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Abstract. In this paper, we equip Prototypical Networks (PNs) with a
novel dissimilarity measure to enable discriminative feature normaliza-
tion for few-shot learning. The embedding onto the hypersphere requires
no direct normalization and is easy to optimize. Our theoretical analy-
sis shows that the proposed dissimilarity measure, denoted the Squared
root of the Euclidean distance and the Norm distance (SEN), forces
embedding points to be attracted to its correct prototype, while being
repelled from all other prototypes, keeping the norm of all points the
same. The resulting SEN PN outperforms the regular PN with a consid-
erable margin, with no additional parameters as well as with negligible
computational overhead.

1 Introduction

Few-shot classification [8, 23, 19, 17, 6, 20] aims at adapting a classifier to previ-
ously unseen classes from just a handful of labeled examples per class. In the past
few years, many approaches to few-shot classification have been proposed. These
approaches can be roughly categorized as (i) learning to fine-tune approaches [6,
17]; (ii) sequence-based approaches [1, 13]; (iii) generative modeling-based ap-
proaches [29, 26]; (vi) (deep) distance metric learning-based approaches [19, 22,
27, 20]; and (v) semi-supervised approaches [3, 16]. Among these categories, dis-
tance metric learning-based approaches are typically preferred because of their
simplicity and effectiveness. The basic idea of these approaches, for which the
so-called Prototypical Networks (PNs) [19] are the most well-known examples,
is to learn a non-linear mapping of the input into an embedding space which
is commonly high-dimensional. In this space, a metric distance is defined which
maps similar examples close to each other in the embedding space. Dissimilar
examples are mapped to distant locations relative to each other, so that a query
example can be classified by, for example, using nearest neighbor methods. Ar-
guably one of the most commonly used distance metrics in this high dimensional
embedding space is the (squared) Euclidean distance combined with a softmax
function [19, 27, 3, 16].
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However, even though the softmax is known to work well for closed-set classi-
fication problems, it has been shown to not be discriminative enough in problems
were there are few labels relative to the number of classes [4, 15]. This has given
rise to alternative loss formulations with improved discriminative ability, where
high-dimensional features have been normalized explicitly to lie on a hypersphere
via direct L2 normalization [4, 15, 24]. The advantage of normalization has been
theoretically analyzed in [30]. However, direct L2 normalization leads to a non-
convex loss formulation, which typically results in local minima generated by
the loss function itself [30].

With the aim of performing soft feature normalization while preserving the
convexity and the simplicity of the loss function, we equip PNs with a novel
dissimilarity measure particularly suited to enable discriminative feature nor-
malization for few-shot learning, without any direct normalization. The pro-
posed dissimilarity measure, denoted the Squared root of the Euclidean distance
and the Norm distance (SEN), replaces the Euclidean distance in PN training,
with major consequences: Our theoretical analysis shows that the proposed mea-
sure explicitly forces embedded points to be attracted to the correct prototype
and repelled from incorrect prototypes. Further, we provide analysis showing
that SEN indeed explicitly forces all embeddings to have the same norm dur-
ing training which enables the resulting SEN PN to generate a more robust
embedding space. With this minimal but important modification, the SEN PN
outperforms the original PN by a considerable margin and demonstrates good
performance on the Mini-Imagenet [17, 23], the Fewshot-CIFAR100 (FC100) [14],
and the Omniglot [9] datasets with no additional parameters as well as negligible
computational overhead (a comparison of inference time is provided in the sup-
plementary material). We furthermore experimentally show that the proposed
SEN dissimilarity measure constantly outperforms the Euclidean distance in PNs
with different embedding sizes as well as with different embedding networks.

2 Related Work

The literature on few-shot learning is vast; we present in this section a short
summary of well-known approaches and works most relevant to our proposed
approach. We refer the reader to [25] and [21] for more detailed reviews on
few-shot learning.

