reached 89.2%accuracy in a 6 expressions experiment. Alternatively,
Bartlett et al. [3] and Ekman et al. [12] noted that more than 100 hours of
training are needed for a person in order to get 70% accuracy in recognizing
face movements relevant for expressions. To give a reference for comparison,
we recall that the average, untrained user achieves ≈ 94% accuracy for image
classes on CIFAR-10 [16], reaching 100% on 90% of images [30]. Thus, due to the
difficulty in annotating images, problems related to face expression analysis wel-
come methods and strategies that use additional unlabeled data as a substitute
to more annotations, in order to augment the performance.

This contrast can be intuitively associated with the structure and density of
the data of the two above mentioned domains. Seemingly, classes from CIFAR-
like databases have high intra-class variability, but also low density areas between
classes. Classes from any face expression database differentiate between them-
selves by small and subtle differences (as illustrated in figure 1). Thus, the FER
domain has low variance both inter-class and intra-class.

Contribution and paper structure. We propose a semi–supervised learn-
ing method, oriented toward classification, that is derived from the classical self-
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labeling paradigm [6]. The used learner, a deep convolutional neural network,
simultaneously clusters and classifies the data. For an unlabeled point, the dis-
tance to the class centroids is used for self-labeling. We integrated this idea in the
MixUp arrangement [43]. MixUp ensures that the input data space is thoroughly
interpolated and it corresponds to a mirror distribution in the prediction space.
In our proposal, the intermediate feature space is also thoroughly investigated
and the correspondence with input and prediction space is preserved.

More precisely, this paper contributes with: (i) a novel semi-supervised learn-
ing algorithm that classifies unlabeled data based on distance to class centroids
in a feature space; (ii) the method is showed to be comparable with state of the
art in problems with low density areas and to have significant improvements for
problems with dense areas between classes, as is the FER problem.

2 Related work

The proposed method seeks discriminative embeddings (features) in DCN while
implementing a semi-supervised learning strategy, that is effective for face ex-
pression recognition. In this section we provide a short summary over these three
directions (discriminative features, SSL and FER).

Loss function for better deep features discrimination. Major contri-
butions in this direction originated in approaches to the face recognition problem.
In conjunction to deep learning, several different types of loss function were pro-
posed in the last years. Wen et al.. [40] proposed the center loss function, to
minimize the intra-class distances between the deep features; Liu et al.. [24]
learned angular discriminative features with the angular softmax loss in order to
achieve smaller maximal intra–class distance than minimal inter-class distance;
Zhang et al.. [44] developed a loss function for long tailed distributions; Zheng et
al.. [47] showed that normalizing the deep features with the so-called Ring Loss
leads to improved accuracy. All these methods were shown to give good results
on face recognition tasks, where very large annotated datasets like MegaFace
are available. To our best knowledge the strategy of computing discriminative
embeddings using the class centroids to annotate new data has not yet been
used in general, nor in the context of SSL. A similar concept, but adapted to
clustering, may be found in the work of Ren et al. [32]; yet they did not seek
consistent data space and prediction in the manner we do here.

From the many existing variants we have relied on a development of the
center loss as it uses the Euclidean distance, making this step consistent with
data interpolation in the original space due to the MixUp arrangement.

Semi-Supervised Learning. While the problem of SSL has been in the
attention of the community for a long period, the appearance of the data hungry
deep learning methods brought increased interest. In the context of the deep
learning, many initial results were based on generative models such as denoising
[31], variational autoencoders [17], or generative adversarial networks[27]. The
concept of self labeling has been used in the form of entropy regularization [21].
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(a) (b) (c)

Fig. 2. Structuring embeddings on a 2 dimensional layer when the DCN was trained
with different losses : (a) softmax dominated and (b) center loss dominated. (c) Our
proposal: given a new unlabeled point ei, one-hot encoding values yi are determined
by distances to class centroids

