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A1 Training/Inference Settings

In this section, we describe the training and inference settings of each dataset in
detail.

ModelNet40 In training, we adopt the SGD optimizer, with initial learning rate
of 0.002, which is decayed by 0.11/200 every epoch. The momentum is 0.98 and
weight decay is 0.001. The data is augmented with anisotropic random scaling
(from 0.6 to 1.4), and gaussian noise of std = 0.002. We train networks for 600
epochs on 4 GPUs with 16 point clouds per GPU.

In inference, the model of the last epoch is used. We follow a common prac-
tice of voting scheme [4, 7, 2, 5], which augment each shape 100 times using the
same augmentation method in training, and the predicted logits (the values be-
fore SoftMax) of these 100 augmented shapes are averaged to produce the final
proabalities.

S3DIS Following [6, 1, 5], we use 3 color channels as features. In training, we
adopt the SGD optimizer, with initial learning rate is 0.02, which is decayed by
0.11/200 every epoch. The momentum is 0.98 and weight decay is 0.001. The data
is augmented with anisotropic random scaling (from 0.7 to 1.3), gaussian noise
of std = 0.001, random rotations around z-axis, random droping colors with 0.2
probability. The networks are trained for 600 epochs, using 4 GPUs and 8 point
clouds per GPU.

In inference, the model of the last epoch is used. We divide each point cloud
into regular overlaped spheres (totally 100). A point may appear in multiple
spheres, and its logit (before SoftMax) is set as the average of this point’s logits
in different spheres.

PartNet In training, we adopt the AdamW optimizer [3] with learning rate
of 0.000625. The momentum is 0.98 and the weight decay is 0.001. The data is
augmented with anisotropic random scaling (from 0.8 to 1.2), and gaussian noise
of std = 0.001. The networks are trained for 300 epochs on 4 GPUs with 8 point
clouds per GPU.

? Equal contribution. †This work is done when Ze Liu is an intern at MSRA.
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In inference, the model of the last epoch is used. We adopt the 10-augment
voting scheme (using the same augmentation method as in training) to compute
each point’s probabilities.

A2 Detailed Experimental Settings for Section 6.2

In Section 6.2 of the main paper, we evaluate different methods with varying ar-
chitecture width, depth and bottleneck ratios. In this section, we provide detailed
experimental settings as below.

For the experiments of varying architecture widths (see Fig. 3 left column
of the main paper), we fix the depth and bottleneck ratio as Nr + 1 = 1 and
γ = 2, respectively. For the experiments of varying architecture depths (see Fig.
3 middle column of the main paper), we fix the width and bottleneck ratio as
C = 36 and γ = 2, respectively. For the experiments of varying architecture
bottleneck ratios (see Fig. 3 right column of the main paper), we fix the width
and depth as C = 144 and Nr + 1 = 1, respectively.

For different methods, the designing settings are as follows:

– PointMLP. We use {∆pij , fi, ∆fij} as input features, MAX pooling as re-
duction function and 1 FC layer.

– PseudoGrid. We use SUM as reduction function and 15 grid points.
– AdaptWeight. We use {∆pij} as input features, AVG pooling as reduction

function and 1 FC layer.
– PosPool. We use AVG pooling as reduction function and the computation

follows Eq. 8 in our main paper.
– PosPool*. We use AVG pooling as reduction function and the computation

follows Eq. 9 in our main paper.

A3 More Variants of PosPool

In this section, we present more variants for PosPool, which all have no learnable
weights. We first present a general formulation of these variants:

G(∆pij , fj) = Concat[e0f0j ; ...; eg−1fg−1
j ], (1)

where {e0, ..., eg−1} are g scalar encoding functions w.r.t. the relative position;

fj =
[
f0j ; f0j ; ...; fg−1j

]
are an equal-sized partition of vector fj . In the following,

we will present 7 variants by using different encoding functions {e0, ..., eg−1}.
Second Order Instead of directly using the 3-dimensional ∆pij as in the stan-
dard formulation of Eq. 8 in the main paper, the second-order variant considers
6 additional encoding scalars by squares and pairwise multiplications of relative
coordinates, as