Besides distance metric learning-based approaches, few-shot learning ap-
proaches can be categorized into (i) learning to fine-tune approaches; (ii) sequence-
based approaches; (iii) generative modeling-based approaches; (iv) (deep) dis-
tance metric learning-based approaches; and (v) semi-supervised approaches.
Learning to fine-tune approaches aim at learning a model’s initial parameters
such that it can be quickly adapted to a new task through only one or a few
gradient update steps [6, 17]. These approaches typically can handle many model
representations; however, they suffer from the need to fine-tune on the target
problem, which makes them less appealing to few-shot learning. Sequence-based
approaches formalize few-shot learning as a sequence-to-sequence problem and
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leverage Recurrent Neural Networks (RNNs) with memories to address the prob-
lem [1, 13]. While appealing, these methods typically require complex RNN ar-
chitectures and complicated mechanisms for storing/retrieving all the historical
information of relevance, both long-term and short-term, without forgetting [20].
Generative modeling-based approaches employ adversarial training to produce
additional signals/training examples to allow the classification algorithm to learn
a better classifier [29, 26]. Deep distance metric learning-based approaches aim
at eliminating the need for manually choosing the right distance metric (e.g.,
the Euclidean distance and the cosine distance) by learning not only a deep
embedding network but also a deep non-linear metric (similarity function) for
comparing images in the embedding space [20]. Although deep distance met-
ric learning-based approaches can avoid the need for manually choosing the
right distance metric, they are prone to overfitting and are more difficult to
train compared to distance metric learning-based approaches due to the added
parameters. Semi-supervised approaches utilize unlabeled data to improve few-
shot learning accuracy. This is typically achieved by casting the semi-supervised
few-shot learning problem as a semi-supervised clustering problem and address
it by applying, for example, k-means clustering algorithms [3, 16]. We build on
the distance metric learning line of work due to its simplicity and effectiveness.

Metric learning-based approaches aim to learn a non-linear mapping of the in-
put into an embedding space and define a metric distance which maps similar
examples close and dissimilar ones distant in the embedding space, so that a
query example can be easily classified by, for example, using nearest neighbor
methods. Some notable approaches in this line of work include Koch et al. [8],
who propose to learn siamese neural networks for computing the pair-wise dis-
tance between samples. The learned distance is then used by a nearest neighbor
classifier for solving the one-shot learning problem. Vinyals et al. [23] define an
end-to-end differentiable nearest neighbor classifier, called matching networks,
based on the cosine similarity between the support set and the query example.
Snell et al. [19] propose a simple method called prototypical networks for few-
shot learning based on the assumption that there exists an embedding space in
which samples from each class cluster around a single prototype representation,
which is simply the mean of the individual samples. Garcia and Bruna [22] ar-
gue that few-shot learning, which aims at propagating label information from
labeled support examples towards unlabeled query images, can be formalized
as a posterior inference over a graphical model determined by the images and
labels in the support set and the query set. The authors cast posterior inference
as message passing on graph neural networks and propose a graph-based model,
which can be trained end-to-end, to solve the task. Wang et al. [27] propose to
improve the generalization capacity of metric-based methods for few-shot learn-
ing by enforcing a large margin between the class centers. This is achieved by
augmenting a large margin loss function, which is the unnormalized triplet loss
[18], to the standard softmax loss function for classification.
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3 Few-shot Learning

In this section, we first begin by detailing the general few-shot learning task.
Next, we introduce PNs and the Euclidean distance function with special atten-
tion paid to highlight its existing challenges. Then, we describe our proposed
SEN dissimilarity measure and our SEN PN model. Finally, we provide analyses
on the gradient of the SEN PN’s loss function and the behavior of the proposed
SEN dissimilarity measure during training.

3.1 Task Description

In the traditional machine learning setting, we are typically given a dataset D.
This dataset is usually split into two parts: Dtrain and Dtest. The former is often
used for training the parameters θ of the model, while the latter is typically used
for evaluating its generalization. In general few-shot learning, we are dealing with
meta-datasets Dmeta containing multiple regular datasets D [17]. Each dataset
D ∈ Dmeta has a split of Dtrain and Dtest; however, they are usually much
smaller than that of regular datasets used in the traditional machine learning
setting. Let C = {1, . . . ,K} be the set of all classes available in Dmeta. The
set C is usually split into two disjoint sets: Ctrain containing training classes
and Ctest containing unseen classes for testing, i.e., Ctrain ∩ Ctest = ∅. The
meta-dataset Dmeta is often split into two parts: The first is a meta training set
Dmeta−train = {(xi, yi)}Ni=1, where xi is the feature vector of the ith example,
yi ∈ Ctrain is its corresponding label, and N is the number of training examples.
The second part is a meta testing set Dmeta−test. In a standard M-way K-shot
classification task, the meta testing set Dmeta−test consists of a support set and
a query set. The support set S = {(xj , yj)}NS