In the later period, improved results were obtain by adding consistency regu-
larization losses while processing unlabeled data. The consistency regularization
uses the discrepancy between predictions on unlabeled data points and pre-
dictions on labeled examples to correct weights. Practical solutions improved
performance by smoothing the weight correction before measuring the discrep-
ancy. In this category, one might count Π-Model with Temporal Ensembling [19],
Mean Teacher [36] and Virtual Adversarial Training [25], fast-SWA [1] or con-
sistent embedding description in associative domain transfer [15]. More recently,
build upon the MixUp strategy [43], models have been constrained to showed
consistency with respect to perturbation of the input examples in the MixMatch
algorithm [5] or Interpolation Consistency Training - ICT [38]. In summary, it
has been showed that consistency between labeled and unlabeled data is helpful;
however the consistency has not yet been quantified within a Euclidean space
metric onto the intermediate embedding layer, as it is in our proposal.

Face Expression Recognition. This theme has been dominated in the
later period by deep learning methods too. For instance, several solutions [46,37]
trained a single network or an ensemble of networks and adapted the predictions
onto a single independent image or onto a video sequence containing a face
expression. The problem of delicate labeling has been addressed by Barsoum et
al. [2], who noted the presence of noisy labels in the FER database and thus
re–annotated the database by crowdsourcing, showing much improved results;
yet the solution was database-specific and overfitting could have appeared. More
recently, multiple databases, and thus better generalization, are envisaged in a
series of purely supervised methods that augments the baseline performance by
the usage of a modified center loss [22]. Others [46], have found that better results
can be achieved by specifically selecting some of the layers from the network.
Attention mechanisms have also been envisaged for expression recognition with
good results [23].
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In the later years, the restricted amount of annotated data has been noted
and solutions sought to use the power of semi–supervised learning or of the
domain transfer to alleviate the limitation. Zhang et al. [45] used a strategy that
re-evaluates self labels predictions over randomly selected data instances from
the unlabeled data at each iteration. Zeng et al. [42] adopted the self labeling
strategy based on bottom-up propagation in a relational graph. Recently, Florea
et al. [13] regularized the contribution of unlabeled data with injection of random
quantities in the gradient.

Overall, the methods have evaluated the minimal amount of labels required
in a database, given a SSL framework, to obtain accuracy values comparable
with the supervised case, but more often pushed the supervised performance
with database particular choices such as pre–training on specific subsets.

3 Method

From a technical point of view, we propose a methodology to train a deep net-
work in a semi–supervised manner for a classification problem with mutually
exclusive categories. In this scenario, we ask the network to include a layer that
acts as a discriminative embedding or as a feature descriptor. As discussed in
the implementation subsection, we use a WideResNet [41]; in this case, the em-
bedding is the last layer before the decision one, but after flattening. A intuitive
view of the system behavior is in figure 2.

For classification problems, initially the label is a scalar yi indicating a cat-
egorical value, but later we will switch to one-hot encoding yi.

3.1 Large Margin Embedding

Given an image xi, its associate embedding ei and its prediction yi, one may
ask the learner to cluster embedding by incorporating a specific loss. Wen et al..
[40] introduced the center loss that explicitly reduces the intra-class variations
by encouraging embedding samples to move towards their corresponding class
centers in the feature space (embeddings) during training. The center loss is [40]:

LC =

N∑
i=1

D(ei, c
c); cc =

∑N
i=1 µ

c
iei∑N

i=1 µ
c
i

; µc
i =

{
1 , yi = c

0 , yi 6= c
(1)

where xi is a data from class c (yi = c), ei, its embedding, cc is the centroid
of the class c and µc

i is the membership of the data i to class c. In supervised
learning, the membership is binary and provided by the labels.

The standard center loss assumes an Euclidean distance: D(ei, c
c) = ‖ei −

cc‖2; also that choice is conditioned by the necessity to compute the position
of the centroids as the (weighted) arithmetic mean for the vectors. The centers
are updated in each iteration, based on latest batches using Stochastic Gradient
Descent (SGD) derived optimization. Later developments of this method [24,44]
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sought ways to enforce also large distances between class centroids using the
cosine derived distances for D().

