
Supplementary Material for “Connecting the
Dots: Detecting Adversarial Perturbations Using

Context Inconsistency”

Shasha Li1, Shitong Zhu1, Sudipta Paul1,
Amit Roy-Chowdhury1, Chengyu Song1, Srikanth Krishnamurthy1,

Ananthram Swami2, and Kevin S Chan2

1 University of California, Riverside, USA
{sli057, szhu014, spaul007}@ucr.edu,

{amitrc}@ece.ucr.edu, {csong, krish}@cs.ucr.edu
2 US Army CCDC Army Research Lab

{ananthram.swami.civ, kevin.s.chan.civ}@mail.mil

In this supplementary material, we 1) provide a tabular representation of the
numbers used for the plots in the paper; 2) describe the architecture of the auto-
encoders; 3) explain how we extend the state-of-the-art adversarial perturbation
detection method FeatureSqueeze to defend object detection system; 4) describe
how we apply non-deep Co-occurGraph to defend object detection system using
cooccurrence relations inside the scene images; 5) include results of the detection
performance of our proposed method against digital perturbations generated
by various generation mechanisms; 6) provide results on the comparison of our
proposed method with others that use context inconsistency to detect adversarial
perturbations.

1 Values in the Plots

In the paper, some experimental results have been provided as plots for better
visualization. We provide a table for each plot in this supplementary material.
Tab. 1 and Tab. 2 correspond to the upper part and the lower part of Fig.8(a).
Tab. 3 corresponds to Fig.8(b). Tab. 4 and Tab. 5 correspond to the upper part
and lower part of Fig.8(c). Some entries are missing due to inadequate number
of samples. For example, there are no entries for digital hiding attack for images
with 6 objects in Tab. 4 because there are only 14 hiding-attacked images and
the AUC reported would not be accurate. We report AUC when we have at least
50 attacked samples.

2 Architecture of the Auto-encoders

For each category, we use a separate auto-encoder to learn the distribution
of its context profile. The architecture of the auto-encoders is identical and
is shown in Fig. 1. The input to the auto-encoder is the context profile x =
[r, γu1, γu2, γr1, γr2]. We denote the height and width of the input as H and W .



2 Shasha Li et al.,

#Proposals
Digital Perturbations Physical Perturbations

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [15]:

1-3 0.751 0.628 0.587 0.762 0.679 0.647

3-6 0.712 0.626 0.614 0.749 0.633 0.653

6-9 0.748 0.612 0.609 0.784 0.654 0.688

9-12 0.727 0.576 0.629 0.767 0.672 0.692

Our method:

1-3 0.830 0.977 0.843 0.940 0.955 0.950

3-6 0.902 0.995 0.859 0.983 0.982 0.977

6-9 0.933 0.999 0.903 0.993 0.998 0.985

9-12 0.950 0.983 0.929 0.996 1.000 0.991

Table 1: The detection performance against different attacks w.r.t. the number
of proposals on the perturbed objects in PASCAL VOC dataset.

#Proposals
Digital Attack Physical Attack

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [15]:

1-3 0.704 0.692 0.594 0.670 0.678 0.502

3-6 0.656 0.679 0.569 0.719 0.692 0.528

6-9 0.584 - 0.562 0.653 0.641 0.552

9-12 0.616 - 0.521 0.682 - 0.556

Our method:

1-3 0.896 0.961 0.804 0.918 0.938 0.952

3-6 0.947 0.992 0.876 0.985 0.982 0.973

6-9 0.978 - 0.90 0.983 0.999 0.989

9-12 0.988 - 0.932 0.995 - 0.987

Table 2: The detection performance against different attacks w.r.t. the number
of proposals on the perturbed objects in MS COCO dataset.