e0 = ∆xij , e
1 = ∆yij , e

2 = ∆zij ,

e3 = ∆x2ij , e
4 = ∆y2ij , e

5 = ∆z2ij ,

e6 = ∆xij∆yij , e
7 = ∆xij∆zij , e

8 = ∆yij∆zij . (2)
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Third Order The third order variant uses additional third-order multiplications
as encoding functions:

e0 = ∆xij , e
1 = ∆yij , e

2 = ∆zij , e
3 = ∆x2ij , e

4 = ∆y2ij , e
5 = ∆z2ij ,

e6 = ∆xij∆yij , e
7 = ∆xij∆zij , e

8 = ∆yij∆zij ,

e9 = ∆xij∆y
2
ij , e

10 = ∆xij∆z
2
ij , e

11 = ∆yij∆z
2
ij ,

e12 = ∆x2ij∆yij , e
13 = ∆x2ij∆zij , e

14 = ∆y2ij∆zij ,

e15 = ∆x3ij , e
16 = ∆y3ij , e

17 = ∆z3ij . (3)

Note we omit the encoding function ∆xij∆yij∆zij to ensure g = 18 such that
fj ’s channel number C is divisible by g. The third order encoding functions are
similar as the Taylor functions in [8].

Angle and Distance In this variant, we decouple the relative position into dis-

tance dij =
√
∆x2ij +∆y2ij +∆z2ij and angle

{
∆xij

dij
,
∆yij
dij

,
∆zij
dij

}
. The encoding

functions are:

e0 = dij , e
1 =

∆xij
dij

, e2 =
∆yij
dij

, e3 =
∆zij
dij

. (4)

Angle and Gaussian Inversed Distance The above variants encourage the
distant points to have larger amplitudes of encoding scalars. Here we present
a variant which encourages close points to have larger amplitudes of encoding
scalars, by inverse the distance by a Gaussian function:

e0 = d̃ij = exp
(
−d2ij

)
, e1 =

∆xij
dij

, e2 =
∆yij
dij

, e3 =
∆zij
dij

. (5)

Angle or Distance Alone We also consider variants which use angle or dis-
tance functions alone:

e0 =
∆xij
dij

, e1 =
∆yij
dij

, e2 =
∆zij
dij

. (6)

e0 = dij . (7)

e0 = d̃ij . (8)

Results. Table 1 shows the comparison of different variants using three bench-
marks. For PartNet datasets, we report the part category mean IoU on the
validation set. While PosPool adopts AVG as the default reduction function, we
also report the results when using other reduction function (SUM, MAX). It can
be seen: 1) all variants containing full configurations of relative positions perform
similarly well. They perform significantly better than the variants using angle or
distance alone. 2) Whether more distant points have larger or smaller encoding
amplitudes than closer points is insignificant. 3) Using AVG as the reduction
function performs comparably well than those using SUM, and slightly better
than those using MAX.
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Fig. 1. The robustness test of different approaches when there are less points(left) or
outlier points(right).

A4 The Robustness of Different Operators with
Missing/Noisy Points

Fig 1 show the accuracy curves of AdaptWeight, PseudoGrid, MaxPool, PosPool,
PointMLP for inputs with different ratios of noise or missing points. All the
experiments are executed on the PartNet benchmark. The model for each curve
is trained on the clean data of PartNet. Only the testing data at the inference
stage includes noise and missing points.

As shown in Fig 1(left), different local aggregation operators (AdaptWeight,
PseudoGrid, PointMLP, PosPool) perform similarly in robustness with varying
missing point ratios, all significantly better than the MaxPool baseline. With
varying noise ratios, the proposed PosPool operator performs best, slightly better
than AdaptWeight and PointMLP, and significantly better than PseudoGrid
and the MaxPool baseline. Fig. 2 show the activation maps of the last layer
in each stage by using clean data (top row) and noisy data (bottom row, ratio
1%), respectively. While the noisy point features significantly contaminate the
activations of some other regular point features in the MaxPool and PseudoGrid
methods, the activations of clean points in other methods are less affected by
these noisy points.

A5 More Detailed Results on PartNet

We first report the part-category mIoU for each category on PartNet. From
Table 2 and Table 3 we can see that all operators show similar results on each
category, which further validates our findings. Table 4 shows the number of
training, validation, test samples.

We then show some qualitative results in Fig 3. All the representative meth-
ods perform similarly well on most shapes.

