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Abstract. Recently, cybersickness assessment for VR content is required
to deal with viewing safety issues. Assessing physical symptoms of in-
dividual viewers is challenging but important to provide detailed and
personalized guides for viewing safety. In this paper, we propose a novel
symptom-aware cybersickness assessment network (SACA Net) that quan-
tifies physical symptom levels for assessing cybersickness of individual
viewers. The SACA Net is designed to utilize the relational characteris-
tics of symptoms for complementary effects among relevant symptoms.
The proposed network consists of three main parts: a stimulus symp-
tom context guider, a physiological symptom guider, and a symptom
relation embedder. The stimulus symptom context guider and the physi-
ological symptom guider extract symptom features from VR content and
human physiology, respectively. The symptom relation embedder refines
the stimulus-response symptom features to effectively predict cybersick-
ness by embedding relational characteristics with graph formulation. For
validation, we utilize two public 360-degree video datasets that contain
cybersickness scores and physiological signals. Experimental results show
that the proposed method is effective in predicting human cybersickness
with physical symptoms. Further, latent relations among symptoms are
interpretable by analyzing relational weights in the proposed network.

Keywords: Cybersickness assessment, individual viewer, VR content,
physical symptom, symptom relation

1 Introduction

Perceiving virtual reality (VR) content such as 360-degree videos can provide
immersive experiences to viewers. With the rapid development of content captur-
ing and displaying devices, VR content increasingly attracts attention in various
industry and research fields [14–16]. However, the growth of VR environments
accompanies by concerns over the safety of viewing VR content. Several stud-
ies reported that viewing VR content could trigger cybersickness with physical
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Fig. 1. Viewers watching the same VR content can feel cybersickness differently with
distinct symptoms in detail.

symptoms [7,18] : 1) nausea symptoms containing sweating, salivation and, burp-
ing, 2) oculomotor symptoms containing visual fatigue and eye strain, and 3)
disorientation symptoms containing fullness of the head, dizziness, and vertigo.
Such cybersickness is one of the major problems hampering the spread of VR
environments. For guiding people to create and view safety content, it is firstly
needed to quantify cybersickness level caused by viewing VR content.

When viewers watch VR content, they can feel different cybersickness even for
the same content stimulus. As shown in Fig. 1, each viewer can feel cybersickness
differently with distinct symptoms in detail. To guide view-safe VR content for
specific viewers, it is necessary to quantify detailed cybersickness of individual
viewers. Cybersickness assessment for individual viewers needs detailed physical
symptoms to provide personalized guides for VR content viewing.

In recent years, VR content-based cybersickness assessment methods have
been introduced [20–24]. The content-based methods exploited spatio-temporal
features from VR content to quantify cybersickness. These content-based meth-
ods did not consider deviations among individuals. Individuals in the same stim-
ulus environment could experience different cybersickness.

There have been clinical studies examining the tendency of physiological re-
sponses according to cybersickness [11, 12,25, 30,34, 38,41, 48]. There have been
attempts to validate the relationship between physiological responses and cyber-
sickness caused by VR content [11, 13, 25, 33, 43]. Some previous works extract
cybersickness-related features from physiological response for predicting cyber-
sickness from VR content [17, 28, 31, 47]. However, since most of them only ex-
ploited physiology without stimulus context that affects physiological response
predominantly, they did not fully utilize the context for cybersickness. [28] con-
sidered stimulus with physiology in evaluating cybersickness. However, it only
focuses on predicting total cybersickness levels. Such cybersickness assessment
was limited in that it was performed without analysis of physical symptoms.

In this paper, we propose a novel symptom-aware cybersickness assessment
network (SACA Net) that predicts the individual viewer’s cybersickness with
physical symptoms. The SACA Net quantifies the degree of physical symptoms,
which makes it possible to provide more detailed and interpretable information
for cybersickness. There were clinical reports about the existence of relationships
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among physical symptoms for cybersickness [18, 44]. Considering the relation-
ships, we devise a relational symptom embedding framework that can exploit
the relational information among symptoms to assess cybersickness. Thereby,
the relevant symptom features complement each other for effectively predicting
symptom levels. The SACA Net consists of three parts: a stimulus symptom con-
text guider, a physiological symptom guider, and a symptom relation embedder.

The stimulus symptom context guider is designed to effectively accumulate
visual features for encoding symptom factors caused by stimulus environment.
Based on neural mismatch theory [40], a sensory mismatch detector in the stimu-
lus symptom context guider extracts mismatch features between target stimulus
content and comfort stimulus content that do not induce high-level cybersickness.
By exploiting the mismatch features from the sensory mismatch detector, the
stimulus symptom context guider extracts symptom group features that repre-
sent nausea, oculomotor, and disorientation group factors in context of stimulus.