A limitation of these methods is that in the absence of an explicit intervention
over the other class centroids, there is an optimum where all data is tightly
grouped in a large cluster with centroids overlapped and small distances for
each point to its cluster. A second problem is data scaling, as the network could
learn some biases that will simply downscale data.

To alleviate such potential behaviors, we propose to use the normalized em-
bedding and to modify the loss by favoring small distance to the belonging class
centroid and large distances to other centroids. Thus, large margins are imposed
between different classes clusters. Formally a large margin loss , LM can be
written as:

LM =

N∑
i=1

D( ei
‖ei‖2

,
cc

‖cc‖2

)
− 1

C − 1

C∑
j=1,j 6=c

D
(

ei
‖ei‖2

,
cj

‖cj‖2

) (2)

If the normalized embedding is êi = e
‖e‖2 the loss can be rewritten as:

LM =

N∑
i=1

D (êi, ĉc)− 1

C − 1

C∑
j=1,j 6=c

D
(
êi, ĉj

) (3)

where C is the number of classes. Normalization in Eq. (3) limits the space,
while the subtraction imposes that one instance should be near to its class center
and far from the other centers. Again, the centers can be determined after every
batch, using Eq.(1), conditioned by an Euclidean choice for the distance.

Such behavior is illustrated in figure 3. The normalization of the data ensures
that the loss LM is bounded and it prevents numerical instability.

3.2 Distance generalization

The margin loss and the embedding system is inspired by the classical K-means
algorithm. While the solution presented in the results section concentrates solely
on the Euclidean distance, thus retrieving the classical K-means algorithm, one
may extend the algorithm based on non-Euclidean distances [10] and other mar-
gin based losses [24,44,9] can be used.

The generalization assumes the following: given N vectors, bi are a set of
standard basis vectors of the space, a set of membership values µi and let us

denote by sc =
(∑N

i=1 µ
c
ibi

)/(∑N
i=1 µ

c
i

)
. The sought centroids are cc.

Given a generalized squared distance matrix,A ∈ Rn×n, with aij = D(ei, ej),
then the non-euclidean distance between points and centroids can be developed
with respect to a vector w as:

D(ei, c
c) = ei·w =

N∑
j=1

wjeij ; s.t.

N∑
j=1

wj = 0⇒ (D(ei, c
c))

2
= −1

2
wTAw (4)
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(a) (b)

Fig. 3. Large margin behavior represented for a 2-dimensional embeding: new data
ei is from class 2, thus the distance to its class centroid (marked by continuous line)
should be made shorter, while the distances to the other classes (marked with dashed
lines) should be made longer. (a) Structuring in CIFAR is more sparse, while in (b)
FER is with higher density since classes are easier to be confused

In this case the centroids can be computed, given mc =
∑N

i=1 µ
c
i , by :

cc =
1

mc

N∑
j=1

µc
jej ; while w = sc − bj (5)

3.3 Self-labeling

Given an unlabeled data xu
i , its embedding eui , the pseudo-label in one-hot en-

coding form yu
i = [y1i , y

2
i , . . . y

C
i ] is found based on distances to centroids with a

method inspired from Fuzzy C-means algorithm:

yci =
1∑C

j=1

(
‖ei−cc‖2
‖ei−cj‖2

)2 (6)

The process is illustrated in figures 2 (c) and 3, where this time the center
position is set and the relative size of distances (arrows) form label probabilities
(i.e. class memberships).

3.4 Augmentative processing

To prevent the network to memorize data we regularize the training weight decay
(i.e. penalization of the L2 norm of the model parameters) [25]. Additionally, in
the last period, several techniques to improve efficiency have been proposed:
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– Classical data augmentation: flipping, cropping, Gaussian noise addition,
small rotations for face images. Both labeled and unlabeled data has been
augmented. Each unlabeled data xu

b in a batch is augmented independently
Naug times (algorithm 1, line 4).

