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A Appendix

A.1 Derivation of Local Evidence Lower Bound (Eq. 5)

We begin with taking the log of the random walk transition likelihood,
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≥ Ez′∼q(z′) [log pθ(x
′|z′, x)] +DKL[q(z′)||p(z′|x)] (A.5)

where q(z′) is an arbitrary distribution. We let q(z′) to be the conditional
distribution q(z′|x). Furthermore, if we make the simplifying assumption that
pθ(x

′|z′, z) = pθ(x
′|z′), then we obtain Eq. 5

log pθ(x
′|x) ≥ −DKL(qφ(z′|x)||pθ(z′|x)) + Ez′∼qφ(z′|x) log pθ(x

′|z′). (A.6)

A.2 Results in [17]

To state the result in [17], we need the following set-up:
(C1)M is a d-dimensional smooth compact manifold, possibly having bound-

ary, equipped with a smooth (at least C2) Riemannian metric g;
We denote the geodesic distance by dM, and the geodesic ball centering at x

with radius r by BM(x, r). Under (C1), for each point x ∈M, there exists rM(x)
which is the inradius, that is, r is the largest number s.t. BM(x, r) is contained
M.

Let 4M be the Laplacian-Beltrami operator on M with Neumann boundary
condition, which is self-adjoint on L2(M,µ), µ being the Riemannian volume
given by g. Suppose that M is re-scaled to have volume 1. The next condition
we need concerns the spectrum of the manifold Laplacian

(C2) 4M has discrete spectrum, and the eigenvalues λ0 ≤ λ1 ≤ · · · satisfy
the Weyl’s estimate, i.e. exists constant C which only depends on M s.t.

|{j : λj ≤ T}| ≤ CT d/2.

Let ψj be the eigenfunction associated with λj , {ψj}j form an orthonormal
bases of L2(M,µ). The last condition is

(C3) The heat kernel (defined by the heat equation on M) has the spectral
representation as

Kt(x, y) =

∞∑
j=0

e−tλjψj(x)ψj(y).
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Theorem 3 (Theorem 2 [17], simplified version) Under the above setting
and assume (C1)-(C2), then there are positive constants c1, c2, c3 which only
depend on M and g, s.t. for any x ∈ M, rM(x) being the inradius, there
are d eigenfunctions of 4M, ψj1 , · · · , ψjd , which collectively give a mapping
Ψ :M→ Rd by

Ψx(x) = (ψj1(x), · · · , ψjd(x))

satisfying that ∀y, y′ ∈ B(x, c1rM(x)),

c2rM(z)−1dM(y, y′) ≤ ‖Ψx(y)− Ψx(y′)‖ ≤ c3rM(z)−1−d/2dM(y, y′).

That is, Ψ is bi-Lipschitz on the neighborhood B(x, c1rM(x)) with the Lipschitz
constants indicated as above. The subscript x in Ψx emphasizes that the indices
j1, · · · , jd may depend on x.

A.3 Proofs

Proof (of Theorem 1). The proof of Theorem 1 is actually a simple extension of
the following theorem, Theorem 4, which needs to be proved for each individual
extrinsic coordinate Xk, hence the additional factor of m coming from the L2
norm of m functions.

Theorem 4 Let M⊂ Rm be a smooth d-dimensional manifold, ψ(M) ⊂ RD be
the diffusion map for D ≥ d large enough to have a subset of coordinates that
are locally bi-Lipschitz. Let one of the m extrinsic coordinates of the manifold
be denoted X(ψ(x)) for x ∈ M. Then there exists a sparsely-connected ReLU
network fN , with 4DCM nodes in the first layer, 8dN nodes in the second layer,
and 2N nodes in the third layer, such that

‖X − fN‖L2(ψ(M)) ≤
Cψ√
N

(A.7)

where Cψ depends on how sparsely X(ψ(x))
∣∣
Ui

can be represented in terms of
the ReLU wavelet frame on each neighborhood Ui, and CM on the curvature and
dimension of the manifold M.

Proof (of Theorem 4).
The proof borrows from the main theorem of [39]. We adopt this notation and

summarize the changes in the proof here. For a full description of the theory and
guarantees for neural networks on manifolds, see [39]. Let CM be the number
of neighborhoods Ui = B(xi, δ) ∩M needed to cover M such that ∀x, y ∈ Ui,
(1− ε)‖x− y‖ ≤ dM(x, y) ≤ (1 + ε)‖x− y‖. Here, we choose δ = min(δM, κ

−1ρ)
where δM is the largest δ that preserves locally Euclidean neighborhoods and
κ−1ρ is the smallest value from [17] such that every neighborhood Ui has a
bi-Lipschitz set of diffusion coordinates.

Because of the locally bi-Lipschitz guarantee from [17], we know for each Ui
there exists an equivalent neighborhood ψ̃(Ui) in the diffusion map space, where
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ψ̃(x) =
[
ψi1(x), ..., ψid(x)

]
. Note that the choice of these d coordinates depends

on the neighborhood Ui. Moreover, we know the Euclidean distance on ψ(Ui) is
locally bi-Lipschitz w.r.t. dM(·, ·) on Ui.

First, we note that as in [39], the first layer of a neural network is capable of

using 4D units to select the subset of d coordinates ψ̃(x) from ψ(x) for x ∈ Ui
and zeroing out the other D − d coordinates with ReLU bump functions. Then
we can define X(ψ̃(x)) = X(ψ(x)) on x ∈ Ui.