The physiological symptom guider extracts symptom features from EEG sig-
nal. Since EEG contains the most comprehensive information about the nervous
system such as vision, movement, and sense [25,45], we employ EEG as a physi-
ological factor for cybersickness analysis. Considering clinical studies [30,38,48]
for EEG frequency bands, we design the frequency band attentive encoding for
the EEG signal to effectively extract symptom features related to cybersickness.

The symptom relation embedder is designed to refine the symptom features
from stimulus and response by embedding relational features. It receives symp-
tom group features and symptom features from the stimulus symptom context
guider and the physiological symptom guider, respectively. It learns the latent
relations among symptoms in an unsupervised way with graph formulation to
effectively predict symptom levels. In addition, we can interpret the relations
among symptoms by analyzing relational weights in the proposed network.

We use two public 360-degree video datasets with simulator sickness question-
naire (SSQ) [18] scores and physiological signals. The performances are validated
with human cybersickness levels in the assessment datasets.

The major contributions of the paper are as follows.

– We introduce a novel SACA Net that quantifies cybersickness of individuals
with physical symptoms by combining content stimulus and physiological
response. To the best of our knowledge, it is the first attempt to quantify
cybersickness including symptoms of individuals for VR content.

– We propose symptom relation embedding which makes it possible to ef-
fectively assess cybersickness of individuals with distinct symptoms. Fur-
thermore, latent symptom relations are interpretable by analyzing relational
weights in the proposed network.

2 Related Work

2.1 Cybersickness Assessment for VR Content

VR content-based cybersickness assessment methods have been introduced [20–
22, 36]. Kim et al. [20] quantified cybersickness caused by exceptional motions
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with a deep generative model. The generative model is trained with normal
videos containing non-exceptional motions. Hence, the generative model cannot
properly reconstruct videos with exceptional motions that cause cybersickness
at testing time. Acquired difference between the original video and the generated
video correlated with the degree of cybersickness. In [21], a deep network that
consists of a generator and a cybersickness regressor was proposed for quantify-
ing cybersickness. In the model, the difference between the original video and the
generated video is regressed to the simulation sickness questionnaires (SSQ) [5]
score assessed by subjects. Another study [22] quantified cybersickness consider-
ing visual-vestibular conflicts. In the work, to quantify cybersickness, SVR [4] is
applied on motion features from visual-vestibular interaction and VR content fea-
tures. Padmanaban et al. [36] proposed a cybersickness predictor to estimate the
nauseogenicity of virtual content. In the model, algorithms based on optical flow
methods are employed to compute cybersickness features that primarily focus
on disparity and velocity of video content. For assessing cybersickness caused by
quality degradation, an objective assessment model considering spatio-temporal
inconsistency was proposed [24]. In [23], a deep neural network that exploits
cognitive feature regularization was proposed for cybersickness assessment.

However, the aforementioned cybersickness quantification methods do not
assess cybersickness of individuals. Individuals in the same environments may
experience different cybersickness levels. Compared to these works, the proposed
method predicts individual cybersickness by exploiting physiological responses
of content viewers to consider the deviation among individuals.

2.2 Physiological Study for Cybersickness

There have been attempts to validate the relationship between cybersickness and
physiological responses [11, 13, 25, 31–33, 37, 43, 47]. Kim et al. [25] investigated
the characteristic changes of the physiological signals such as EEG, ECG, and
GSR while subjects are exposed to VR content. They conducted spectral analy-
sis on each frequency band of EEG signals and validated that specific frequency
bands have close correlations with cybersickness. In the case of ECG, they dis-
closed that the heart period was shorter during the virtual navigation than the
baseline period. For GSR, they observed skin conductance level increased during
the virtual navigation compared to the baseline. Mawalid et al. [32] attempted to
extract EEG statistical feature with PCA for classification in order to investigate
cybersickness. Pane et al. [37] adopted on power percentage features extracted
from EEG signals to identify cybersickness level. Lin et. al [31] applied linear re-
gression (LR), support vector regression (SVR), and self-organizing neural fuzzy
inference network (SOFIN) models on cybersickness-related features extracted
from PCA to predict sickness level. Recently, there is a study to predict VR
sickness levels by using frequency band power of EEG signal with deep learn-
ing structure [17]. There also exists deep learning-based approach utilizing both
content analysis and physiology analysis to predict cybersickness [28].

