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Abstract. We introduce a new visualisation technique for CNNs called
Principal Feature Visualisation (PFV). It uses a single forward pass of the
original network to map principal features from the final convolutional
layer to the original image space as RGB channels. By working on a batch
of images we can extract contrasting features, not just the most dominant
ones with respect to the classification. This allows us to differentiate
between several features in one image in an unsupervised manner. This
enables us to assess the feasibility of transfer learning and to debug a
pre-trained classifier by localising misleading or missing features.
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1 Introduction

Deep convolutional neural networks (CNNs) have had a significant impact on
performance of computer vision systems. Initially they were used for image clas-
sification, but recently these methods have been used for pixel-level image seg-
mentation as well. Segmentation methods are able to capture more information,
but require significantly more expensive labelling of training data. Moreover,
classification (bottleneck) networks are still used for many applications where
the problem can’t be formulated as a segmentation task or pixel-wise labelling
is too expensive.

One of the main issues with bottleneck networks is that they provide no visual
output, that is, it is not possible to know what part of the image contributed
to the decision. As a consequence, there is a demand for methods that can help
visualise or explain the decision-making process of such networks and make it
understandable for humans.

A range of visualisation and explanation methods have been proposed. Class
Activation Mapping, e.g. [10], is a computationally efficient way to show the
support of a class in the input image, but the resulting heatmap is quite coarse.
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Gradient-based methods like [3] give a more localised response, but require back-
propagation through the whole network, and is very sensitive to edges and noise
in the input image.

All these methods operate in a supervised manner on one category or feature
at a time. In contrast, our method is unsupervised and visualise several categories
or features in one pass. It can be applied directly to any bottleneck network
without any additional instrumentation.

Our approach provides a visualisation that maps the principal contrasting
features of a batch of images to the original image space in a single forward pass
of the network. We target bottleneck networks, such as image classifiers, and
use a singular value decomposition on the feature map of the layer we wish to
visualise, e.g., the final convolutional layer, to extract the principal contrasting
features for a batch of images. These features are then interpolated back to the
original image space, and the activation maps of the earlier layers are used to
weight the resulting feature visualisation. An overview of the method is shown
in Fig. 1.
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Fig. 1. Overview of our Principal Feature Visualisation (PFV)method.

The main advantages of our method are:

1. Contrast: Per-pixel visualisation of the principal contrasting features.

2. Lightweight: Requires a single forward pass of the original unmodified net-
work, using only intermediate feature maps.

3. Easy to interpret: suppresses non-relevant features.

4. Unsupervised: No additional input or prior knowledge about image classes
is required.
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We show how the advantages of the method allow it to be used as a tool for
debugging misclassification and assessing the feasibility of transfer learning in
Section 5.

Our code is publicly available at https://github.com/SINTEF/PFV.

2 Related Work

Several categories of methods to interpret CNNs have been proposed. We focus
on the methods that provide a visual human-understandable representation, in
particular methods that relate the attention of the network back to the original
image space in the form of masks or heatmaps.

One way of attributing classifier decision to location in the input is to perform
simple perturbations (e.g. occlusion) to the input [16,13] and make a heatmap
per class based on change in the output. Similarly, more advanced methods for
perturbation of the input image has been proposed [9,2]. The drawback of these
methods is that the number of required forward passes is proportional to the
number of classes and resulting heatmap resolution.

Other methods focus on localisation of semantically meaningful concepts in
the input. For instance by extracting and clustering superpixels, and then com-
pute the saliency as a ranking [7] over these extracted “concepts” [6]. Network
dissection is another direction [4], where the response in network hidden units
(convolutional layers) are scored according to a predefined set of visual concepts.

Gradient-based visualisation is a group of methods that provide more lo-
calised responses and are widely cited in literature. The simplest form of this
is to compute the partial derivatives of the output with respect to every input
pixel [13]. Several additions to this principle, for instance DeepLIFT [12], Guided
Backpropagation [15] and Layer-wise Relevance Propagation (LRP) [3], has im-
proved the localisation and visual appeal. However, as showed through simple
sanity checks in [1], many of these methods rely too much on information from
the input image, and are actually insensitive to changes in the model. Addition-
ally, they can require a lot of instrumentation, such as special types of layers
and separate training of hyperparameters.