To understand what the networks with these operators are learnt from input,
we visualize the norm of activation map before prediction by different methods
(operators), suggesting that different operators tend to offer similar activations
for a same input point cloud, as shown in Fig 4.
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A6 Detailed Space and Time complexity Analysis

In this section, we provide detailed analysis for the space and time complexity
of different aggregators presented in Section 3.

A6.1 Point-wise MLP based Methods

The detailed architecture is shown in Fig 5. For h = 1, a shared FC is applied
on each point with K neighborhoods, and the time cost is (d + 3)dnK and the
space cost (parameter number) is (d+ 3)d. For h ≥ 2, the time cost is

(d+ 3)(d/2)nK + (h− 2) · (d/2)(d/2)nK + (d/2)dnK =

((2d+ 3) + (h− 2)d/2) · d/2 · nK, (9)

and the space cost is

(d+ 3)(d/2) + (h− 2) · (d/2)(d/2) + (d/2)d = ((2d+ 3) + (h− 2)d/2) · d/2. (10)

A6.2 Pseudo Grid Feature based Methods

Our default settings adopt depth-wise convolution. In depth-wise convolution,
a d-dim learnt weight vector is associated to each grid point. Hence, the space
cost (parameter number) is d ·M and the time cost is ndKM .

A6.3 Adaptive Weight based Methods

Adaptive Weight based Methods involve two computation steps. Firstly, a shared
MLP is used to compute the aggregation weights for each neighboring point. This
step has time cost of

3 · (d/2)nK + (h− 2) · (d/2)(d/2)nK + (d/2)dnK =

(3 + d+ (h− 2)d/2) · d/2 · nK, (11)

and space cost of

3 · (d/2) + (h− 2) · (d/2)(d/2) + (d/2)d = (3 + d+ (h− 2)d/2) · d/2. (12)

Secondly, depth-wise aggregation is conducted, where the time cost is dnK and
space cost is 0.

The total time cost is (3 + d+ (h− 2)d/2) · d/2 · nK + dnK = ((h− 2)d/2 +
d+ 5) · d/2 · nK and the total space cost is ((h− 2)d/2 + d+ 3) · d/2.
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Table 1. Evaluation of different PosPool variants on three benchmarks. For PartNet
datasets, the part category mean IoU on validation set are reported

method γ C Nr + 1 R(·) ModelNet40 S3DIS PartNet

∆xij ,∆yij ,∆zij

8 144 2 AVG 93.0 64.2 48.5
4 144 2 AVG 92.8 65.1 50.0
2 144 2 AVG 93.1 66.6 49.8
8 144 2 SUM 92.8 64.6 48.5
8 144 2 MAX 92.6 61.1 48.4

Em

8 144 2 AVG 92.7 62.2 49.3
4 144 2 AVG 93.1 63.6 50.9
2 144 2 AVG 93.2 64.9 50.8
8 144 2 SUM 92.8 62.9 49.1
8 144 2 MAX 92.4 62.8 48.9

Second Order

8 144 2 AVG 93.0 63.4 49.9
4 144 2 AVG 93.1 64.0 49.9
2 144 2 AVG 92.9 65.7 50.9
8 144 2 SUM 92.9 64.0 49.9
8 144 2 MAX 92.7 63.3 48.1

Third Order

8 144 2 AVG 93.2 63.6 49.6
4 144 2 AVG 93.3 64.5 50.0
2 144 2 AVG 93.4 64.7 51.8
8 144 2 SUM 92.7 64.8 47.7
8 144 2 MAX 92.3 62.2 49.0

dij ,
∆xij
dij

,
∆yij
dij

,
∆zij
dij

8 144 2 AVG 92.8 63.5 49.0
4 144 2 AVG 93.2 65.3 48.3
2 144 2 AVG 92.9 65.6 49.8
8 144 2 SUM 92.9 64.5 49.0
8 144 2 MAX 92.7 62.3 48.4

d̃ij ,
∆xij
dij

,
∆yij
dij

,
∆zij
dij

8 144 2 AVG 93.0 64.2 48.6
4 144 2 AVG 93.2 64.1 49.1
2 144 2 AVG 93.0 64.8 49.3
8 144 2 SUM 93.0 64.3 48.2
8 144 2 MAX 92.9 62.3 49.1