However, most cybersickness feature extraction methods did not place stim-
ulus information under consideration, which predominantly influences physio-
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Table 1. Cybersickness related symptoms according to 16-item SSQ [18]

No. Symptom
Symptom Group

Nausea Oculomotor Disorientation

1 General Discomfort 3 3

2 Fatigue 3

3 Headache 3

4 Eye strain 3

5 Difficulty focusing 3 3

6 Increased Salivation 3

7 Sweating 3

8 Nausea 3 3

9 Difficulty Concentrating 3 3

10 Fullness of Head 3

11 Blurred Vision 3 3

12 Dizzy (Eyes Open) 3

13 Dizzy (Eyes Closed) 3

14 Vertigo 3

15 Stomach Awareness 3

16 Burping 3

logical response of VR content viewers. In addition, previous assessment works
were limited in that only the resultant cybersickness level is taken into consider-
ation without symptom level analysis. Unlike these previous works, the proposed
method assesses individual cybersickness with symptom level analysis by com-
bining VR content stimulus and physiological response, which can provide more
detailed and interpretable information.

3 Proposed Method

The proposed SACA Net is divided into three parts: the stimulus symptom con-
text guider, the physiological symptom guider, and the symptom relation embed-
der. Given VR content, the stimulus context guider extracts the symptom group
features that represent the context of sickness-inducing stimulus environment.
The physiological symptom guider utilizes physiological signals being collected
from humans while watching the VR content to extract symptom features. Based
on the symptom group features and the symptom features, the symptom rela-
tion embedder refines symptom features by embedding relational characteristics
among symptoms to effectively estimate symptom levels. The proposed model
covers 16 symptoms for cybersickness according to [18] (see Table 1).

3.1 Stimulus Symptom Context Guider

Fig. 2 network configuration of the stimulus symptom context guider for en-
coding symptom group features. There exists neural mismatch theory [40] that
explains the process of motion sickness arising. When the expected sensory in-
formation does not match the actual sensory information, a neural mismatch
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Fig. 2. Network configuration of the stimulus symptom context guider. It extracts
group symptom features that represent nausea, oculomoter, and disorientation.
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Fig. 3. Network configuration of the sensory mismatch detector in the stimulus symp-
tom context guider. The sensory mismatch detector encodes the mismatch features.

occurs and it leads to motion sickness. People have a large neural mismatch for
exceptional motions because such motions are not often experienced in daily life.
Based on the theory, the sensory mismatch detector in stimulus symptom context
guider is designed to encode mismatch features as shown in Fig. 3. The sensory
mismatch detector includes a visual expectation generator. The visual expecta-
tion generator predicts the next frame Ît ∈ R224×224×3 by taking previous N
frames It−N , · · · , It−1 (N=11). Note that the viewports of VR content are used
as input frames. The visual expectation generator contains ConvLSTMs [50] and
DeConvLSTMs [28] with deconvolution [35]. As the human daily experience, the
visual expectation generator is pre-trained with videos [21] that contains only
non-exceptional motions and the high frame rate (over 30Hz). Thus, frame dif-
ference is large for VR content that could induce cybersickness with exceptional
motions. A pixel-wise generation loss is defined to train the generator. Let G
denote the generator function. The generation loss is defined as

Lgen = ‖G(It−N , ..., It−1)− It‖22. (1)

After training the visual expectation generator, the sensory mismatch detector
takes sequence (It−N , · · · , It) to create mismatch feature Mt that represents
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visual sensory conflict between expected and actual information. Note that the
sensory mismatch detector is first pre-trained and the weights are fixed.

Based on the sensory mismatch detector, the stimulus context guider out-
puts symptom group features that represent nausea, oculomotor, and disori-
entation group factors in a context of stimulus. Given video content, three
temporal sections with equal lengths are divided up. From each section, ran-
domly sampled content video sequence (It, · · · , It+N−1) and mismatch sequence
(Mt, · · · ,Mt+N−1) are used as inputs at training time. Since learned combi-
nations are diversified through random sampling, overfitting can be alleviated.
Note that the midst frames of each section are sampled at testing time. Content
and mismatch sequences are fed into a visual encoder and a mismatch encoder,
respectively. In this process, visual context and visual mismatch of VR content
for each section are encoded with 3D-Conv layers. The output features of the
three sections are concatenated and fed into a global context encoder with 2D-
Conv layers to consider the overall context of the content video. Finally, the fully
connected layers are applied to predict the mean nausea score, mean oculomotor
score, and mean disorientation score. These scores indicate the symptom group
scores according to [18]. At training time, the ground truth mean score is ob-
tained by averaging the group scores of individuals for each content. For training
the stimulus context guider, symptom group score loss Lgroup

sym is defined as

Lgroup
sym = ‖ŝnau − snau‖22 + ‖ŝocu − socu‖22 + ‖ŝdis − sdis‖22 (2)

where ŝnau, ŝocu, and ŝdis are predicted symptom group scores while snau, socu,
and sdis are ground truth symptom group scores. The features used for each pre-
diction are considered as symptom group features. The symptom group features
represent prior context about symptoms that can be induced by VR content
stimulus. These features are utilized in the symptom relation embedder later.