Class Activation Mapping provides a direct mapping from the class score to
the activations from the forward pass of a CNN. The original work in [5] required
a special network architecture, but Grad-CAM [10] provided a more general way
to compute the mapping by backpropagation from the class score to the last
convolutional layer (not all the way back to the inputs as pure gradient-based
methods). Grad-CAM passes the sanity checks in [1], but gives a less localised
response than gradient-based methods, and still requires backpropagation from
each class to produce responses from multiple classes or objects. Our approach
use the activations from the forward pass in a similar manner as Grad-CAM,
but rather than computing a mapping through backpropagation, we do a simple
unsupervised learning during the forward pass.

Some methods include counter-evidence to give a richer explanation. Grad-
CAM and LRP for instance, suggest using negative gradients in addition to the
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positive ones to show evidence against a class. In [17], a top-down attention
propagation strategy is proposed, that performs backpropagation of both posi-
tive and negative activations to create a contrasting visualisation. Our method
provides an inherent contrast, and does not need to treat this specifically.

There are also several methods that apply clustering or spectral techniques
for model explanation. One such method [8] applies spectral clustering on a set
of relevance maps computed with LRP, and performs eigengap analysis and t-
SNE visualisation to identify typical prediction strategies. This requires several
steps of processing, and is applied on one class at a time. Another work [11] uses
Eigenspectrum analysis of the feature maps in neural networks to optimise neural
architectures and understand the dynamics of network training. Our approach
uses spectral information in a similar manner to these approaches, but to our
knowledge is the first one to project this type of information back to image space
in one pass.

Compared to existing explanation methods, we aim for an approach that is
simple to execute, that depends on activations from the network itself rather
than edges in the input image, and can highlight the contrast between several
features and classes in one pass.

3 Principal Feature Visualisation

3.1 Method description

Our goal is to obtain a low-dimensional representation of the feature space of
feed-forward bottleneck networks which can be mapped to the original image
space. Such a visualisation should be achieved in an efficient manner by using a
single forward pass of the network, without any additional instrumentation.

Principal component analysis (PCA) projects a signal onto a set of linearly
uncorrelated variables (principal components) ranked by the amount of vari-
ance explained in the original signal. Conveniently, the projection of features
onto these components introduces an implicit measure of contrast, due to the
orthogonality of the components.

In brief, our method decomposes a feature map into its principal contrasting
features for a batch of images. This is accomplished by extracting principal
components through singular value decomposition. The decomposed feature map
is then interpolated back to the original image space, where we use the activation
maps in the preceding layers as spatial weighting. An overview of the method is
shown in Fig. 1, and we describe it in detail below.

Consider a CNN with N convolution and pooling layers. For each layer l a
feature map Fl is an nB × nc,l × nx,l × ny,l matrix, where nB is the number
of images passed through the layer (batch size), nc,l number of channels and
nx,l, ny,l is the spatial size of that layer. We denote by (nx,0, ny,0) the size of
original input images.

Suppose we want to visualise the last convolutional layer N . Our method
proceeds as follows. First, for each intermediate Fl we calculate activation maps
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for each image in batch

Ab
l (i, j) =

nc,l∑
c=1

Fl(b, c, i, j), b ∈ {1, . . . , nB} (1)

We then compute the total activation map Ab for each batch image as a sum
of upsampled activation maps for each layer. That is

Ab =

N−1∑
l=1

P(Ab
l ;nx,0, ny,0), (2)

where P(Ab
l ;nx,0, ny,0) denotes upsampling of Ab

l back to original input image
size.

