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Abstract. As is well known, single image super-resolution (SR) is an
ill-posed problem where multiple high resolution (HR) images can be
matched to one low resolution (LR) image due to the difference in their
representation capabilities. Such many-to-one nature is particularly mag-
nified when super-resolving with large upscaling factors from very low
dimensional domains such as 8×8 resolution where detailed information
of HR is hardly discovered. Most existing methods are optimized for de-
terministic generation of SR images under pre-defined objectives such as
pixel-level reconstruction and thus limited to the one-to-one correspon-
dence between LR and SR images against the nature. In this paper, we
propose VarSR, Variational Super Resolution Network, that matches la-
tent distributions of LR and HR images to recover the missing details.
Specifically, we draw samples from the learned common latent distribu-
tion of LR and HR to generate diverse SR images as the many-to-one
relationship. Experimental results validate that our method can produce
more accurate and perceptually plausible SR images from very low res-
olutions compared to the deterministic techniques.

Keywords: Single image super resolution, variational super resolution,
very low resolution image

1 Introduction

Single image super-resolution (SISR) is a fundamental computer vision problem
and has a broad range of real-world applications. The recent advances of deep
convolutional neural networks (CNNs) have produced great progress in SISR.
There has been a lot of CNN architectures to improve the performance of SR
in terms of accuracy and time. On the other hand, developing new objectives
and quality measures for SR algorithms other than traditional reconstruction
errors also has been an active research topic of late years. Notable examples
include perceptual similarity, GAN-based loss, and even learned metrics. Thanks
to sustained research efforts and recent breakthroughs, the current SR techniques
can produce super-resolved images comparable with the original high resolution
(HR) ones.

Despite the success of recent SISR techniques, in this paper, we point out the
problem of the deterministic mechanism of those methods. SISR is widely known
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Fig. 1. This figure illustrates the main difference between the deterministic super-
resolution models and our proposed VarSR-Net. Although the ill-posed nature of the
problem, the deterministic models produce an unique solution so thus they are not
able to generate diverse super-resolved results as the high resolution images. However,
our proposed VarSR-Net matches the latent distributions of low and high resolution
images to produce diverse super-resolved outputs by sampling multiple latent variables
from the shared distribution. Note that, ‘LS’ indicates the matched latent space.

as an ill-posed problem where multiple HR images can share a single matched low
resolution (LR) image and thus the super-resolved image is not necessary to be
unique. This is mainly caused by the difference in the representation capabilities
between LR and HR image spaces. This many-to-one or one-to-many nature of
SISR problem is especially magnified when dealing with large upscaling factors
from very low resolution images such as 8×8 pixels, since extremely small LR
images hardly preserve the detailed information of HR images. However, existing
SISR solutions produce a deterministic one-to-one correspondence between LR
and SR images against the nature of the problem, since they are mostly optimized
for point-to-point error minimization based on strictly paired training samples
of LR and its HR ground truth images.

In this paper, we address the aforementioned problem by proposing a novel
VarSR-Net that enables us to generate diverse SR images that better reflect
the ill-posed nature of the problem. Specifically, we first introduce two different
latent variables for LR and HR images which encode their contents, respectively.
Two latent variables are learned to have the shared representation so that the
HR and LR images can be mapped to a common feature space by minimizing the
KL-divergence to bridge the gap between the description capabilities of LR and
HR images. Our SR module receives the latent variables as input and it is trained
to produce pixel-level accurate and perceptually plausible upscaled images as the
ordinary SR techniques. Since the HR images have a higher degree of diversity
than LR images, the latent variables of HR images are much denser than LR ones.
Thus, we draw multiple samples from the learned common latent distribution
to generate diverse SR images in the inference stage. Fig. 1 illustrates the main
difference between the deterministic techniques and ours. To our knowledge, it
is the first attempt to model and match the latent distributions of LR and HR
images and generate diverse SR images from very low resolution LR images.

One might ask why we argue the importance of diverse SR image generation.
In theoretical aspect, it is natural that a single LR image is not necessary to
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match with an unique HR image as we mentioned. On the other hand, we present
the following real-world scenario. Suppose that we have a very low resolution face
image of the criminal and we need to super-resolve the LR image before searching
in the face image database. In this circumstance, we could miss the chance to
identify the criminal if the single result of the deterministic SR model is poor.
However, the possibility increases if the SR model produces multiple outputs
close to the HR image so that we can perform search many times to make up a
sufficient sized shortlist. Similar scenarios can be written such as investigation
of the numbers on the very low resolution vehicle license plate images.