3.2 Physiological Symptom Guider

The upper part of Fig. 4 shows the network configuration of the physiological
symptom guider. The physiological symptom guider takes individual subject
characteristics into consideration to extract symptom features. The proposed
physiological symptom guider takes EEG signal acquired while watching VR
content to output symptom features.

To EEG signal, a high-pass filter with 0.5Hz cut-off frequency is applied for
removing baseline-drifting artifacts, and a low-pass filter with 50Hz cut-off fre-
quency is applied for removing muscular artifacts [31]. Note that C denotes EEG
channel size which corresponds with the number of acquired brain positions. Af-
ter applying the frequency filters, the spectrogram image XEEG ∈ R48×128×C of
the EEG signal is obtained through Short-Time Fourier Transform (STFT) [3]
to consider the frequency characteristics. XEEG is fed into an EEG time-wise
encoder which is composed of 1D-Conv layers. The 1D-Conv layers in the time-
wise encoder are applied on the temporal axis of XEEG. Therefore, this operation
does not mix the feature in frequency-wise. Based on the clinical studies [9, 25]



8 S. Lee et al.

STFT

(48, 128, C)

× C
o

nv
LS

TM

(12, 32, 32)

1
2

3
4

Ti
m

e-
Fr

eq
 

-w
is

e
En

co
d

er

Ti
m

e
-w

is
e

En
co

d
er

Symptom 1

Symptom Feature Extraction

Symptom 2

Symptom N

G
ra

p
h

 
C

o
nv

o
lu

ti
o

na
l

N
e

tw
o

rk
s

𝑆  

SSQ score

Learnable Relational Weights 

Symptom Feature Matrix

𝑋 𝐸𝐸𝐺  

Sweating Level
Prediction

Vertigo Level
Prediction

Headache Level
Prediction

Relation Embedded
Symptom Feature Matrix

Sweating Level
Prediction

Vertigo Level
Prediction

Headache Level
Prediction

Symptom Relation Embedder

𝑟1,2 

𝑟2,𝑁 

𝑟1,𝑁 

Frequency Band
Attention

Symptom 1

Symptom 2

Symptom N

Physiological
Response 

Nausea

Oculomotor

Disorientation

Physiological Symptom Guider

Sweating

Headache

Vertigo

Stimulus-Response
Symptom Feature Matching

(16)

(16)

FC
FC

FC

FC
FC

FC

FC
FC

FC

FC
FC

FC

(16) (32)

Stimulus Symptom 
Context Guider

(16)

EEG Signal

𝑅𝑚𝑎𝑡  

𝑆𝑚𝑎𝑡  𝑆𝑚𝑎𝑡
𝑟𝑒𝑙  

Fig. 4. Network configurations of a physiological symptom guider (upper part) and a
symptom relation embedder (lower part). The physiological symptom guider outputs
symptom features. The symptom relation embedder receives symptom group feature
and symptom features to refine them with relational chracteristics.

that show frequency bands of EEG is related to cybersickness, we design the
frequency band attention encoder for emphasizing important frequency band to
predict cybersickness. The frequency band attention encoder learns to obtain five
attention weights that correspond with delta (0.2-4 Hz), theta (4-8 Hz), alpha
(8-13 Hz), beta (13-30 Hz), and gamma (30-50 Hz) bands. The attention weight
of each band is located at the corresponding frequency region of the EEG fea-
ture map to form a frequency band attention map Afreq band ∈ R48×128. Then,
Afreq band is spatially elementwise multiplied to the EEG feature from the time-
wise encoder. After applying the frequency band attention, the EEG feature is
fed into a time-freq-wise encoder which is composed of 2D-Conv layers to encode
both time and frequency characteristics. The feature drawn by the time-freq-wise
encoder is divided into four patches in terms of the temporal axis. The patches
enter the ConvLSTM in a temporal order. In this process, long-term character-
istics can be encoded through the LSTM structure. Finally, symptom levels are
predicted with fully connected layers. For training the physiological symptom
guider, symptom score loss Lindiv

sym is defined as

Lindiv
sym =

#symptom∑
i=1

∥∥ŝisym − sisym
∥∥2
2
, (3)

where ŝisym indicates predicted i-th symptom score while sisym indicates i-th
ground truth symptom score. The features used for each symptom prediction
are considered as symptom features. The symptom features reflect physiological
symptom characteristics related to cybersickness of individuals.
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3.3 Symptom Relation Embedder

Overall procedure of the symptom relation embedder is shown in Fig. 4 . The
symptom relation embedder is devised to refine the symptom features by encod-
ing relational characteristics among symptoms. The symptom relation embedder
receives the symptom group features and the symptom features from the stimu-
lus symptom context guider and the physiological symptom guider, respectively.
It learns the relations among symptoms in an unsupervised way by considering
the symptom characteristics and the stimulus context that causes physical symp-
toms. Since symptom features are complementarily refined through embedding
relations, they can be used to predict physical symptom levels more effectively.