Now consider the feature map FN of the final layer. Our approach is to use
PCA to decompose the features for visualisation. First, we reshape FN to a
nc,N × (nB · nx,N · ny,N ) matrix. In this way we treat each per-pixel channel
response as a separate observation. We denote this reshaped matrix as F ′ and
centre it by subtracting mean values:

F ′ = F ′ − F̄ ′ (3)

Then we find the principal feature responses by decomposing F ′ using sin-
gular value decomposition as

F ′ = USV T , (4)

where S is a diagonal matrix containing the singular values and U is the decom-
position of F ′ into the space described by the eigenvectors V .

The principal components are then the sorted columns of the following matrix

FPCA = US = [d1 . . . dr] (5)

For visualisation convenience, we choose a subset of FPCA columns {d1, . . . ,dnd
}.

For the rest of the paper we assume nd = 3, which allows us to visualise FN by
mapping d1,d2,d3 to red, green and blue channels. We denote by DN a matrix
consisting of these columns

DN = [d1 d2 d3] (6)

By reshaping DN back to nB × 3×nx,N ×ny,N size and treating each batch
image as a separate Db

N we can upsample Db
N back to the original size (nx,0, ny,0).

We use the activation map Ab to weight the upsampled Db
N and normalise the

result as follows

V b = normalise
(
Ab ◦ P(Db

N ;nx,0, ny,0)
)
, (7)

where ◦ is an element-wise product and P is upsampling operator. Note that the
colours in the final images V b are relative to the processed batch.
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input image activation map (Ab) unweighted V b V b V b
h

Fig. 2. Variations of our Principal Feature Visualisation method applied on a pre-
trained bottleneck CNN (VGG16) and a batch of dog and cat images. The activation
map Ab is used to weight the feature map. Colours represent the strongest principal
features of the batch and their location in image space. Best viewed in colour.

3.2 VGG Example

We illustrate the properties of our method with a simple example of a few dog
and cat images and a VGG16 network [14] pre-trained on ImageNet.

First, we show the final visualisation V b together with two intermediate steps:
the activation maps Ab, and unweighted V b from upsampling directly without
weighting. V b was computed with a forward pass on a batch of six images of dogs
and cats. The intermediate activation maps Ab

l were extracted before each max
pool layer, and the feature map of the final layer, FN , was extracted before the
last max pool layer. We used bilinear interpolation for upsampling. The results
are shown in Fig. 2. For this batch, the principal feature maps assign different
colour channels to dogs, cats and background. Studying the intermediate steps,
we see that the principal feature map without weighting shows more response
from the channel in the background. The weighting with earlier activation maps
thus enhances the strongest features, while the principal components provides
contrast between different features.

Second, we illustrate how the visualisation depends on the composition of
the input batch. Fig. 3 shows our method applied on different single-image input
batches. The colours now represent different features within that image only. For
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input image batch size = 1 untrained CNN

Fig. 3. Batch size illustration and sanity check with untrained network. Second column
shows the visualisation of single-image input batches. The colours now represent differ-
ent high-level features like ears and nose rather than the class-level features in Fig. 2.
Third column shows a simple sanity check: the visualisation of an untrained network
of randomly initialised weights. The result is completely different, as expected. Best
viewed in colour.

the image with two objects, there is still some class-related contrast. This brief
example indicates that batch composition can be used deliberately as a tool to
control the contrast in the visualisation and tailor it to any application. More
examples of this are shown in Section 5.2 and supplementary material.

In order to be useful for model debugging, a visualisation method should be
sensitive to the model parameters. We perform a simple parameter randomisa-
tion test as suggested in [1], by running our method on a randomly initialised
untrained version of the network. As seen in Fig. 3, the resulting visualisation
of the random model is visually very different from the pre-trained one. This
indicates model sensitivity in our visualisation, which can be used for debugging
the training process.

4 Comparison with other methods

We compare our method (PFV) with Grad-CAM [10] and Contrastive Excitation
Backprop (c-EBP) [17] on VGG16 pre-trained on ImageNet. We use a batch
of images that is not included in ImageNet, but contains objects of ImageNet
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categories. A few examples are shown in Fig. 4, where we have used the top-3
predicted classes as targets for Grad-CAM and c-EBP.