j=1 contains K examples from each of
the M classes from Ctest, i.e., the number of support examples are NS = M ×K
and yj ∈ Ctest. The query set contains NQ unlabeled examples Q = {xj}

NS+NQ

j=NS+1.
The support set is employed by the model for learning the new task, while the
query set is utilized by the model for evaluating its performance.

3.2 Prototypical Networks

Prototypical networks learn a non-linear embedding function fφ : RD −→ RE
parameterized by φ that maps a D-dimensional feature vector of an exam-
ple xi to an E-dimensional embedding zi = fφ(xi) [19]. In meta-testing, the
embedding function fφ is employed for mapping examples in the support set

S = {(xj , yj)}NS
j=1 into the embedding space. An E-dimensional representation

ck, or prototype, of each class is computed by taking the mean of the embedded
support points belonging to the class:

ck =
1

|Sk|
∑

(xi,yi)∈Sk

fφ(xi) =
1

|Sk|
∑

(xi,yi)∈Sk

zi, (1)

where Sk is the support set of class k. An embedded query point xq is then
classified by simply finding the nearest class prototype in the embedding space.
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To train PNs, the episodic training strategy proposed in [23, 17] is adopted.
In particular, to train a PN for the M-way, K-shot classification task, a training
episode is formed from the meta training set Dmeta train as follows: K examples
from each of M randomly selected classes from Ctrain are sampled to form a
support set S = {Si}Mi=1. A query set Q = {Qi}Mi=1 is formed by sampling from
the rest of the M classes’ samples. Next, for each class k, its support set Sk ∈ S
is used for computing a prototype using Equation 1. Then, a distribution over
classes for each query point xq ∈ Q based on a softmax over distances to the
prototypes in the embedding space is produced:

pφ(y = k|xq) =
exp(−d(fφ(xq), ck))∑
k′ exp(−d(fφ(xq), ck′))

, (2)

where d = RE × RE −→ [0,+∞) is a distance function. Based on that, the PN
is trained by minimizing the negative log-probability of the true class k via
Stochastic Gradient Descent (SGD):

J(φ) = − 1

M

M∑
k=1

1

|Qk|
∑

xq∈Qk

log pφ(y = k|xq). (3)

The training is repeated with new, randomly generated training episodes until
a stopping criterion is met.

PNs employ the squared Euclidean distance as the distance metric. The
squared Euclidean distance between two arbitrary points z = (z1, . . . , zn) and
c = (c1, . . . , cn) is defined as follows:

dse(z, c) = ‖z− c‖2 =

n∑
i=1

(zi − ci)2. (4)

Although combining the softmax and the Euclidean distance has shown to
give good performance for closed-set classification settings, it performs sub-
optimally when few labels are available relative to the number of classes. In
order to address this issue and improve the discriminative ability, new loss for-
mulations based on feature normalization have been proposed. These tend to
normalize features explicitly via L2 normalization [15, 24, 4]. This typically re-
sults in a more compact embedding space than the Euclidean embedding space.
In such an embedding space, the cosine distance is commonly chosen as the dis-
tance metric and many few-shot classification approaches [23, 17] have employed
the cosine distance in the hyperspherical embedding space. The cosine distance
between two arbitrary point z = (z1, . . . , zn) and c = (c1, . . . , cn) is defined as:

dcs = 1− z · c
‖z‖‖c‖

= 1−
∑n
i=1 zici√∑n

i=1 z
2
i

√∑n
i=1 c

2
i

. (5)

However, feature normalization through hard normalization operations such
as L2 normalization leads to a non-convex loss formulation, which typically re-
sults in local minima introduced by the loss function itself [30]. Since the net-
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work optimization itself is non-convex, it is important to preserve convexity in
loss functions for more effective minimization.