We exploit the graph formulation [8,27,29,39,49] to learn relational charac-
teristics. Each symptom feature ∈ R16 is matched to each symptom group feature
∈ R32. Through the symptom group matching, symptoms obtain prior context
information about the sickness-inducing environment. Note that symptom fea-
tures belonging to the two groups are matched to the average feature of the
two symptom group features. Matched symptom features and symptom group
features are concatenated and stacked row by row in a matrix form as shown
in Fig. 4. As a result, a symptom feature matrix Smat ∈ R16×48 is constructed
by considering each matched symptom feature as a graph node. In addition,
we construct a learnable relational matrix Rmat ∈ R16×16 corresponding to the
adjacency matrix which represents the relationship among graph nodes. Since
we set the weights of the relational matrix to be learnable, relations among
symptoms can be embedded in an unsupervised way. Relational information is
encoded with two layers of graph convolutional neural networks (GCNs) [27]. By
following normalization trick in [27], relation embedded symptom feature matrix
Srel
mat can be formulated as

R̃mat = Rmat + I, (4)

S′mat = ReLu(D̃−
1
2 R̃matD̃

− 1
2SmatW1), (5)

Srel
mat = ReLu(D̃−

1
2 R̃matD̃

− 1
2S′matW2), (6)

where I indicates identity matrix and D̃ indicates diagonal node degree matrix
of R̃mat. W1 ∈ R48×16 and W2 ∈ R16×16 are weight matrices.

We separate Srel
mat by each row to get each relation embedded symptom fea-

ture. Then symptom scores are predicted through fully connected layers. Symp-
tom score loss Lindiv

sym rel for relation embedded symptom features is defined as

Lindiv
sym rel =

#symptom∑
i=1

∥∥ŝisym rel − sisym
∥∥2
2
, (7)

where ŝisym rel indicates predicted i-th symptom score by relation embedded

symptom features while sisym indicates i-th ground truth symptom score.
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In addition, the individual SSQ score based on symptom features is estimated
by relation embedded symptom features with fully connected layers. Individual
SSQ score loss Lindiv

SSQ can be written as

Lindiv
SSQ =

∥∥∥ŜSQindiv − SSQindiv

∥∥∥2
2
, (8)

where ŜSQindiv is predicted individual SSQ score while SSQindiv is ground
truth individual SSQ score. Finally, total objective loss can be defined as

Ltotal = Lgroup
sym + Lindiv

sym + Lindiv
sym rel + Lindiv

SSQ , (9)

The hyper-parameters that control the balance among losses are all set to 1. The
detailed network structure is included in the supplementary material.

4 Experiments

4.1 Datasets

To validate the proposed method, we conduct experiments on two public 360-
degree video datasets for cybersickness assessment. Each dataset contains SSQ
information [18] and corresponding physiological signals (EEG, ECG, and GSR).
We employ EEG as a physiological factor to analyze cybersickness because EEG
contains the most comprehensive information about the nervous system [25,45].

VRSA DB-Shaking. In this dataset, there are 20 UHD 360-degree videos as
content stimulus. The videos have various motion characteristics with camera
shaking such as roller-coaster riding, skydiving, and boating. 15 subjects par-
ticipated in the subjective experiment for viewing such content. Subjects were
instructed to view each 90s video twice in a row, which corresponds to 180s view-
ing time. Repeating content twice is based on the guideline [1]. Subjects had time
to rest 180s after viewing each content. Subjects graded the degree of cybersick-
ness with the SSQ sheet [18] as [21, 43]. The SSQ sheet is composed to express
the degree of 16 symptoms in 4 steps. To minimize cybersickness accumulation,
subjects were asked to tell about the presence of remaining cybersickness before
viewing the next content. Supplementary rest time was provided in addition to
the 180s rest time until they respond ‘None at all’ as in [21, 36]. The motion of
each subject was small and negligible while viewing the content. Subjects con-
centrated their gaze in the similar direction because used 360 degree-videos have
movement in certain directions [10,21]. Head mounted display, PIMAX 5k+ was
used for presenting content. Physiological signals (EEG, ECG, and GSR) were
acquired while the subjects watched the content. EMOTIV EPOC+ was used
for the 14-channel EEG signal acquisition, and Cognionics AIM was used for the
ECG/GSR signal acquisition. The EEG device has an acquisition sampling rate
of 128 Hz, and other acquisition devices have a sampling rate of 500Hz. Exper-
imental settings of the dataset followed the guideline of ITU-BT.500-13 [1] and
BT.2021 [2].
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Fig. 5. Examples of symptom level prediction by the proposed method. It could dif-
ferently estimate cybersickness with symptoms according to each individual viewer.