Grad-CAM and c-EBP are supervised methods based on backpropagation,
that generate a heatmap conditioned on the predicted class. Consequently, these
methods highlight evidence for a particular class, and suppress sources that do
not contribute to the decision. Contrastive EBP approximates the probability
that a given image pixel contribute positively or negatively to the decision.
When the target classes are unknown and we simply specify them as the top-k
predictions, these methods require a potentially large number of backward passes
to describe the feature diversity in the image.

In contrast, our PFV is an unsupervised method calculated based on a sin-
gle forward pass, that highlights the principal contrasting features in a batch of
images. As our method is based on principal components which form an orthog-
onal basis where one component cannot explain another, it focuses on feature
variance instead of evidence for a decision. The colours of PFV represent differ-
ent features, with no direct connection to the final classification. However, by
performing PFV on a batch of images, e.g. the three images in Fig. 4, colours are
consistent across the batch and show which objects that have similar features.

Kuvasz
(0.31)

Lynx (0.70)

G. pyrenees
(0.56)

G. retriever
(0.24)

Tiger cat
(0.16)

Washer
(0.11)

Grad-CAM

G. pyreness
(0.19)

Tabby
(0.06)

L. retriever
(0.06)

Kuvasz

Lynx

G. pyrenees

Constrastive
G. retriever

Contrastive
Tiger cat

Contrastive
Washer

Excitation backprop

Contrastive
G. pyreness

Contrastive
Tabby

Contrastive
L. retriever

Ours (PFV)

Fig. 4. Comparison of GradCAM, Constrastive Excitation Backprop (c-EBP) and PFV
on VGG16 pre-trained on ImageNet. Grad-CAM and c-EBP results are shown for the
top-3 predicted classes. PFV results is for a batch of the three images shown. Colours
represent heatmaps for Grad-CAM and c-EBP, and principal features for PFV. Best
viewed in colour.
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5 Applications

In this section we apply our method to two use-cases: debugging misclassified
examples by localising misleading and missing features in the input image; and
ad hoc prediction of the success of transfer learning with a pre-trained network.

5.1 Debugging classification errors

When a network fails to classify an image correctly, it can be hard to know what
part of the image is to blame. We show how our method can be used to identify
misleading or missing features and their location in the image by comparing
principal feature maps of incorrectly and correctly classified samples.

To do this, we apply PFV on an example task: dog breed classification. There
are 120 dog breeds among the 1000 categories of the ImageNet dataset, and the
features of the pre-trained VGG16 network should therefore be well suited for
this task. We ran prediction on a handful of images of the class “English Springer
Spaniel” not present in the original dataset, and identified the failed samples. It
turns out that all the failed samples show dogs in water, and we want to examine
why they fail. Is it because of the water, occlusion of body parts, or something
else?

We applied the following procedure: For each misclassified sample, PFV was
applied on a batch of six correctly classified samples; three of the true class and
three of the mistaken class. To aid the comparison of the PFV images, we also
plot the distribution of red, green and blue in the foreground of the PFV image,
i.e., the three strongest principal components.

Figure 5 shows the result of running PFV on two batches of images containing
two misclassified images: Batch A (“Springer spaniel” misclassified as “goose”)
and Batch B (“Springer spaniel” misclassified as “Sussex Spaniel”). To identify
missing or misleading features, we compare the PFV distributions of the other
images in the batch with the failed sample, and look for the location of the
colours with large deviation. In the left case (Batch A), the misclassifed sample
has a red component on the head as in the true class “springer”, but is missing
the red component on the rest of the body. It also has a strong green component
on the body as in “goose”. In the right case (Batch B), the misclassified sample
is missing the strong green component located on the white fur in front in the
“springer” image, and the PFV distribution is more similar to that of “sussex
spaniel“, which has no white fur. For both cases, the location of the missing
features reveal that the failed classifications can most likely be blamed on body
parts occluded by water.

This example shows that our method can be used to localise missing or
misleading features, because it highlights the contrasting features within a batch,
not just the most dominant features from the classification.