Our main contributions are summarized as follows:

– We highlight the problem of deterministic super-resolution approaches which
paid less attention to the ill-posed nature of the SR task. Those methods
assuming one-to-one correspondence between LR and HR images can fail to
recover the detailed information of HR images which is hardly discovered in
low dimensional LR images.

– We introduce VarSR, Variational Super-Resolution Network, capable of gen-
erating diverse SR results from a single LR image by sampling multiple la-
tent variables from the learned common latent distribution of LR and HR
domains.

– Our extensive evaluation with various quality measures validates that our
method can produce more accurate and perceptually plausible SR images
compared to the deterministic SR techniques.

2 Related Work

2.1 Image super-resolution

Recent deep-learning based single image super-resolution (SISR) techniques can
be broadly categorized into two directions, advances in neural network architec-
tures and objective functions.

In aspect of network architectures, Dong et al. [8] successfully developed a
three-layered CNN model to SISR and showed superior performance over the
handcrafted algorithms. After that, many advanced deep architectures for SR
have been proposed. Ledig et al. [18] and Zhang et al. [38] adopt residual blocks
and dense blocks toward more accurate SR image reconstruction, respectively.
The laplacian pyramid network [16] is proposed to generate multi-scale SR im-
ages progressively in one feed-forward pass. Tai et al. [29] reduced the number of
parameters of SR networks without loss of depths by using convolutional layers
recursively.

In the early stages of deep-learning based SISR, most of the networks [8, 14]
are trained under Lp distances as their loss function for pixel-level reconstruc-
tion of the HR images. However, models learned for the reconstruction objective
alone tend to produce blurry results. To resolve this problem, Johnson et al. [13]
proposed the perceptual loss defined by the L2 distance of activation maps ex-
tracted from CNN models pre-trained on large-scale datasets. In addition to the
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perceptual loss, SRGAN [18] incorporated the adversarial loss [9] to recover re-
alistic image textures. Furthermore, there have been numbers of SR objectives
including texture matching [25], semantic prior [31], and rank loss [37].

To our knowledge, the diversity of SR images is not discussed in the afore-
mentioned previous work. We believe our study can provide a good starting point
for the community to have more attention toward the new research direction.

2.2 Super-resolving very low resolution images

The SR methods specialized for very low resolution images have mostly focused
on human face images with 8×8 or 16×16 pixels [35, 12, 34, 40, 5]. Yu et al. [33]
exploited facial attributes to train SR networks based on conditional GAN [22].
The structural prior of face such as facial landmarks is actively utilized for
super-resolving face images [4, 3, 32]. There also have been several attempts to
utilize person identities as a constraint when training SR models [10, 7]. Note
that, the aforementioned recent techniques tailored for the face image SR exploit
additional supervision while our VarSR network is trained totally unsupervised
manner.

On the other hand, Dahl et al. [5] proposed recursive learning that gener-
ates SR images pixel-by-pixel based on the autoregressive model [23]. Their fully
probabilistic model generates diverse results, however, it suffers from the expen-
sive sampling costs proportional to the image size and the number of inferences.
On the contrary, our VarSR network can generate diverse and plausible images
in one feed-forward path. Moreover, their objective solely concentrates to gen-
erate realistic images while our method focuses on the accurate reconstruction
of original images.

2.3 Multimodal generative models

Deep-learning models produce a deterministic output unless there are no com-
ponents for stochasticity. Therefore, there has been a series of work injecting
stochasticity into conditional generative models (e.g. adding noise to input) in
various tasks. For instance, VAE-based techniques to model the uncertainty were
proposed and achieved the state-of-the-art performance in the video prediction
task [2, 6]. The BicycleGAN [39] encodes the styles of images as low dimensional
latent variables and utilizes randomly sampled latent vectors in the image-to-
image translation task. Lee et al. [19] proposed the DRIT by extending Bicy-
cleGAN for unpaired image-to-image translation based on a disentangled rep-
resentation. Unlike the aforementioned methods for improving multimodality
in the video prediction or image-to-image translation tasks, our method is the
first attempt to introduce latent variables toward diversity in the image super-
resolution task.
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3 Our Approach

3.1 Motivation

In this paper, we mainly focus on generating multiple SR images with diversity
for a single LR image. Before introducing our proposed solution, we clarify our
motivation:

Single image super resolution is an ill-posed problem, since a single LR im-
age and multiple HR images can correspond. The one-to-many relationship is
basically coming from the difference in the representation capabilities of two
domains. The information of HR images cannot be retained by the LR repre-
sentation without any loss, thus perfect estimation of HR images is inherently
impossible. However, most existing SR techniques are optimized to produce de-
terministic outputs regardless of the nature of the problem.