VRSA DB-FR. In addition to the VRSA DB-Shaking, VRSA DB-FR is used.
This public dataset is the subject expanded version of [28]. There are 20 UHD
360-degree videos as content stimulus. The videos have two types of frame rates
(10Hz, 60Hz) with various motion characteristics such as mountain biking, land-
scape scene, and car driving. It is known that video with exceptional motion and
low frame rate causes cybersickness [21, 33, 46]. The dataset was constructed to
contain various levels of cybersickness induced by content with excessive move-
ment and low frame rate. 25 subjects participated in the subjective experiment
for viewing such content. The protocol for viewing and assessment is the same
as the VRSA DB-Shaking. Ultra-wide curved display, LG 34UC89 was used for
presenting content. Viewing distance is controlled to provide immersive experi-
ences with HMD level 110-degree FOV [6]. Physiological signals (EEG, ECG, and
GSR) were acquired. Cognionics Quick-30 was used for 29-channel EEG signal
acquisition, and Cognionics AIM was used for ECG/GSR signal acquisition. The
acquisition devices have the same sampling rate of 500 Hz. Experimental settings
of the dataset followed the guideline of ITU-BT.500-13 [1] and BT.2021 [2].

4.2 Implementation Details

For each content, the physiological signals are 180s long. The intermediate 120s
of each physiological signal is used to remove the noise of starting and end. Data
augmentation is performed by shifting the extracted 120s region by 5 seconds on
the time axis. As a result, the training set is augmented 9 times. In the model
training process, the stimulus symptom context guider and physiological symp-
tom guider are first trained with their own loss functions Lgroup

sym and Lindiv
sym for

smoothly encoding relations in the later part. In the stimulus symptom context
guider and the physiological symptom guider, only the fully connected layers are
learned with the final objective loss Ltotal. We use Adam [26] to optimize the
proposed network with a learning rate of 0.0002 and a batch size of 16.
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Table 2. Symptom level prediction performances according to the network designs.

Network Design VRSA DB-Shaking VRSA DB-FR

Relation Embedding Stimulus Context PLCC SROCC RMSE PLCC SROCC RMSE

7 7 0.389 0.326 0.499 0.516 0.397 0.356

3 7 0.449 0.351 0.492 0.536 0.397 0.346

3 3 0.478 0.385 0.441 0.574 0.427 0.328

Table 3. Detailed symptom level prediction results on the VRSA DB-Shaking.

Evaluation
Metrics

Relation
Embedding

Stimulus
Context

# Symptom

Mean 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PLCC

0.389 0.338 0.346 0.494 0.458 0.556 0.522 0.364 0.464 0.336 0.456 0.392 0.246 0.332 0.182 0.360 0.386

3 0.449 0.414 0.402 0.492 0.542 0.568 0.542 0.330 0.532 0.350 0.480 0.552 0.278 0.386 0.254 0.496 0.568

3 3 0.478 0.550 0.474 0.490 0.546 0.580 0.552 0.414 0.498 0.360 0.526 0.544 0.392 0.396 0.290 0.478 0.560

SROCC

0.326 0.322 0.338 0.462 0.318 0.434 0.380 0.246 0.386 0.330 0.364 0.396 0.234 0.338 0.226 0.162 0.292

3 0.351 0.350 0.342 0.470 0.406 0.438 0.356 0.202 0.424 0.326 0.340 0.388 0.298 0.360 0.264 0.284 0.368

3 3 0.385 0.518 0.440 0.440 0.408 0.474 0.382 0.284 0.356 0.308 0.400 0.454 0.400 0.368 0.306 0.284 0.350

RMSE

0.499 0.798 0.828 0.592 0.768 0.778 0.214 0.244 0.368 0.580 0.344 0.624 0.444 0.232 0.568 0.368 0.240

3 0.492 0.768 0.804 0.602 0.754 0.858 0.204 0.238 0.360 0.634 0.336 0.562 0.442 0.222 0.562 0.330 0.206

3 3 0.441 0.552 0.660 0.590 0.668 0.740 0.204 0.228 0.350 0.584 0.304 0.524 0.386 0.222 0.516 0.322 0.216

4.3 Assessment Performance Evaluation

We perform 5-fold cross-validation. The 5-fold is separated based on the content
so that content and physiology in the training set and the test set do not over-
lap at all. Pearson linear correlation coefficient (PLCC), spearman rank order
correlation coefficient (SROCC), and root mean square error (RMSE) are used
as performance evaluation metrics. The PLCC and the SROCC are utilized to
measure linearity and monotonicity, respectively. The RMSE metric reflects the
differences between actual scores and predicted scores.