5.2 Transfer learning

Transfer learning is often applied when there is limited training data available
to train a deep neural network from scratch. In this section we show that it is
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goose (86%)

springer (93%)

goose (99%)

input

Batch A

PFV

sussex (40%)

springer (55%)

sussex (99%)

input

Batch B

PFV

Fig. 5. Principal Feature Visualisation (PFV) on misclassified samples compared to
correctly classified samples. In the first row, the two input images are of the category
“English Springer Spaniel”, but has been classified as “goose” and “Sussex Spaniel”.
In the second and third row, the input images are examples from the two different
PFV batches. Bars show the distribution of red, green and blue foreground pixels of
the PFV image. The colour encoding is not consistent because the method is applied
on two different batches, and hence the principal vectors are different. Best viewed in
colour.
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possible to predict the success or failure of transfer learning on a new dataset
by visualising the principal features of the pre-trained network on images from
this dataset.

Fig. 6. Initial principal feature visualisation of VGG16 features on the Pascal VOC2012
dataset. The dataset contains 20 classes, features are visualised for a random example
from each class. Similar colours indicate similar features. Best viewed in colour.

We analyse the features of VGG16, pre-trained on ImageNet, applied to the
Pascal VOC2012 dataset.

Initially, we randomly sample one image from each of Pascal VOC2012’s 20
classes and form a batch of these images. We then apply PFV and visualise
the principal contrasting features of this batch, shown in Fig. 6. For simplicity,
the feature visualisations are shown as an overlay to a grey scale version of the
input image. As the images are quite dissimilar, decomposing the features of the
images into three principal features, only gives us a coarse indication of which
examples contain similar feature sets. Based on this visualisation we observe that
the animal classes appear to have similar features, while vehicles and bicycles
appear to have a different set of features. Interestingly, we also see observe that
there are only weak feature responses for chair, sofa and potted-plant, while for
the class dining-table, the main responses are from the objects on the actual
table.



12 M. Bakken et al.

To further investigate the difference between the features in the animal cat-
egories, that have similar colours in Fig. 6, we randomly sample new batch of
images from these categories. This time, we sample 4 random images from each
of the categories: “dog”, “cow”, “cat”, “horse” and “sheep”. We then again apply
PFV to find the principal contrasting features for this batch of images, shown in
Fig. 7. Note again, that the colours in the images are relative to each batch. As
the class variation in this batch of images is lower than in the initial experiment,
we observe that we obtain a finer decomposition. Here we see that cats and dogs
become more clearly separated from the other classes. The other three classes;
cows, horses and sheep, does appear to contain similar features. In addition, one
example from the “dog” class and one from the “cat” class appear as outliers,
which might be due to the images being difficult examples or that ImageNet
contains multiple cat and dog breeds.

Fig. 7. Principal feature visualisation of VGG16 features on the Pascal VOC2012
dataset for the classes; “dog”, “cat”, “cow”, “horse” and “sheep”, with a batch of four
random examples sampled from each class. Similar colours indicate similar features.
Best viewed in colour.

Based on this analysis we hypothesise that in a fine-tuned model using
VGG16 ImageNet features, we expect little confusion between the cat and dog
class, a more pronounced confusion between the “horse”, “cow” and “sheep”
classes. In addition, the weak feature responses for classes “chair”, “diningtable”
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and “sofa”, indicate an overall poorer performance in the detection of these
classes.

To check this hypothesis we fine-tune VGG16 pre-trained on ImageNet on
the Pascal VOC2012 dataset. We retrain only the final fully connected layer (the
classifier), the rest of the network (i.e., all convolutional layers) is kept fixed dur-
ing training. For simplicity we only select images containing one class per image,
to be able to use a standard cross-entropy loss in the optimisation. We train un-
til the validation loss stops decreasing and investigate the final performance in
terms of a confusion matrix. The confusion matrix is shown in Fig. 8.
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Fig. 8. Confusion matrix for the validation set for a VGG16 network, after fine-tuning
on Pascal VOC2012. Left, overall view of confusion matrix. Middle, confusion be-
tween classes “cat”, “cow”, “dog”, “horse” and “sheep. Right, confusion between classes
“chair”, “table”, “plant” and “sofa”. Best viewed in colour.