– Label guessing. Berthelot et al. [5] showed that training is more stable if an
entire set of Naug variants of unlabeled data have the same labels. In the
initial version the labels are retrieved by relative position of the embedding
with respect to class centroids as defined by eq. (6). Now, the overall pseudo-
label may be found by summing over all Naug:

yci =

Naug∑
k=1

yck =

Naug∑
k=1

1∑C
j=1

(
‖ek

i−cc‖2
‖ek

i−cj‖2

)2 (7)

where eki is the embedding of the k-augmentation of the unlabeled data xu
i .

– Sharpening - It has been showed [5] higher non-uniformity of the weights im-
proves the robustness. This is implemented injecting a non linear transform
guided by the temperature T hyperparameter, together with normalization
from previous step:

yci =
y

1
T
i

ψj
; ψj =

C∑
c=1

p
1
T
c (8)

One might notice that the combination of sharpening and large margin based
on euclidean distance makes the solution close to the soft max procedure.

– MixUp [43] - assumes building synthetic new data instances by considering
convex combination with random weight of existing data. It is applied on
both labeled examples and margin-self-labeled examples:

x′ = λxi + (1− λ)xj

y′ = λyi + (1− λ)yj
(9)

where λ is a small random quantity extracted from Beta(α, α) distribution,
while α is a hyperparameter. If the second contributor originates in unlabeled
data xj = xu

j , λ has to be small such that, the new data is closer to labeled
example.
Considering convex combinations between data points according to the MixUp
paradigm, the input space is thoroughly investigated.

3.5 Total Loss

Overall, the network is trained using the loss computed as a weighted sum:

L = LS + λMLM = LS + λM (LM1 + λuLM2) (10)

where λM and λu are weighting hyperparameters, LS is the cross entropy
decision loss with L2 weight decaying regularization. LM1 is the large margin
loss computed on labeled data, while LM2 is computed on unlabeled data.
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Algorithm 1: The MarginMix algorithm takes as input a batch of
labeled data X and one without labels U and produces densely sampled
input examples X ′ respectively self-labeled densely sample examples U ′.
Self-labeling is based on clustering in the embedding space. The purpose
is to adjust the weights of learner ψ

Data: : Batch of b labeled instances with embeddings and one–hot labels
X = {. . . , (xi, ei,yi), . . . }, i = 1 . . . b, batch of b unlabeled instances
Xu = {. . . , (xu

i ), . . . }, sharpening temperature T , number of
augmentations NAug, β distribution parameter α for MixUp.

1 for b = 1 : Nbatch do
2 Compute embeddings for labeled samples eb = ψ(xb) ;
3 Update centroids using eq. (1);
4 x̃b = Augment(xb ) # data augmentation to xb ;
5 for k = 1 to NAug do
6 x̃u

k = Augment(xu
k ) # one of the k-th data augmentation to xu

k ;
7 Self-label by large Margin using eq. (7)

8 end

9 Compute average, sharpen predictions across all x̃u
k using eq. (7)

10 end

11 Collect augmented labeled data: X̃ = (xb,yb); b ∈ {1, . . . , Nbatch} ;
12 Collect augmented unlabeled data with their self predicted labels:

X̃u = (xu
b ,y

u
b ); b ∈ {1, . . . , Nbatch} ;

13 Concatenate W̃ = (X̃ , X̃u);

14 Use MixUp - eq. (9) for pairs of labeled and new data X ′ = MixUp(X̃ , W̃)

and pairs of unlabeled and new data X ′
u = MixUp(X̃u, W̃);

15 Compute total loss with eq. (10) using X ′ X ′
u ;

16 Update network weights;

In the backward propagation, the derivative of the margin loss with respect
to the current d-th element of the D-dimensional embedding can be written as:

∂LM
∂ed

=

2(êi − ĉc)− 2

C − 1

C∑
j=1,j 6=c

(
êi − ĉj

) · ∂êi
∂ed

;
∂êi
∂ed

=
1− êi

2

‖ei‖2
(11)