The problem is especially magnified when super-resolving with high upscaling
factors from very low resolution images such as 8×8 pixels where it is extremely
hard to discover the high-frequency details of HR images. In this circumstance, it
is highly probable that several HR images can be matched to a single LR image.
Therefore, a super-resolved image is not necessary to be unique but should be
diverse.

There are critical real-world applications including surveillance systems that
inferring diverse SR results is beneficial. One practical scenario is described in
Sec. 1. In those applications, it is preferred to have a set of candidate SR images
highly likely to contain an element very close to the target HR image, rather
than a single deterministic result which moderately recovers the HR image.

3.2 Variational Super-Resolution Network

According to our motivation, we propose Variational Super-Resolution Network
(VarSR-Net), specialized for the SR tasks from very low resolution images such
as 8×8 dimensions where the details of HR images are hardly noticeable, by
matching the latent distributions of LR and HR images.

A super-resolution network gSR is a generator to produce a single output
image ÎH for a given low resolution image IL:

ÎH = gSR(IL). (1)

The network is trained to minimize the distortion (i.e. reconstruction error)
between a super-resolved image ÎH and a corresponding ground-truth high res-
olution image IH . Additional objectives such as perceptual similarities or dis-
crimination scores based on GAN can be assigned to produce better imitations.
However, the missing detailed information of IH hardly encoded in IL makes
the super-resolution models fail to infer reliable outputs, especially for very low
resolution input.

In order to address this problem, a simple choice is to give an additional
latent variable to our SR sub-module gSR that describes the information of IH



6 S. Hyun and J.-P. Heo

Generator 𝐺
𝐼𝐿

 𝐼𝐻

…𝐼𝐻

SR losses

Minimize 

KL divergence

𝐸𝐻

𝜇, 𝜎

𝐼𝐿

𝐸𝐿

𝜇, 𝜎

𝑧
+

(a) Training

 𝐼1
𝐻

Generator 𝐺

𝐼𝐿

𝐸𝐿

 𝐼𝑛
𝐻

…

Sampling

𝐼𝐿

𝑧
+

(b) Inference

Fig. 2. This figure illustrates the training and inference procedures of VarSR-Net. The
HR and LR encoders are stochastically modeled to output parametric distributions.
Specifically, encoders estimate a multivariate Gaussian distribution N (µ, σ) where the
their input highly likely to belong to. (a) The EH and G are trained as an encoder-
decoder structure. Specifically, given a pair of training sample (IL, IH), the EH is
trained to extract features of IH while the generator G(IL, z) is learned to reconstruct
IH from IL and z sampled fromN (µ, σ) estimated by EH . Meanwhile, the EL is learned
to minimize the KL divergence with EH to match the latent distributions of LR and
HR images. (b) In inference stage, EL estimates the latent distribution N (µ, σ) from
the input LR image. Diverse SR images are then produced by G(IL, zi) where zi are
randomly drawn latent variables from N (µ, σ) predicted by EL.

to resolve the ambiguity that IL has:

ÎH = gSR

(
IL, EH(IH)

)
, (2)

where EH(·) is an encoder to extract features from the high resolution images.
The SR model gSR then learns to super-resolve a low resolution image IL much
more accurately by exploiting the feature extracted from IH , since the features
EH(IH) provide the missing but strong cues for recovering HR images. Further-
more, joint learning of gSR and EH(IH) encourages the feature extractor to focus
more on the information complementary to IL.

However, the aforementioned approach (Eq. 2) is totally contradictory since
the generator requires IH or its features EH(IH) to produce IH . In order to
resolve such a circular logic, we need to estimate EH(·) only based on a low
resolution image IL.