IoU
PASCAL VOC MS COCO

Digital Appearing Physical Appearing Digital Appearing Physical Appearing

FeatureSqueeze [15]:

0.0 0.605 0.653 0.614 0.550

0.0-0.1 0.606 0.605 0.557 0.552

0.1-0.2 0.592 0.642 0.549 0.518

0.2-0.3 0.602 0.752 0.521 0.478

0.3-0.4 0.590 0.640 0.504 0.586

0.4-0.5 0.594 0.644 0.510 0.474

Our method:

0.0 0.748 0.939 0.769 0.977

0.0-0.1 0.872 0.945 0.827 0.970

0.1-0.2 0.879 0.966 0.849 0.978

0.2-0.3 0.906 0.980 0.850 0.984

0.3-0.4 0.905 0.986 0.855 0.996

0.4-0.5 0.924 0.994 0.910 0.990

Table 3: The detection performance against appearing attacks w.r.t. the overlap
(IoU) between the perturbed region and some ground truth object in PASCAL
VOC and MS COCO

W = 5 since there are 5 feature vectors in x and H equals to the dimension of the
RoI pooling feature. A fully connected layer is first used to compress the node
features (r) and edge features ([γu1, γu2, γr1, γr2]) separately. This is followed
by two convolution layers, wherein the node and edge features are combined
to learn the joint compression. Two fully connected layers are then used to



Detecting Adversarial Perturbations Using Context Inconsistency 3

#Objects
Digital Perturbation Physical Perturbations

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [15]:

1 0.724 0.627 0.600 0.726 0.617 0.657

2 0.715 0.624 0.574 0.806 0.679 0.635

3 0.733 0.610 0.661 0.834 0.716 0.631

4 0.760 0.615 0.584 0.806 0.683 0.578

5 0.740 0.612 0.611 0.879 0.789 0.640

6 0.778 - 0.666 0.825 0.735 0.675

Our method:

1 0.927 0.994 0.829 0.986 0.987 0.966

2 0.901 0.986 0.838 0.972 0.940 0.979

3 0.888 0.960 0.810 0.913 0.898 0.977

4 0.889 0.969 0.813 0.984 0.976 0.987

5 0.890 0.958 0.902 0.980 1.000 0.986

6 0.912 - 0.968 0.987 0.998 0.995

Table 4: The detection performance against different attacks w.r.t. the number
of objects in the scene images in PASCAL VOC dataset.

#Object
Digital Attack Physical Attack

Miscategorization Hiding Appearing Miscategorization Hiding Appearing

FeatureSqueeze [15]:

1 0.683 0.681 0.590 0.674 0.701 0.565

2 0.677 0.676 0.573 0.692 0.688 0.550

3 0.693 0.683 0.562 0.714 0.636 0.539

4 0.676 0.691 0.584 0.707 0.749 0.532

5 0.662 0.676 0.528 0.654 0.596 -

6 0.699 0.683 0.611 0.751 0.621 -

Our method:

1 0.976 0.991 0.853 0.993 0.957 0.984

2 0.964 0.987 0.824 0.984 0.967 0.975

3 0.922 0.972 0.884 0.982 0.967 0.967

4 0.891 0.938 0.882 0.986 0.984 0.936

5 0.952 0.963 0.903 0.995 0.992 0.995

6 0.965 0.983 0.909 0.991 0.994 0.997

Table 5: The detection performance against different attacks w.r.t. the number
of objects in the scene images in COCO dataset.

further compress the joint features. These layers form a bottleneck that drives
the encoder to learn the true relationships between the features and get rid of
redundant information.

3 Extending FeatureSqueeze to Region-level Perturbation
Detection

3.1 FeatureSqueeze

FeatureSqueeze [15] proposes to squeeze the search space available to an adversary,
driven by the observation that the feature input spaces are often unnecessarily
large, which provides extensive opportunities for an adversary to construct
adversarial examples. There are two feature squeezing methods used in their
implementation: a) reducing the color bit depth of each pixel; b) spatial smoothing.
By comparing a DNN model’s prediction on the original input with that on



4 Shasha Li et al.,

Encoder

FC layer
 [4096, 256]

Cov layer 
64*[5,1]

Cov layer 
16*[5,1]

FC layer
 [256,16]

FC layer
 [16*16,7]

7

1

4096

16
1

256

5
64

256

16
1

16
5

265

5

Fig. 1: Auto-encoder structure. One auto-encoder is learned for each category.
The structure of the auto-encoders is identical.

Fig. 2: This figure is from paper [15]. “The model is evaluated on both the
original input and the input after being pre-processed by feature squeezers.
If the difference between the models prediction on a squeezed input and
its prediction on the original input exceeds a threshold level, the input is
identified to be adversarial.”