3.6 Margin–Mix algorithm

The purpose of the algorithm is to train a DCN using both labeled and unla-
beled data. The proposed method is described by Algorithm 1. Intuitively, in a
first step, a batch of labeled data passes to collect embedding and update cen-
troid position. Then both labeled and unlabeled data is augmented using the
MixUp procedure. Unlabeled is self-annotated by Large margin procedure and
the network is asked to provide embeddings that are more discriminative.
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3.7 Implementation

The implementation is developed from the tests and procedure described in [28]
and [5] respectively1 . The method has been implemented in Pytorch [29].

For fair comparisons with other SSL methods, we restrict our experiments to
the “Wide ResNet-28-2” [41] as architecture. For training, we used SGD solver
with a learning rate of 0.001. The margin loss (and subsequent parameter -
centroids) has a learning rate of 0.5. We use a cosine scheduler for a learning
rate decay from 0.1 to 0.0001. We also fix the weight decay rate to 5e-4. For all
experiments, we use a batch size of 64 images. The number of training epochs
is dependent on the distribution of the database: for database where the classes
contribute uniformly, we used 1024 batches while, overall the model is trained
for 1024 epochs.

4 SSL performance. Comparison with state of the art

First we evaluate the proposed algorithm on four standard benchmarks. To
asses the proposed method, we perform semi-supervised tasks on four datasets:
CIFAR-10 and CIFAR-100 [18], SVHN [26], and STL-10 [7]. The first three are
fully annotated, but it is common for the SSL testing to consider as labeled
only a subset of the training set and the remainder unlabeled. We emphasize
that these databases have the classes perfectly balanced. The last one, was build
specifically for SSL, with 5000 labeled images and 100000 unlabeled images. On
a fast visual inspection, the unlabeled data is also highly balanced between the
10 classes. For the large margin, λM was set to 1 and λu was set to 0.4.

Achieved results and comparison with prior art 3 can be followed in tables 1
and respectively 2. One may notice that results are very close to the state of the
art performance, sometimes even outmatching it. In general the method has sim-
ilar performance with MixMatch algorithm with which shares several common
traits. On direct comparison, for a first view, the MixMatch is lacking weights
for margin loss, has fewer parameters, thus may be simple to be tuned; yet the
influence of the two parameters was found to be less dramatic and variations
around mentioned values (i.e. ±20%) produced similar errors (i.e. ±0.3).

5 Face Expression Recognition with Few Annotations

In this case, the tests are performed on two databases with images in the wild
containing various face expressions. The databases are FER+ and RAF-DB.

1 Code is developed from Pytorch implementation of MixMatch available at https:

//github.com/YU1ut/MixMatch-pytorch. Additional details may be retrieved from
the project webpage2

3 Very recently several SSL methods were made public, although not published yet
[4],[39],[34] that report improved results. However, they propose augmentation tech-
niques that complement the self-labeling procedure. Beyond very recent publication,
they may be used together with the proposed method.

https://github.com/YU1ut/MixMatch-pytorch
https://github.com/YU1ut/MixMatch-pytorch
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Table 1. Comparative errors (smaller is better) on CIFAR datasets obtained with
WideResNet-28-2 . Top row lists the number of examples with labels (over all classes)
considered

CIFAR-10 CIFAR-100

Methods/Labels 250 1000 4000 10000

Supervised [38] – – 20.26 –

Π-Model [19] 53.02 31.53 17.41 39.19

PseudoLabel [21] 49.98 30.91 16.21 –

MixUp [43] 47.43 25.72 13.15 –

VAT [25] 36.03 18.68 11.05 –

MeanTeacher [36] 47.32 17.32 10.36 –

ICT [38] – – 7.66 –

MixMatch [5] 11.80 7.75 6.24 28.88

MarginMix 10.76 8.33 6.17 29.12

Table 2. Comparative error (smaller is better) on SVHN and STL datasets obtained
with WideResNet-28-2. Some results are taken from [28]