We introduce another encoder EL(·) for low resolution images. As our mo-
tivation and the ill-posed nature of super-resolution problem, the feature ex-
tracted from a single LR image needs to be matched to several features of HR
images. However, it cannot be fulfilled by deterministic encoders. Therefore, we
model the latent representation of both encoders EH(·) and EL(·) as multivariate
Gaussian distributions where we can sample multiple latent variables to provide
one-to-many mappings as follows:

EL(x) = [µx, σx] and EH(x) = [µx, σx], (3)
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where x is either of LR and HR image, and both µx and σx are D-dimensional
vector. Note that, D is the dimensionality of the latent representation. We also
denote Eµ· (x) = µx and Eσ· (x) = σx for the sake of simplicity.

Our key idea is to match the two latent distributions of EH(·) and EL(·).
In other words, we aim to realize that the sampled latent variables from EL are
highly likely to be ones sampled from EH . To this end, we train both encoders to
minimize the KL divergence between two distributions of EH(IH) and EL(IL).
We further explain more details about the KL divergence term later.

In training phase, the input to our generator G(·, ·) is pairs of (IL, z) where
z is a sampled variable from N (EµH(IH), EσH(IH)), since the HR images are
available. On the other hand, in testing phase, the generator receives a pair of
(IL, z) where z is drawn from N (EµL(IL), EσL(IL)). Specifically, the n diverse

SR images {Î1H , ..., ÎnH} super-resolved from a LR image IL are obtained as the
follows:

ÎiH = G(IL, zi), zi ∼ N
(
EµL(IL), EσL(IL)

)
, (4)

for i ∈ {1, ..., n}. Although we utilize the latent distribution predicted by the
LR encoder EL in the inference stage, our generator G(·, ·) is capable to recover
the information of HR images since EL is trained to share the common latent
distribution with the HR encoder EH .

Relation with CVAE. Conditional Variational AutoEncoder (CVAE) [27]
approximates the conditional distribution pθ(x|y) where x is data and y is a
condition. The conditional generative process of the model is as follows; for a
given condition y, latent variable z is drawn from the prior distribution pθ(z|y),
and the output x is generated from the distribution pθ(x|y, z). This process
allows to generate diverse outputs {xi} through the sampling of multiple latent
variables {zi}. Variation lower bound for CVAE is defined as:

LCV AE(x, y; θ, φ) = Eqφ(z|x,y) log pθ(x|y, z)
− DKL(qφ(z|x, y)‖pθ(z|y)) ≤ log pθ(x|y), (5)

where qφ(z|x, y) is the approximated distribution of the true posterior and DKL

is the KL divergence.

If we assume that a high resolution image contains all the information of its
low resolution counterpart, we can translate our VarSR-Net network to CVAE
architecture; x as high resolution image IH , y as low resolution image IL, pθ(z|y)
as a LR encoder EL(IL), qφ(z|x, y) as a HR encoder EH(IH), and pθ(x|y, z) as
a generator network G(IL, z). Also, the term log pθ(x|y, z) can be replaced with
losses used in previous SR works such as pixel-level reconstruction or perceptual
loss. This interpretation gives a theoretical support for our model that maximizes
conditional log-likelihood of observed data.
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3.3 Objective functions

We train the entire model in an end-to-end fashion based on a weighted com-
bination of KL divergence and pixel-level losses. The pixel-level reconstruction
loss which guides to reduce the distortion of a super-resolved image against its
high resolution counterpart encourages the HR encoder EH(·) to extract the
informative features of a high resolution image, while the KL divergence loss
minimizes the divergence between latent feature distributions of the high and
low resolution images.

Specifically, a pixel loss minimizes the pixel-wise L2 distances between a
ground-truth high resolution image IH and a super-resolved image. Note that,
the super-resolved output is generated with latent variables sampled from a
high resolution encoder EH in training time. Therefore, the pixel-level loss is
formulated as follows:

Lpixel =
1

r2HW

rH∑
x=1

rW∑
y=1

(
Ix,yH −G(IL, z)

x,y
)2
, z ∼ N

(
EµH(IH), EσH(IH)

)
, (6)

where r is an upscaling factor, and H, W are height and width of IL, respectively.

KL divergence loss has the most important role in our framework. It enables
the low resolution encoder EL to infer the latent variables which pretend ones
from EH . The KL divergence loss is formulated as follows:

LKL = DKL

(
q(z|IH) ‖ p(z|IL)

)
, (7)

where q(z|IH) and p(z|IL) are the latent feature distributions of EH(·) and EL(·),
respectively.