Fig. 3: Extending the DNN of FeatureSqueeze to region-level classification

squeezed ones, feature squeezing detects adversarial examples with high accuracy
and few false positives. The framework of FeatureSqueeze [15] is shown in Fig. 2.



Detecting Adversarial Perturbations Using Context Inconsistency 5

3.2 Extending to Region-level Detection

To detect perturbed regions inside scene images, the DNN model of FeatureSqueeze
is required to operate on region-level. We crop the ground-truth regions, denoted
as r, as the input to the DNN model. The output of the DNN model is the
predicted category. To deal with region inputs with various size, we use RoI
pooling [4] (box size equals to input region size) as the last feature extraction
layer as shown in Fig. 3. Softmax function [2] is used as the last layer and cross
entropy loss [5] is used as the objective loss function.

3.3 Implementation Details

We initialize the feature extractor with the weights pretrained on ImageNet.
Momentum optimizer with momentum 0.9 is used to train the classifier. The
learning rate is 1e-4 and decays every 80k iterations at decay rate 0.1. Training
ends after 240k iterations. The final classification accuracy for the 20 categories
in PASCAL VOC dataset is 95.6%. The final classification accuracy for the 80
categories in MS COCO dataset is 87.1%. The accuracy is not high because
MS COCO is biased among categories, for example, more than 100k person
instances v.s. less than 1k hair dryer instances. Even after we balance the
number of samples among different categories, the performance is not good
because some categories have too few examples, like the hair dryer category. The
hyperparameters used for feature squeezing are exactly the same as the authors’
GitHub implementation [12].

4 Co-occurGraph for Misclassification Attack Detection

We consider a non-deep model as baseline where co-occurrence statistics are used
to detect misclassification due to adversarial perturbation. This approach uses
the inconsistency between prior relational information obtained from the training
data and inferred relational information conditioned on misclassified detection to
detect the presence of adversarial perturbation. As the co-occurrence statistics of
background class cannot be modeled, this approach is not applicable for detecting
hiding and appearing attacks.
Prior Relational Information. Same as [1], we use the co-occurrence frequency
of different categories of objects in the training data to obtain the prior relational
information. Co-occurrence statistics gives an estimate of how likely two object
classes will appear together in an image.
Graphical Representation. To encode the relational information of different
classes of objects present in an image, we represent each image as an undirected
graph G = (V,E). Here, a node in V represents a single proposed region by the
region proposal network. The edges E = {(i, j)| if region vi and vj are linked}
represent the relationships between the regions. We formulate a tree structure
graph where the region of interest is connected with all other proposed regions.
The estimate of class probabilities of each proposed region generated by the object



6 Shasha Li et al.,

detection model is used as the node potential and the co-occurrence statistics is
used as the edge potential.
Detection of Misclassification Attack. For each image instance in test-set, we
estimate its class conditional relatedness with other classes by making conditional
inference on the representative graph. Conditional inference gives the pairwise
conditional distribution of classes for each edge, which we use to obtain the
posterior relational information of that image conditioned on the misclassified
label. Based on the inconsistency among the prior relational information and
posterior relational information, we detect if there is any misclassification attack.
Implementation Details. We use the Faster R-CNN [10] as the object detection
and region proposal generation module. For each image, we consider top 20
proposed regions based on the class confidence score. To formulate the graph and
make conditional inference, we use the publicly available UGM Toolbox [11].

5 Detection performance w.r.t. various perturbation
generation mechanisms

In the paper, we show our proposed method is effective in detecting six different
perturbation attacks, i.e., digital miscategorization attack, digital hiding attack,
digital appearing attack, physical miscategorization attack, physical hiding attack
and physical appearing attack. These attacks are different in terms of their attack
goals and perturbation forms. Other defense papers also evaluate their defense
methods w.r.t different perturbation generation mechanisms. Our defense strategy
is dependent on the contextual information, and therefore should not rely heavily
on the mechanism to generate the perturbation. We validate our hypothesis by
testing our method against different perturbation generation mechanisms. The
results in Tab. 6 show that our method is consistently effective against all the
perturbation generation mechanisms.