Physical Symptom Assessment. Fig. 5 shows examples of symptom level
prediction by the proposed method. The proposed method could distinguish dif-
ferent cybersickness with distinct symptoms according to each individual viewer
for each content. Table 2 shows symptom prediction performances of the pro-
posed method with ablating network designs on both datasets. Each symptom
number matches with the symptom order in Table 1. The represented perfor-
mance is the average of prediction performances for all symptoms. The base-
line does not utilize relation embedding and stimulus context information. The
relation embedding model without stimulus context indicates the case where
symptom relation embedder is applied without symptom group features from
the stimulus symptom context guider. The model with symptom relation em-
bedding predicts symptom level better than the baseline model. The final model
with relation embedding and stimulus context shows better performance than the
other models for all evaluation metrics on both datasets. Table 3 shows detailed
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Table 4. Total SSQ score prediction performances on the VRSA DB-Shaking and the
VRSA DB-FR.

VRSA DB-Shaking

Method PLCC SROCC RMSE

Skin Conductance Level Feature [19]
-based Method (GSR)

0.314 0.308 43.615

Peak Interval Feature [42]
-based Method (ECG)

0.340 0.237 46.469

Band Power Feature [17]
-based Method (EEG)

0.492 0.352 35.157

Physiological Fusion Net [28]
(EEG, ECG, and GSR + Content Stimulus)

0.739 0.617 30.372

Proposed Method
(EEG + Content Stimulus)

0.751 0.679 25.373

VRSA DB-FR

Method PLCC SROCC RMSE

Skin Conductance Level Feature [19]
-based Method (GSR)

0.390 0.295 34.933

Peak Interval Feature [42]
-based Method (ECG)

0.379 0.298 34.712

Band Power Feature [17]
-based Method (EEG)

0.476 0.326 33.862

Physiological Fusion Net [28]
(EEG, ECG, and GSR + Content Stimulus)

0.806 0.660 23.893

Proposed Method
(EEG + Content Stimulus)

0.801 0.671 22.937

symptom level prediction results on the VRSA DB-Shaking. The final proposed
model achieves the best performances. Considering that predicting the symptoms
of each subject is a very challenging task, the proposed method obtains meaning-
ful results for symptom level assessment (correlation p-value≤0.05). Note that
the EEG acquisition device in VRSA DB-FR is the sophisticated one with more
brain channels and higher sampling rates compared to VRSA-Shaking. Thus,
the baseline performance of it is higher than that of VRSA DB-Shaking.

Total SSQ Assessment. The performance comparison results for total SSQ
score prediction are shown in Table 4. The skin conductance level feature-based
method uses features related to tonic characteristics of GSR (MSCL, SDSCL,
and SKSCL) [19]. The peak interval feature-based method performs prediction
using the major RR interval features of ECG (MeanRR, SDRR, pNN50, and
NN50) [42]. The band power feature-based method utilizes the frequency band
power of EEG [17]. The Physiological Fusion Net [28] is a deep network model
that predicts individual SSQ by fusing EEG, ECG, and GSR signals with content
stimulus. As shown in the table, the proposed method outperforms the existing
state-of-the-art methods. The proposed method obtains correlation results for
total SSQ score prediction of individuals with PLCC≥0.7 (p-value≤0.05) on
the VRSA DB-Shaking and PLCC≥0.8 (p-value≤0.05) on the VRSA DB-FR.
Compared to the Physiological Fusion Net [28], our model predicts cybersickness
without additional use of ECG and GSR data. Furthermore, instead of just
predicting the resulting total SSQ score, physical symptoms can also be predicted
to interpret which symptoms constitute the cybersickness of individual viewers.