SVHN STL

Methods/Labels 1000 4000 1000 5000

Supervised [28] – 12.84 – –

Π-Model [19] 8.06 5.57 17.41 39.19

VAT [25] 5.63 18.68 11.05 –

MeanTeacher [36,28] 5.65 3.39 10.36 –

ICT [38,28] 3.53 – 7.66 –

MixMatch [5] 3.27 2.89 10.18 5.59

MarginMix 3.35 3.33 9.85 5.80

RAF-DB [22] contains facial color images in the wild, which are, often, larger
than 300× 300. The database is annotated by at least 40 trained annotators per
image and divided into 12271 training images and 3078 testing images. It is
labeled for the seven basic emotions.

FER+ is derived from FER2013 [14] and contains 28709 training images,
3589 validation (public test) and another 3589 (private) test images, in the wild.
FER+ images have 48 × 48 pixels, are gray-scale and contain only the face.
Barsoum et al. [2] noted the high noise in the original labels and performed some
”cleaning”, by removing the images with missing faces and providing labels by
aggregating the opinion of 10 non-specialist annotators. Compared to RAF-DB,
the images are small, gray and have been annotated less rigorously.

For FER experiments, prior SSL algorithms had trouble solving the task and
often converged to a state where only the most populated class was predicted
or it simply oscillated without converging. MixMatch often encountered such
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problems significantly reduce the sharpening temperature from 0.5 to 0.25. Per-
formance for the two databases may be followed in tables 3 and respectively
4.

We report the baseline obtained when training in purely supervised manner
but containing MixUp and temporal averaging. In this case the network has been
randomly initialized, as it is in the case of SSL methods. For 4000 labeled images
considered, a uniform distribution would have required 500 per class, yet three
of them do not have so many, so the distribution is already uneven. For SSL
methods reported, Mean teacher [36] and MixMatch [5], we have used the public
code, tuned as mentioned. For 320 labeled images (i.e. 40 per class) we could
not make the Mean Teacher to report multiple classes, but only the dominant
one.

As one can notice in these experiments, the proposed method reaches better
accuracy than similar solutions by a large margin. We claim that differences
originate from two directions.

Firstly, the distribution of labels among classes is uneven. This fact is illus-
trated in figure 4; there one may see that the most populated class in FER+
database has 5 times more instances than the least populated one. As emphasized
in the original MixUp work [43], this technique populates the space near existing
examples. Given an uneven distribution, part of the space with sparse classes
will become relatively even sparser. Simultaneously, the populated classes will
tend to expand (in confidence) in the detriment of sparser ones. Also when pars-
ing unlabeled data, MixMatch will label it more often with the dominant classes
value. In our case, the centroid exists, and the relative distance is accepted.

Secondly, fully supervised performance in the case of FER databases is lower
than for CIFAR like sets. This suggests that classes are spread in a more intricate
manner, which again will favor the most populated classes. Enforcing an inter-
mediate embedding with a large margin, we force the learner to make space for
all classes, thus untangling the mixture from the initial data space. A measure of
inter-class variance is offered by evaluation of the large margin as defined by eq.
(3) in the first iterations of the training procedure, normalized by the number of
data instances. The loss measures the quality of clustering: small loss means well
defined clusters while large loss means blended clusters. The value is 4× larger
in the case of FER+ database when compared to CIFAR-10, although the later
has 10 classes compared to 8.