As stated in the paper, COCO has few examples for certain categories. To
make sure we have enough number of context profiles to learn the distribution, out
of all the 80 categories, we choose 10 categories with the largest number of context
profiles extracted. These 10 categories are “car”, “diningtable”, “chair”, “bowl”,
“giraffe”, “person”, “zebra”, “elephant”, “cow”, “cat”. We also choose “stop sign”
category because attacks on stop signs have gained long-lasting attentions. In
addition to “background”, we have in total 12 categories and learn 12 autoencoders
separately. We use these 12 autoencoders and evaluate misclassifications to these
categories in our experiments.

6 Comparison with other context inconsistency based
adversarial defense methods

The general notion of using context has been used to detect anomalous activ-
ities[16, 14, 3, 7]. When it comes to adversarial perturbation detection, spatial
context has been used to detect adversarial perturbations against semantic seg-
mentation [13]. Temporal context has been used to detect adversarial perturbation



Detecting Adversarial Perturbations Using Context Inconsistency 7

Perturbation Generation Mechanism PASCAL VOC MS COCO

FeatureSqueeze [15]:

FGSM [6] 0.788 0.678

BIM [9] 0.724 0.681

Our method:

FGSM 0.947 0.915

BIM 0.938 0.959

Table 6: The detection performance against digital miscategorization attacks
w.r.t. different perturbation generation mechanisms on PASCAL VOC and MS
COCO

against video classification [8]. Context inconsistency has never been used to
detect adversarial examples against objection detection systems. Essentially, our
approach utilizes different kinds of context, including the spatial one from these
prior works and object-level inter-relationships for the first time, as discussed in
Tab. 7.

Detection Temporal Spatial Object-object Object-background Object-scene Task

Video[8] 3 video classification

Seg[13] 3 semantic segmentation

Our method 3 3 3 3 object detection

Table 7: Comparison with other context inconsistency based adversarial detection
methods

References

1. Bappy, J.H., Paul, S., Roy-Chowdhury, A.K.: Online adaptation for joint scene and
object classification. In: European Conference on Computer Vision. pp. 227–243.
Springer (2016)

2. Bishop, C.M.: Pattern recognition and machine learning. Springer (2006)
3. Cao, N., Lin, C., Zhu, Q., Lin, Y.R., Teng, X., Wen, X.: Voila: Visual anomaly

detection and monitoring with streaming spatiotemporal data. IEEE Transactions
on Visualization and Computer Graphics 24(1), 23–33 (2017)

4. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1440–1448 (2015)

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
6. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial

examples. arXiv preprint arXiv:1412.6572 (2014)
7. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning

temporal regularity in video sequences. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 733–742. IEEE (2016)

8. Jia, X., Wei, X., Cao, X.: Identifying and resisting adversarial videos using temporal
consistency. arXiv preprint arXiv:1909.04837 (2019)

9. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533 (2016)



8 Shasha Li et al.,

10. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object
detection with region proposal networks. In: Advances in Neural Information
Processing Systems. pp. 91–99 (2015)

11. Schmidt, M.: UGM: Matlab code for undirected graphical models
12. uvasrg: Featuresqueezing. https://github.com/uvasrg/FeatureSqueezing.git (2018)
13. Xiao, C., Deng, R., Li, B., Yu, F., Liu, M., Song, D.: Characterizing adversarial

examples based on spatial consistency information for semantic segmentation. In:
Proceedings of the European Conference on Computer Vision (ECCV). pp. 217–234
(2018)

14. Xu, D., Song, R., Wu, X., Li, N., Feng, W., Qian, H.: Video anomaly detection
based on a hierarchical activity discovery within spatio-temporal contexts. Neuro-
computing 143, 144–152 (2014)

15. Xu, W., Evans, D., Qi, Y.: Feature squeezing: Detecting adversarial examples in
deep neural networks. arXiv preprint arXiv:1704.01155 (2017)

16. Zhu, Y., Nayak, N.M., Roy-Chowdhury, A.K.: Context-aware activity recognition
and anomaly detection in video. IEEE Journal of Selected Topics in Signal Processing
7(1), 91–101 (2012)