One possible solution is to use Ring loss [30]. The Ring loss introduces an
additional term to the primary loss function, which penalizes the squared dif-
ference between the norm of samples and a learned target norm value R. The
modified loss function is defined as follows:

L = LP + γLR, (6)

where γ is the loss weight w.r.t to the primary loss LP and LR is the Ring loss,
which is defined as:

LR =
1

2n

n∑
i=1

(‖fφ(xi)‖ −R)2. (7)

Since the Ring loss encourages the norm of samples being value R during
training instead of explicit enforcing through a hard normalization operation,
the convexity in the loss function is preserved. However, the Ring loss is more
difficult to train than the primary loss (e.g., the Softmax loss) due to the added
term (the norm difference LR), the added parameter (the target norm R), and
the added hyperparameter (the loss weight w.r.t to the primary loss γ).

To address the shortcomings outlined above, we propose a novel dissimilar-
ity measure for few-shot learning, called SEN. The SEN dissimilarity measure
encourages the norm of samples to have the same value, in other words, force
the data to lie on a scaled unit hypersphere, while preserving the convexity and
the simplicity of the loss function.

3.3 SEN Dissimilarity Measure for Prototypical Networks

The SEN dissimilarity ds(z, c) between two arbitrary points z = (z1, . . . , zn)
and c = (c1, . . . , cn) in D-dimensional space is a combination of the standard
squared Euclidean distance de and the squared norm distance dn:

ds(z, c) =
√
de(z, c) + εdn(z, c), (8)

where ε is a tunable balancing hyperparameter and must be chosen such that
de(z, c) + εdn(z, c) is always positive, de(z, c) and dn(z, c) are defined as:

de(z, c) = ‖z− c‖2 ,

dn(z, c) = (‖z‖ − ‖c‖)2.

We modify the PN by replacing the Euclidean distance by our proposed SEN
dissimilarity measure. We call this model SEN PN. Specifically, we replace the
distance function d(zi, ck) in Equation 2 by our proposed SEN dissimilarity mea-
sure ds(zi, ck) =

√
de(zi, ck) + εdn(zi, ck), zi is the embedding of the example

xi, and ck is the prototype of class k. For simplicity, we consider the setting in
which only one query example per class is used; however, the loss function pre-
sented in this session and the analysis presented in the next section can be easily
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generalized for other settings in which more than one query examples per class
are used. When only one query example per class is used, the updated negative
log probability loss is given as:

J(φ) = −
∑
k

log pφ(yi = k|xi)

= −
∑
k

log
exp(−ds(zi, ck))∑
k′ exp(−ds(zi, ck′))

=
∑
k

(
ds(zi, ck) + log

∑
k′

exp(−ds(zi, ck′))

)
.

(9)

The learning proceeds by minimizing J(φ) of the true class k via SGD, which
is equivalent to minimizing the SEN dissimilarity measure between the query
example xi and its prototype ck: ds(zi, ck), and maximizing the SEN dissim-
ilarity measures between the query example xi and the other prototypes ck′ :
ds(zi, ck′). Minimizing ds(zi, ck) pulls zi to its own class and encourages embed-
dings of the same class to have the same norm. Maximizing ds(zi, ck′) pushes zi
away from other classes; however it encourages embeddings of different classes
to have different norms.

Since our goal is to force the data to lie on a scaled unit hypersphere, we
define the balancing hyperparameter ε relative to zi and ck as follows:

εik =

{
εp > 0 if yi = k

εn < 0 if yi 6= k
, (10)

where i is the index of the embedding zi, yi is the embedding’s class label,
and k is the class label of the prototype ck. During training, a positive epsilon
(εik = εp > 0) is used for computing the SEN dissimilarity measure between the
query example xi and its prototype ck, while a negative epsilon (εik = εn < 0) is
used for computing the SEN dissimilarity measures between the query example
xi and the other prototypes ck′ . The negative epsilon εn will inverse the effect
of the norm distance when maximizing ds(zi, ck′). In other words, maximizing
ds(zi, ck′) with a negative epsilon εn pushes zi away from other classes and
encourages embeddings of all classes to have the same norm. The flexibility
induced by the balancing hyperparameter εik makes the SEN particularly suited
to enable discriminative feature normalization in PNs.

