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The supplementary material provides additional details about the network
architecture and results. In Section S1, we provide details about our tracking ar-
chitecture. Section S2 contains detailed results on the VOT2018 dataset, while
Section S3 provides qualitative comparison of our approach with the baseline
tracker DiMP-50 [2]. We also include a supplementary video for the qualita-
tive comparison with DiMP-50.

S1 Network details

In this section, we provide more details about our tracking architecture.

State initializer Υ : Given the first frame target annotation B0 as input, the
initializer network Υ first generates a single-channel label map specifying the
target center. We use a Gaussian function to generate this label map. The label
map is passed through a single convolutional layer with 3×3 kernels. The output
is then passed through a tanh activation to obtain the initial state vectors.

State propagation: We use the features from the fourth convolutional block
of ResNet-50 [5], having a spatial stride of 16, to construct our cost volume.
Our network can process images of any input resolution. However, in all our
experiments, we resize the input search region crop to 288×288 for convenience.
Thus the features x used for computing the cost volume have the size W = H =
18, with Dm = 1024 channels. The maximal displacement dmax for cost volume
computation is set to 9.

The network architecture used to map the raw cost volume slices to obtain the
processed matching costs φ is shown in Table S1. Note that the network weights
are shared for all cost volume slices. We use an identical network architecture to
process the initial correspondence φ′.

Target Confidence Score Prediction: The network architecture for our
predictor module P is shown in Table S2.

State update: The state update module Φ contain a convolutional gated
recurrent unit (ConvGRU) [1] which performs the state updates. The input
ft ∈ RW×H×4 to the ConvGRU is obtained by concatenating the target con-
fidence scores ςt ∈ RW×H×1 and the appearance model output st ∈ RW×H×1,
along with their maximum values along the third dimension. The propagated
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Table S1. The network architecture used to process cost volume slices. The network
takes individual cost volume slices (size 18 × 18 × 1) as input. All convolutional layers
use 3 × 3 kernels. BN denotes batch normalization [6].

Layer Operation Output size

1 Conv + BN + ReLU 18 × 18 × 8
2 Conv + BN 18 × 18 × 1

Table S2. The network architecture for predictor module P . The input to the network
is obtained by concatenating the propagated states ĥt−1 (18× 18× 8), reliability score
ξt (18×18×1), and appearance model output st (18×18×1). All convolutional layers
use 3 × 3 kernels.

Layer Operation Output size

1 Conv + ReLU 18 × 18 × 16
2 Conv + Sigmoid 18 × 18 × 1

state vectors ĥt−1 ∈ RW×H×S are treated as the hidden states of the Con-
vGRU from the previous time-step. We use the standard update equations for
ConvGRU,

zt = σ
(
Conv(ft ⊕ ĥt−1)

)
(S1a)

rt = σ
(
Conv(ft ⊕ ĥt−1)

)
(S1b)

h̃t = tanh
(
Conv(ft ⊕ (rt � ĥt−1))

)
(S1c)

ht = (1− zt)� ĥt−1 + zt � h̃t . (S1d)

Here, ⊕ denotes concatenation of the feature maps along the third dimension,
while � denotes element-wise product. σ and tanh denote the sigmoid and hy-
perbolic tangent activation functions, respectively. We use 3 × 3 kernels for all
the convolution layers, represented by Conv.

S2 Detailed Results on VOT2018

Here, we provide detailed results on the VOT2018 [7] dataset, consisting of 60
challenging videos. The trackers are evaluated using the expected average overlap
curve, which plots the expected average overlap between the tracker prediction
and groundtruth for different sequence lengths. The average of the expected av-
erage overlap values over typical sequence lengths provides the expected average
overlap (EAO) score, which is used to rank the trackers. We refer to [8] for more
details about EAO score computation.

We compare our approach with the recent state-of-the-art trackers: DRT [10],
RCO [7], UPDT [3], DaSiamRPN [12], MFT [7], LADCF [11], ATOM [4], Siam-
RPN++ [9], and DiMP-50 [2]. Figure S1 shows the expected average overlap
curve. The EAO score for each tracker is shown in the legend. Our approach
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Fig. S1. Expected average overlap curve on the VOT2018 dataset. The plot shows
the expected overlap between the tracker prediction and groundtruth for different se-
quence lengths. The expected average overlap (EAO) score, computed as the average
of expected overlap values over typical sequence lengths (shaded region) is shown in
the legend. Our tracker obtains the best EAO score, outperforming the previous best
method DiMP-50 with a relative improvement of 5% in EAO.

obtains the best results with an EAO score of 0.462, outperforming the previous
best method DiMP-50 with a relative improvement of 5%. This demonstrates
the benefit of exploiting scene information for tracking.

S3 Qualitative Results

Here, we provide a qualitative comparison of our approach with the baseline
tracker DiMP-50 [2], which uses only an appearance model. Figure S2 shows
the tracking output for both the trackers on a few example sequences. DiMP-50
struggles to handle distractor objects which are hard to distinguish based on
only appearance (second, third, fifth). In contrast, our approach is aware of the
distractor objects in the scene and can exploit this scene information to achieve
robust tracking. Propagating the scene information is also helpful in case of fast
target appearance changes (first and fourth rows). In these cases, keeping track
of the background regions can be useful to eliminate target candidate regions,
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greatly simplifying target localization. The last row shows a failure case of our
approach. Here, the appearance model fails to detect the occlusion caused by
the white dog. As a result, the state vectors are updated incorrectly, and the
tracker starts tracking the white dog.

References

1. Nicolas Ballas, Li Yao, Chris Pal, and Aaron C. Courville. Delving deeper into
convolutional networks for learning video representations. In ICLR, 2016.

2. Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Learning
discriminative model prediction for tracking. In ICCV, 2019.

3. Goutam Bhat, Joakim Johnander, Martin Danelljan, Fahad Shahbaz Khan, and
Michael Felsberg. Unveiling the power of deep tracking. In ECCV, 2018.

4. Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.
ATOM: Accurate tracking by overlap maximization. In CVPR, 2019.

5. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

6. Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In ICML, 2015.

7. Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pfugfelder,
Luka Cehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, Abdelrahman El-
desokey, Gustavo Fernandez, and et al. The sixth visual object tracking vot2018
challenge results. In ECCV workshop, 2018.

8. M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin, G. Fernández, T.
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Fig. S2. A qualitative comparison of our approach with the baseline appearance model,
DiMP-50. Our tracker extracts information about other objects in the scene and ex-
ploits this knowledge to provide scene-aware predictions. Consequently, our approach
can handle distractor objects which are hard to distinguish based on appearance only
(second, third, and fifth rows). The propagated scene information is also beneficial to
eliminate target candidate regions, which can be helpful in case of fast target appear-
ance changes (first and fourth rows). The last row shows a failure case of our approach.
Here, the appearance model cannot detect the occlusion caused by the white dog. This
results in incorrect state updates, leading to tracking failure.