The worst performing categories are of the classes “dining table”, “sofa”,
and “chair”. We also observe that “cow” is significantly confused with classes
“horse” and “sheep”. These observations suggest that such a feature visualisation
strategy can give an intuition about when pre-training will be beneficial and
when it might fail.

6 Conclusion

We have presented a method for visualising the principal contrasting features
of batch of images during forward pass of a bottleneck CNN. Our approach has
several advantages over related methods, namely that it combines low overhead
with intuitive visualisation, and doesn’t require any user input or modification
of the original CNN. We have shown how these advantages allow us to interpret
the performance of CNNs in two common settings: debugging misclassification
and predicting the applicability of transfer learning.

Our code is available at https://github.com/SINTEF/PFV.

https://github.com/SINTEF/PFV
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8. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller,
K.R.: Unmasking Clever Hans predictors and assessing what machines really learn.
Nature Communications 10(1), 1–8 (2019). https://doi.org/10.1038/s41467-019-
08987-4

9. Ribeiro, M.T., Singh, S., Guestrin, C.: ”Why should i trust you?” Explaining the
predictions of any classifier. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. vol. 13-17-Augu, pp. 1135–
1144 (2016). https://doi.org/10.1145/2939672.2939778

10. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.:
Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Lo-
calization. International Journal of Computer Vision 128(2), 336–359 (2020).
https://doi.org/10.1007/s11263-019-01228-7, http://gradcam.cloudcv.org

11. Shinya, Y., Simo-Serra, E., Suzuki, T.: Understanding the effects of pre-training
for object detectors via eigenspectrum. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV) Workshops (Oct 2019)

12. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning. Proceedings of Machine
Learning Research, vol. 70, pp. 3145–3153. PMLR, International Convention Cen-
tre, Sydney, Australia (06–11 Aug 2017), http://proceedings.mlr.press/v70/

shrikumar17a.html

13. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. 2nd International Con-

http://arxiv.org/abs/1810.03292
http://arxiv.org/abs/1910.04256
http://arxiv.org/abs/1910.04256
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.5465/ambpp.2004.13862426
http://journals.aom.org/doi/10.5465/ambpp.2004.13862426
http://journals.aom.org/doi/10.5465/ambpp.2004.13862426
https://github.com/amiratag/ACE http://arxiv.org/abs/1902.03129
https://github.com/amiratag/ACE http://arxiv.org/abs/1902.03129
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1038/s41467-019-08987-4
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/s11263-019-01228-7
http://gradcam.cloudcv.org
http://proceedings.mlr.press/v70/shrikumar17a.html
http://proceedings.mlr.press/v70/shrikumar17a.html


Principal Feature Visualisation in Convolutional Neural Networks 15

ference on Learning Representations, ICLR 2014 - Workshop Track Proceedings
pp. 1–8 (2014)

14. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR abs/1409.1 (2014).
https://doi.org/10.1016/j.infsof.2008.09.005, http://arxiv.org/abs/1409.1556

15. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for sim-
plicity: The all convolutional net. In: 3rd International Conference on Learning
Representations, ICLR 2015 - Workshop Track Proceedings (2015)

16. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 8689 LNCS(PART 1), 818–833
(2014). https://doi.org/10.1007/978-3-319-10590-1 53

17. Zhang, J., Bargal, S.A., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-Down
Neural Attention by Excitation Backprop. International Journal of Computer Vi-
sion 126(10), 1084–1102 (10 2018). https://doi.org/10.1007/s11263-017-1059-x,
http://arxiv.org/abs/1608.00507

https://doi.org/10.1016/j.infsof.2008.09.005
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-319-10590-1{_}53
https://doi.org/10.1007/s11263-017-1059-x
http://arxiv.org/abs/1608.00507

	Principal Feature Visualisation  in Convolutional Neural Networks 