Comparison with softmax/center-loss. When we have performed tests
with a solution trained with softmax/center-loss as defined in [40] we have find
out that this version often did not converge as on the validation set it entered
into oscillating performance or it ended in predicting always a single class. It
converged in 50% cases for CIFAR like benchmarks and 20% for expression
experiments when it often predicted the most populous class. Intuitively, the
standard center loss asks only that instances are close to the class centroid
and lets the cross-entropy distance the clusters. Yet, the cross entropy, which
is more an angular distance, allows clusters to be close one to another in terms
of Euclidean distance, thus on many unlabeled instances produces near uniform



Margin-Mix: SSL for Face Expression Recognition 13

Table 3. Comparative accuracy (larger is better) on FER+ dataset obtained with
WideResNet-28-2. Top row lists the number of examples with labels (over all classes)
considered. ’nc’ stands for not converged

Methods/Labels 320 400 2000 4000 10000 All

Supervised WideResNet nc 37.92 50.29 56.78 63.56 84.88

Supervised [2] – – – – – 84.99

MeanTeacher [36] – 45.56 50.84 58.28 68.36 –

MixMatch [5] 45.60 50.25 58.35 70.91 71.24 –

MarginMix 50.76 56.75 60.83 75.18 81.25 85.36

Table 4. Comparative accuracy (larger is better) on RAF–DB dataset obtained with
WideResNet-28-2 . Top row lists the number of examples with labels (over all classes)
considered

Methods/Labels 320 400 1000 4000 All

Supervised WideResNet nc 26.75 35.25 55.66 85.58

Supervised [22] – – – – 84.13

MeanTeacher [36] nc 28.23 36.53 60.36 –

MixMatch [5] 35.60 42.25 60.37 65.24 –

MarginMix 40.55 45.75 66.47 70.68 85.36

class probabilities. It is similar to consider supra-unitary sharpening (we have
illustrated the effect of sharpening only up to 0.5, but the trend is obvious). The
margin loss imposes that clusters distance themselves.

5.1 Parameter Ablation

Our method proved to be more robust in the case of Face Expression Recognition
which have much lower inter-class variance. Various versions of the method have
been tested on the FER+ database when 2000 examples, equally distributed
among classes. The performance is presented in table 5.

The stochastic variance (i.e. variation of accuracy when running the same
solution consecutive times) is 0.55. In this case, one may notice that only sharp-
ening may have an impact larger than the stochastic effect. Dramatic decrease
is found in the self-labeling if instead of soft probabilities, hard one (based on
the nearest centroid) are used; this result is in line with test about sharpening.
Otherwise, the solution is robust to slight variations of the parameters.

6 Conclusions

In this paper, we presented MarginMix, a novel framework that combines the
capability of deep DCN to produce simultaneously predictions and discrimina-
tive embeddings with “the low density separation” principle, while building SSL
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(a) (b)

Fig. 4. Distribution of classes on databases from the two categories of experiments:
(a) CIFAR and (b) FER+.

Table 5. MarginMix Accuracy on FER dataset when 2000 images have labels that are
equally distributed among classes when various versions have been considered

Methods - Parameters Accuracy

Baseline (T = 0.25, λM = 1,λu = 0.4 ) 60.83

Sharpening T = 0.5 55.35

No Sharpening T = 0 57.29

λM = 0.5,λu = 0.4 60.44

λM = 0.5,λu = 0.4 60.74

Naug=512 (instead of 1024) 60.68

without parameter EMA 59.85

with nearest centroid 51.87

models. It contains the MixUp paradigm which thoroughly investigates input
space by considering convex combinations of the input data. Our proposal struc-
tures via embeddings and with the Euclidean distance an intermediate space, in
preparation of the final space, where actual prediction takes place.

The experiments have been structured in two categories. The first refers to
standard benchmarks such as CIFAR-10, CIFAR-100 and SVHN where a part
of the training data is considered as unlabeled and STL-10 which was build
specifically for the SSL systems. Here the data is evenly distributed, and the
classes are rather easily separable, our method performed on par with previous
similar works.

The second category is dedicated to face expression, which we argue that
is truly a direction which should benefit from SSL learning since annotation is
hard, noisy and costly. In this case, examples from different classes are more
similar, and differences are more in details of the image. In this scenario, our
proposal outperforms the state-of-the-art methods on all the datasets tested by
a significant margin, while also improving the fully-supervised baseline.
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