Our proposed SEN dissimilarity measure explicitly encourages the norm of
samples to have the same value during training, while preserving the convexity
and the simplicity of the loss function. At test time, a positive epsilon (εik =
εp > 0) is used for computing all dissimilarity measures.

In the next section, we provide a theoretical analysis showing that our pro-
posed SEN dissimilarity measure together with the special balancing hyperpa-
rameter εik explicitly pulls the data to a scaled unit hypersphere during training.
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3.4 Theoretical analysis

The partial derivative of the negative log probability loss J(φ) with respect to
ds(zi, ck) is given by:

∂J(φ)

∂ds(zi, ck)
=
∑
k

(1[yi = k]− pφ(yi = k|x)), (11)

where the Iverson bracket indicator function [yi = k] evaluates to 1 when
yi = k and 0 otherwise. The partial derivative of the SEN dissimilarity mea-
sure ds(zi, ck) with respect to zi is given by:

∂ds(zi, ck)

∂zi
=
∂
√
de(zi, ck) + εikdn(zi, ck)

∂zi

=
(zi − ck) + εik(‖zi‖ − ‖ck‖) zi

‖zi‖

ds(zi, ck)

= −
(ck − zi) + εik(‖ck‖ − ‖zi‖) zi

‖zi‖

ds(zi, ck)

= − v(zi, ck)

ds(zi, ck)
,

(12)

where
v(zi, ck) = (ck − zi) + εik(‖ck‖ − ‖zi‖)

zi
‖zi‖

. (13)

Using the chain rule, we get:

∂J(φ)

∂zi
=

∂J(φ)

∂ds(zi, ck)

∂ds(zi, ck)

∂zi

=
∑
k

−1[yi = k]− pφ(yi = k|x)

ds(zi, ck)
v(zi, ck)

=
∑
k

∂Jk(φ)

∂zi
.

(14)

Thus, there is a gradient contribution from all prototypes. In particular, the
gradient contribution with respect to the correct prototype, when k = k∗ = yi,
is given by:

∂Jk∗(φ)

∂zi
= −1− pφ(yi = k∗|x)

ds(zi, ck∗)
v(zi, ck∗)

= −1− pφ(yi = k∗|x)

ds(zi, ck∗)
vp(zi, ck∗),

(15)

where

vp(zi, ck∗) = (ck∗ − zi)︸ ︷︷ ︸
attractor

+ εik∗(‖ck∗‖ − ‖zi‖)
zi
‖zi‖︸ ︷︷ ︸

norm equalizer

.
(16)
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The gradient contribution with respect to incorrect prototypes, when k = k′ 6=
yi, is given by:

∂Jk′(φ)

∂zi
= −0− pφ(yi = k′|x)

ds(zi, ck′)
v(zi, ck′) = −pφ(yi = k′|x)

ds(zi, ck′)
vn(zi, ck′), (17)

where

vn(zi, ck′) = (zi − ck′)︸ ︷︷ ︸
repeller

+ εik′(‖zi‖ − ‖ck′‖)
zi
‖zi‖︸ ︷︷ ︸

norm equalizer

.
(18)

From the preceding analysis, we observe the following:

1. Each gradient component contains an attractor/repeller, which encourages
zi to move towards the correct prototype and move away from the incorrect
ones.

2. From (16), it is clear that if ‖ck∗‖ > ‖zi‖ and εik∗ > 0, εik∗(‖ck∗ || −
‖zi‖) 1

‖zi‖ > 0, such that ‖zi‖ is encouraged to increase (and vice verca

for ‖zi‖ > ‖ck∗‖).
3. Conversely, from (18), if ‖ck′‖ > ‖zi‖ and εik′ > 0, εik′(‖zi‖−‖ck′‖) 1

‖zi‖ < 0

(and vice verca for ‖zi‖ > ‖ck′‖). Thus, we need εik′ < 0 in order to ensure
similar behaviors as with the correct prototype.