∆xij
dij

,
∆yij
dij

,
∆zij
dij

8 144 2 AVG 92.1 62.1 46.6
4 144 2 AVG 92.1 61.8 46.5
2 144 2 AVG 92.2 62.6 47.6
8 144 2 SUM 91.9 60.9 46.4
8 144 2 MAX 92.0 61.2 45.8

dij

8 144 2 AVG 90.9 53.3 43.4
4 144 2 AVG 91.2 53.1 43.8
2 144 2 AVG 90.9 53.4 44.6
8 144 2 SUM 90.7 55.4 43.6
8 144 2 MAX 91.0 56.2 44.2

d̃ij

8 144 2 AVG 90.6 53.7 43.7
4 144 2 AVG 90.5 53.0 42.1
2 144 2 AVG 90.7 53.4 43.9
8 144 2 SUM 91.1 55.3 45.4
8 144 2 MAX 91.7 55.5 43.4
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Fig. 2. The activation maps of different methods by using clean data(top) or noisy
data(bottom), respectively
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Avg Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase

PW 48.1 41.5 29.3 48.2 46.2 61.3 87.0 38.1 56.5 52.3 26.7 30.1 47.9 46.5 48.1 44.3 51.3 62.4
PG 50.8 46.8 30.0 50.5 46.1 60.4 88.5 45.4 61.4 54.2 30.5 31.1 61.8 47.9 50.6 47.2 56.8 54.6
AW 50.1 45.4 25.0 49.0 46.8 63.0 87.3 38.1 63.6 54.4 38.0 30.1 57.5 49.6 48.2 45.9 54.7 55.7
PP 50.0 46.6 28.5 49.2 47.2 60.7 86.7 39.8 55.2 54.0 41.5 31.5 58.1 48.3 48.4 45.6 57.1 51.4
PP∗ 50.6 47.5 29.7 49.1 47.2 65.8 88.0 46.8 58.9 54.6 31.5 28.1 60.7 47.3 50.9 45.0 54.6 55.0

Table 2. part-category mIoU% on PartNet validation sets. PW, PG, AW, PP,
PP∗ refer to Pseudo Grid, Adapt Weights, PosPool, PosPool∗ respectively.

Avg Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase

PW 51.2 44.5 52.6 46.0 38.4 68.2 82.5 46.9 47.1 58.7 43.8 26.4 59.2 48.7 52.5 41.3 55.4 57.3
PG 53.0 47.5 50.9 49.2 44.8 67.0 84.2 49.1 49.9 62.7 38.3 27.0 59.4 54.3 54.1 44.5 57.4 60.7
AW 53.5 46.1 47.9 47.2 42.7 64.4 83.7 55.6 49.5 61.7 49.5 27.4 59.3 57.7 53.5 45.1 57.5 60.9
PP 53.4 45.8 46.5 48.3 40.2 66.1 84.2 49.4 51.6 63.5 48.1 27.9 62.3 56.1 53.3 43.4 58.7 62.4
PP∗ 53.8 49.5 49.4 48.3 49.0 65.6 84.2 56.8 53.8 62.4 39.3 24.7 61.3 55.5 54.6 44.8 56.9 58.2

Table 3. part-category mIoU% on PartNet test sets. PW, PG, AW, PP, PP∗

refer to Pseudo Grid, Adapt Weights, PosPool, PosPool∗ respectively.

Split Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Stora Table Trash Vase

train 133 315 4489 406 111 633 149 147 435 221 1554 133 136 1588 5707 221 741
val 24 37 617 50 19 104 25 28 81 29 234 12 20 230 843 37 102
test 37 84 1217 98 51 191 51 53 132 77 419 39 31 451 1668 63 233

Table 4. The number of training, validation and test samples.

GT PointMLP PseudoGrid AdaptWeight PosPool PosPool*

Fig. 3. Visualization of part segmentation results by different methods on the PartNet
dataset.
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MaxPool PointMLP PseudoGrid AdaptWeight PosPool

Fig. 4. Activation maps before the final prediction using different methods on PartNet
validation shapes, indicating similar high energy area learnt by different methods
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Fig. 5. The detailed architecture for Point-wise MLP based operators.