4.4 Interpretation of Relational Weights

For interpreting relations among symptom features, we visualize the relational
weights in relational matrix Rmat. Fig. 6 shows the visualization results of rela-
tional weights. Each row and column in the matrix represent each symptom. It
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Fig. 6. Visualization results of relational weights in Rmat for (a) VRSA DB-Shaking
and (b) VRSA DB-FR. Each row and column indicate physical symptoms.

can be seen that the symptom relational weights obtained from different datasets
have a similar tendency. Looking at the most highly activated relational weights
for both datasets, symptoms 10-12, 10-13 [fullness of head - dizzy] are symptoms
that belong to disorientation group and are both related to head. Activated rela-
tion of 12-13 [dizzy (eyes open) - dizzy (eyes closed)] indicates closely correlated
dizzy symptoms. Interestingly, the region of 1-2 [general discomfort - fatigue] is
activated in weights, which are both close to the general expression of cybersick-
ness. Besides, relational weights for each dataset contain meaningful activations
of relevant symptoms such as 6-15 [increased salivation - stomach awareness,
internal organ-related symptoms] in (a) and 5-11 [difficulty focusing - blurred
vision, eye-related symptoms] in (b). Note that the proposed network learns re-
lational weights in an unsupervised way. Consequently, the relational weights are
convincingly learned to emphasize the relations among relevant symptoms.

5 Conclusion

In this paper, we propose the novel deep learning-based framework, SACA Net
that reveals cybersickness of individual viewers with physical symptoms. Based
on the physiology and stimulus context, the SACA Net effectively predicts phys-
ical symptom levels by embedding symptom relations. The symptom relation
embedding scheme is designed to utilize the relational symptom characteristics
for complementary effects among symptoms. The experimental results show that
the proposed method achieves meaningful correlations for symptom scores and
total SSQ scores on two cybersickness assessment datasets. In addition, we could
interpret how the proposed SACA Net encodes relations among physical symp-
toms by analyzing the relational weights in the network. It is observed that
relations of relevant symptoms are convincingly embedded.
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using näıve bayes. In: CENIM. pp. 29–34 (2018)

33. Meehan, M., Insko, B., Whitton, M., Brooks Jr, F.P.: Physiological measures of
presence in stressful virtual environments. In: TOG. pp. 645–652 (2002)

34. Naqvi, S.A.A., Badruddin, N., Malik, A.S., Hazabbah, W., Abdullah, B.: Does
3d produce more symptoms of visually induced motion sickness? In: EMBC. pp.
6405–6408 (2013)

35. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmen-
tation. In: ICCV. pp. 1520–1528 (2015)

36. Padmanaban, N., Ruban, T., Sitzmann, V., Norcia, A.M., Wetzstein, G.: Towards a
machine-learning approach for sickness prediction in 360 stereoscopic videos. IEEE
transactions on visualization and computer graphics 24(4), 1594–1603 (2018)

37. Pane, E.S., Khoirunnisaa, A.Z., Wibawa, A.D., Purnomo, M.H.: Identifying sever-
ity level of cybersickness from eeg signals using cn2 rule induction algorithm. In:
ICIIBMS. vol. 3, pp. 170–176 (2018)



SACA Net 17

38. Patrao, B., Pedro, S., Menezes, P.: How to deal with motion sickness in virtual
reality. Sciences and Technologies of Interaction, 2015 22nd pp. 40–46 (2015)

39. Qi, M., Li, W., Yang, Z., Wang, Y., Luo, J.: Attentive relational networks for
mapping images to scene graphs. In: CVPR. pp. 3957–3966 (2019)

40. Reason, J.T.: Motion sickness adaptation: a neural mismatch model. Journal of
the Royal Society of Medicine 71(11), 819–829 (1978)

41. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual dis-
plays. Virtual Reality 20(2), 101–125 (2016)

42. Shaffer, F., Ginsberg, J.: An overview of heart rate variability metrics and norms.
Frontiers in public health 5, 258 (2017)

43. Singla, A., Fremerey, S., Robitza, W., Raake, A.: Measuring and comparing qoe and
simulator sickness of omnidirectional videos in different head mounted displays. In:
QoMEX. pp. 1–6 (2017)

44. Tiiro, A.: Effect of visual realism on cybersickness in virtual reality. University of
Oulu (2018)

45. Wagh, K.P., Vasanth, K.: Electroencephalograph (eeg) based emotion recognition
system: A review. In: Innovations in Electronics and Communication Engineering,
pp. 37–59. Springer (2019)

46. Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual
reality are negatively related: a review. Frontiers in psychology 10, 158 (2019)

47. Wei, C.S., Ko, L.W., Chuang, S.W., Jung, T.P., Lin, C.T.: Eeg-based evaluation
system for motion sickness estimation. In: NER. pp. 100–103 (2011)

48. Wibirama, S., Nugroho, H.A., Hamamoto, K.: Depth gaze and ecg based frequency
dynamics during motion sickness in stereoscopic 3d movie. Entertainment comput-
ing 26, 117–127 (2018)

49. Woo, S., Kim, D., Cho, D., Kweon, I.S.: Linknet: Relational embedding for scene
graph. In: NIPS. pp. 560–570 (2018)

50. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convo-
lutional lstm network: A machine learning approach for precipitation nowcasting.
In: NIPS. pp. 802–810 (2015)