Observation 2) and 3) shows that the gradient contributions with respect to the
correct prototype and the incorrect ones cooperate in order to equalize the norms
during training when εik∗ > 0 and εik′ < 0.

4 Experiments

To evaluate the effectiveness of the proposed SEN dissimilarity measure, we
compare our proposed SEN PN approach with the original PN [19] and state-
of-the-art distance metric learning-based approaches on the Mini-Imagenet [17,
23] and the Omniglot [9] dataset. Further, additional ablation studies are also
performed on the Fewshot-CIFAR100 (FC100) [14] dataset.

4.1 Experimental Setup and Results

Embedding networks We utilize the same embedding network as that used by the
original PN. Specifically, our network, which we refer to as 4CONV, comprises
of four convolutional blocks. Each block is composed of 64 3 × 3 convolutional
filters, a batch normalization layer, a ReLU nonlinearity, and a 2×2 max-pooling
layer. To test the performance of the SEN dissimilarity measure in more general
settings, we employ a more sophisticated network, the Wide Residual Network
(WRN) [28], as the embedding network. We use the same network architecture
proposed in [3], which is a network of depth 16 and a widening factor of 6. We
train the network with both the traditional Euclidean distance (WRN PN) and
the SEN dissimilarity measure (SEN WRN PN).
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Model Network Omniglot Mini-Imagenet

Original PN [19] 4CONV 98.9% 68.2%

Large Margin GNN [27] 4CONV 99.2% 67.6%

Large Margin PN [27] 4CONV 98.7% 66.8%

RN [20] 4CONV 99.1% 65.3%

Matching Nets [23] 4CONV 98.7% 60.0%

MetaGAN + RN [29] 4CONV 99.2% 68.6%

Semi-Supervised PN [3] 4CONV - 65.5%

PN (ours, baseline) 4CONV 98.6% 67.8%

SEN PN (ours) 4CONV 98.8% 69.8%

Supervised WRN PN [3] WRN - 69.6%

Semi-Supervised WRN PN [3] WRN - 70.9%

WRN PN (ours) WRN 99.2% 71.0%

SEN WRN PN (ours) WRN 99.4% 72.3%

Table 1. Few-shot classification accuracy.

Hyperparameter ε For SEN-based models, during training, εp = 1.0 is used for
computing the SEN between the query example and its prototype, while εn =
−10−7 to compute the SEN between the query example and the other prototypes.
During testing, εp = 1.0 is used for computing all the SEN dissimilarity measures.
A discussion on how the hyperparameters εp and εn were chosen can be found
in the supplementary.

Results The test results are shown in Table 1. As can be seen from Table 1, al-
though our implementation of the PN (the baseline model) achieves 0.4 percent-
age points lower in terms of accuracy compared to the original implementation
of the PN (67.8% vs 68.2%), the baseline model trained with the proposed SEN
dissimilarity measure still outperforms the original PN by obtaining a relative
increase of 2.4% and achieves an accuracy of 69.8%. In addition, the SEN WRN
PN outperforms the Semi-Supervised WRN PN by a relative increase of 2% and
achieves an accuracy of 72.3% with the WRN as the embedding network.

Similar trends can be observed for the Omniglot dataset, where SEN PN
outperforms our PN implementation and SEN WRN PN outperforms WRN
PN.

4.2 Ablation Study

To investigate the effectiveness and behavior of the proposed SEN dissimilarity
measure, we conduct several ablation studies. First, we compare against the
PN trained with the Euclidean distance (PN), the PN trained with the Ring
loss (Ring PN), and the PN trained with the SEN dissimilarity measure (SEN
PN). The test results are show in Table 2. We train the Ring PN with different
values of γ, the loss weight w.r.t to the primary loss, in range [10−10, 1] and pick
γ = 10−7 since it results in the highest accuracy. R was learned during training
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Model Omniglot Mini-Imagenet FC100

PN 98.6% 67.8% 52.4%

Ring PN 98.7% 68.6% 52.8%

SEN PN 98.8% 69.8% 54.6%

Table 2. Few-shot classification accuracy on the Omniglot [9] (20-way 5-shot), the
Mini-Imagenet [17, 23] (5-way 5-shot), and the FC100 [14] (5-way 5-shot) datasets.