Now to apply the theorem from [39], we must establish that X
∣∣
Ui

: ψ̃(Ui)→ R
can be written efficiently in terms of ReLU functions. Because of the manifold and
diffusion metrics being bi-Lipschitz, we know at a minimum that ψ̃ is invertible
on ψ̃(Ui). Because of this invertibility, we will slightly abuse notation and refer to
X(ψ(x)) = X(x), where this is understood to be the extrinsic coordinate of the
manifold at the point x that cooresponds to ψ(x). we also know that ∀x, y ∈ Ui,

|X(ψ̃(x))−X(ψ̃(y))| = |X(x)−X(y)|
≤ max

z∈Ui
‖∇X(z)‖d(x, y)

≤ maxz∈Ui ‖∇X(z)‖
1− ε

‖ψ̃(x)− ψ̃(y)‖,

where ∇X(z) is understood to be the gradient of X(z) at the point z ∈M. This

means X(ψ̃(x)) is a Lipschitz function w.r.t. ψ̃(x). Because X(ψ̃(x)) Lipschitz
continuous, it can be approximated by step functions on a ball of radius 2−` to

an error that is at most
maxz∈Ui ‖∇X(z)‖

1−ε 2−`. This means the maximum ReLU

wavelet coefficient is less than
maxz∈Ui ‖∇X(z)‖

1−ε (2−`+2−`+1). This fact, along with

the fact that ψ̃(Ui) is compact, gives the fact that on ψ̃(Ui), set of ReLU wavelet
coefficients is in `1. And from [39], if on a local patch the function is expressible
in terms of ReLU wavelet coefficients in `1, then there is an approximation rate
of 1√

N
for N ReLU wavelet terms.

Proof (of Theorem 2). We borrow from [41] to prove the following result. Given
that the bulk of the distribution q lies inside ψ(Uz0), we can consider only the
action of fN on ψ(Uz0) rather than on the whole space. Because the geodesic
on U is bi-Lipschitz w.r.t. the Euclidean distance on the diffusion coordinates
(the metric on the input space), we can use the results from [41] and say that
on ψ(Uz0) the output covariance matrix is characterized by the Jacobian of the
function fN mapping from Euclidean space (on the diffusion coordinates) to the
output space, at the point z0. So the covariance of the data lying insize ψ(Uz0)
is Jz0ΣJ

T
z0 , with an O(ε) perturbation for the fact that ε fraction of the data lies

outside ψ(Uz0).
The effective rank of C being at most d comes from the locally bi-Lipschitz

property. We know X(ψ(x)) only depends on the d coordinates ψ̃(x) as in the
proof of Theorem 1, which implies fN (ψ(x)) satisfies a similarly property if fN
fully learned X(ψ(x)). Thus, while J ∈ Rm×D, it is at most rank d, which means
JΣJT is at most rank d as well.
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A.4 Spectral Net

A.5 Additional Experimental Result

To evaluate the quality of the generated images in the Bulldog dataset, we use
the Frechet inception distance (FID). We train the different generative models 5
times and compute the FID between source and generated images. In table A.1
we present the mean and standard deviations of the FID.

FID GAN VAE SVAE VDAE

Bulldog 264.4(18.4) 245.7(14.7) 400.6 (6.2) 144.3(12.6)

Table A.1: Frechet inception distance (FID) on the Bulldog dataset, mean and
standard deviation.

MMD GAN VAE SVAE VDAE

Circle 9.3(11.1) 8.3(4.4) 8.1 (4.2) 7.3(4.3)
Torus 12.3 (4.7) 63.3 (12.9) 84.5(11.7) 41.9 (4.1)
Bunny 175.6(68.6) 725.8(3.8) 601.7(41.1) 3.6(0.3)
Bulldog 741.8(88) 167.3(16.4) 213.7(13.1) 9.68(3.44)
Frey 34.9(5.1) 39.3(6.1) 29.4 47.0
MNIST 3.5(0.6) 27.9(1) 20.6(1.2) 5.79(0.3)
COIL-20 3.3(0.9) 39.2(9.6) 55.7(4.7) 7.4(1.07)

Table A.2: Measures of similarity between training data and generated data using
Maximum Mean Discrepancy. Comparisons are across a variety of synthetic and
real data sets

A.6 Experimental Architectures

For the circle, torus, Stanford bunny, Frey faces 8, and the 5x5 spherical density
datasets, we used a single 500-unit hidden layer network for all models used in the
paper (i.e. decoder, encoder, generator, discriminator, for the VAE, Wasserstein
GAN, hyperspherical VAE, and our method).

As higher dimensional datasets, we used a slightly larger architecture for
the MNIST, COIL-20, and rotating bulldog datasets: two hidden-layer de-
coder/generators of width 1024 and 2048, and two hidden-layer encoder/discriminators
of width 2048 and 1024. All activations are still ReLU.

8 https://cs.nyu.edu/ roweis/data.html
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(a) VAE (b) GAN

(c) SVAE (d) VDAE

Fig. A.1: A tSNE plot of generated images from Frey data set. While the images
from the VAE and GAN are compelling, they do not capture the geometric
structure of the Frey faces dataset. This structure is much more apparent in the
images generated by SVAE and VDAE. In particular, the VDAE has captured a
linear structure in the data, which reflects the fact that the dataset was created
from a video.
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(a) VAE (b) GAN

(c) SVAE (d) VDAE

Fig. A.2: A tSNE plot of generated images from Frey data set. Like with Fig. A.1
(Frey faces), the images generated by VAE, GAN, and SVAE have a unimodal
distribution that does not capture the clustered structure of the MNIST dataset.
VDAE, on the other hand, organizes the digits into clear clusters, and does not
generate from regions where there is low support in the training distribution.
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(a) VDAE (b) SVAE

(c) β-VAE (d) WGAN

Fig. A.3: A tSNE embedding of 360 generated images from COIL-20 data set.
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