Fig. 1. 2D embeddings produced by the PN (left), the Ring PN (middle) and the SEN
PN (right). The circles denote query examples, and the stars denotes prototypes.

following [30]. As can be seen from Table 2, the Ring loss improves the accuracy
relative to the PN on the Mini-Imagenet dataset by 1.8%; however, it performs
worse than our proposed SEN PN approach, which obtains a relative increase
of 3%. Similar behavior is obtained for other few-shot learning datasets such as
FC100 and Omniglot. A more thorough discussion on SEN PN vs Ring PN can
be found in the supplementary.

Principal Component Analysis (PCA) We project 1600D embeddings produced
by the PN, the Ring PN, and the SEN PN to 2D space using PCA and visualize
the outputs (see Figure 1). As can be seen from Figure 1, the Ring loss forces the
prototypes to lie on a scaled unit hypersphere; however, the prototypes produced
by the Ring PN are not very well-separated compared to the ones produced by
the PN. On the other hand, our proposed SEN dissimilarity measure both forces
the prototypes to lie on a scaled unit hypersphere and keeps them well-separated.

Analysis of norm We plot the norm of embeddings produced by the PN, the Ring
PN, and the SEN PN. As can be seen from Figure 2, the norm of embeddings
produced by the PN and the Ring PN vary a lot, while the norm of embeddings
produced by the SEN PN has a very consistent value. This confirms that SEN
encourages all embeddings to have the same norm during training. Both the
SEN and the Ring loss are adopted for explicitly enforcing their embeddings to
have the same norm during the training of the PN. However, as can be seen from
Figure 2, the proposed SEN dissimilarity measure is a better choice for the task
than the Ring loss. This is partly due to the use of a very small gamma (γ =
10−7) during training the Ring PN. In our experiments, higher gamma values
do encourage the norm of embeddings to have a more consistent value; however,
they cause a considerable decrease in the accuracy of the PN. This suggests that
the Ring loss is not an optimal choice for enforcing feature normalization in PNs.
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Fig. 2. The norm of embeddings produced by the PN (left), the Ring PN (middle),
and the SEN PN (right). The stars denote query examples, and the diamonds denotes
prototypes.

Fig. 3. The PN vs the SEN PN with different embedding sizes.

The proposed SEN dissimilarity measure; on the other hand, both encourages
all embeddings to have the same norm and improves the accuracy of PNs. This
indicates that the proposed SEN dissimilarity measure is a more suitable choice
for feature normalization than the Ring loss in training PNs.

Analysis of embedding dimensionality We compare between the PN and the SEN
PN trained with different embedding sizes (see Figure 3). As can be seen from
Figure 3, in low dimensional spaces, the PN and the SEN PN perform very simi-
larly; however, in high dimensional spaces, the SEN PN consistently outperforms
the PN by a considerable margin. This suggests that the SEN dissimilarity mea-
sure is a more suitable distance metric for metric distance learning-based few-
shot learning than the standard Euclidean distance in high dimensional spaces.
This further explains the limited improvement on the Omniglot dataset where
the embedding size is 64 compared to 1600 for the remaining datasets.

Analysis of distance We evaluate the possibility of combining the proposed SEN
dissimilarity measure with other distance functions such as the Euclidean dis-
tance and the cosine distance in training PNs. Specifically, we train the PN
with the SEN dissimilarity measure and test the trained model with both the
Euclidean distance and the cosine distance. We compare the two tested models
with the original PN, the SEN PN, and the Cosine PN (the PN trained and
tested with the cosine distance). The test results are show in Table 3.
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Train distance Test distance Omniglot Mini-Imagenet FC100

Cosine Cosine 61.5% 53.3% 44.9%

Cosine SEN 55.2% 51.4% 43.8%

Euclidean Euclidean 98.6% 67.8% 52.4%

Euclidean SEN 98.7% 68.5% 53.1%

SEN SEN 98.8% 69.8% 54.6%

SEN Euclidean 98.8% 68.8% 53.9%

SEN Cosine 98.8% 69.8% 54.6%

Table 3. Test results of the PN with different distances on the Omniglot [9] (20-way 5-
shot), the Mini-Imagenet [17, 23] (5-way 5-shot), and the Fewshot-CIFAR100 (FC100)
[14] (5-way 5-shot) datasets.

Fig. 4. 2D embeddings produced by the Siamese Baseline (left), the Siamese Ring
(middle), and the Siamese SEN (right).

As can be seen from Table 3, the model trained with the SEN dissimilarity
measure achieves the highest accuracy on the Mini-Imagenet, the FC100, and
the Omniglot datasets when tested with either the SEN dissimilarity measure
or the cosine distance. This is because the SEN dissimilarity measure explicitly
forces all embeddings to have the same norm during training, and, as a result,
pulling the prototypes very close to the hypersphere. For data embedded on a
hypersphere, the cosine distance is a natural measure of distance [5, 2]. Experi-
ments and discussions on alternative design choices for SEN can be found in the
supplementary.

SEN beyond few-shot learning We have demonstrated that the SEN dissimi-
larity measure outperforms the commonly used Euclidean distance in distance
metric learning-based few-shot learning with prototypical networks. In this sec-
tion, we study the behaviors of the proposed SEN in combination with other
metric learning-based tasks, which are based on the idea of obtaining inter-class
separability and intra-class compactness. Note, due to the lack of prototypes,
the SEN distance is here computed between datapoints directly. To do this, we
implement the well-known Siamese network and Contrastive loss [7]. We call this
model the Siamese Baseline. We augment it by replacing the Euclidean distance
by our proposed SEN dissimilarity measure (Siamese SEN) and by employing
Ring loss (Siamese Ring). We train the three models on the MNIST dataset [10]
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for dimensionality reduction and clustering. During training the Siamese SEN,
following the reasoning of Section 3.3, a positive epsilon (εik = εp > 0) is used for
computing the SEN dissimilarity measures between examples of the same class,
and a negative epsilon (εik = εn < 0) is used for computing the SEN dissimilarity
measures between examples of different classes. At test time, a positive epsilon
(εik = εp > 0) is used for computing all dissimilarity measures.

As can be seen from Figure 4, the Siamese Ring forces all embeddings to
lie on a scaled unit hypersphere; however, embeddings produced by the Siamese
Ring are not as well-separated as embeddings produced by the Siamese Base-
line. Our proposed SEN dissimilarity measure, on the other hand, both forces
all embeddings to lie on a scaled unit hypersphere and keeps the embeddings
well-separated. This suggests that SEN can also be used beyond the field of few-
shot learning where distance metric learning is used and class memberships are
available. In future work, other promising lines of research are to combine fea-
ture normalization with weight normalization techniques [11] and analyze their
synergy, as well as to analyze the potential of SEN in other prototype-based
methods [12].

5 Conclusion

In this paper, we propose a novel dissimilarity measure, called SEN, for distance
metric learning-based few-shot learning by modifying the traditional Euclidean
distance to attenuate the curse of dimensionality in high dimensional spaces.
The SEN is a combination of the Euclidean distance and the norm distance.
We extend the prototypical network by replacing the Euclidean distance by our
proposed SEN dissimilarity measure, which we refer to as SEN PN. With mini-
mal modifications, the SEN PN outperforms the original PN by a considerable
margin and demonstrates good performance on the Mini-Imagenet, the FC100,
and the Omniglot datasets with no additional parameters as well as negligible
computational overhead. We provide analyses showing that the proposed SEN
dissimilarity measure encourages the embeddings to have the same norm and
enables the SEN PN to generate a hyperspherical embedding space, which is a
more compact embedding space than the Euclidean space. We experimentally
show that the proposed SEN dissimilarity measure consistently outperforms the
Euclidean distance in PNs with different embedding sizes as well as with different
embedding networks. We also show that SEN is an effective feature normaliza-
tion technique not only for distance metric learning-based few-shot learning with
PNs but also potentially for more general tasks, here exemplified by the Siamese
network.
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