Furthermore, we also apply the adversarial loss to recover the realistic texture
of high resolution images. We especially adopt the Improved Wasserstein GAN
(WGAN-GP) [1, 11] as follows:

Ladv = E
Î∼Pg

[D(Î)]− E
I∼Pr

[D(I)] + δ E
Î∼PÎ

[(‖∇ÎD(Î)‖2 − 1)2], (8)

where D is a critic network. Pr and Pg are HR and SR data distributions, respec-
tively. Plus, PÎ is the distribution of images sampled uniformly along straight
lines connecting pairs of points from Pr and Pg. We use δ = 10 for our experi-
ments.

Finally, our final loss function is given as follows:

L = λpixelLpixel + λKLLKL + λadvLadv. (9)

where λpixel, λKL, and λadv are hyper-parameters that balance three different
loss terms.
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4 Experiments

We evaluate our model quantitatively and qualitatively in the human face and
digit datasets. Details of each dataset are introduced in the following section.
We compare our model against the pixel recursive super resolution (PRSR) [5]
which is an auto-regressive model for super-resolution, and MR-GAN [20] that
reduces the mode-collapse problem in conditional GAN by replacing the mean
squared error (MSE) loss with the momentum reconstruction loss. Unfortunately,
PRSR is not tested in the face super-resolution task in our experiments, since
it requires very expensive sampling cost for the images of 64×64 pixels. In ad-
dition, we utilize SRGAN [18] as the baseline deterministic SR technique for a
face super-resolution task. For digit datasets, we use an autoencoder with skip-
connections for entire methods since the input low resolution images of digit
datasets have extremely low dimensionality such as 2×4 pixels. Therefore, we
denote the deterministic baseline as “Det.” for digit datasets instead of using
SRGAN.

4.1 Datasets

Human face dataset We adopt Celebrity Face Attributes (CelebA) [21] dataset
for face super-resolution task. This dataset contains about 200K celebrity facial
images. Among them, 100K images are used for training, and other 1K images
without any overlap with the training set are utilized as a testing set.

We used a cropped version of CelebA to focus on learning various facial
attributes unsupervisingly. We also set a spatial resolution of 64×64 for high
resolution image, and 8×8 for low resolution image. For a fair comparison, we
allocate 8 residual blocks for all models as did in MR-GAN [20].

Digit datasets For super-resolving digits, we use two datasets: MNIST [17]
and license plate(LP) [28] datasets. The MNIST dataset [17] contains hand-
written digit images with a resolution of 28×28. There are 60K and 10K images
as training and testing sets, respectively. To make the digits unrecognizable in
low resolution, all images are downsampled to the resolution of 6×6. The LP
dataset [28] is originally designed for the vehicle re-identification task based
on low quality LP images labeled in character-level. We collect about 110K
and 7K character images cropped from the LP images for training and testing,
respectively. Each character image is downsampled to a resolution of 2×4. We
set the upscaling scale factor to 4 for digit datasets.

4.2 Implementation details

We implement our VarSR-Net based on the architectures of U-net [24] and SR-
GAN [18]. Further architectural details are available in supplementary materials.
We set the dimension for latent representation to 256 and 64 for face and digits
datasets, respectively. Adam optimizer [15] is utilized with β1 = 0.9, β2 = 0.99
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Fig. 3. Qualitative comparison of different super-resolution methods. Images with the
highest PSNR scores among stochastically generated diverse results are reported with
‘(Best PSNR)’ or ‘(Best)’. Randomly sampled images from stochastic models are re-
ported with ‘(Random)’.

and set the learning rate 1e-4 which is decayed once throughout entire training.
As SRGAN [18] did, we first train the model without the adversarial loss to avoid
to falling into undesirable local minima. We borrow the architecture of SRGAN’s
discriminator. However, we remove 3 convolution layers from the discriminator
for digit datasets. For normalization layer, we adopt Instance Normalization [30].
Our hyper-parameters to balance the magnitudes of each terms in loss function
(Eq. 9) are set as follows; λpixel = 1, and λadv = 0.001 for all datasets, and λKL

= 0.05 for LP dataset, λKL = 0.01 for MNIST dataset, and λKL = 0.01, 0.02 for
CelebA dataset. In addition, we adopt perceptual loss [13] to realistic texture of
images like SRGAN. We add one subpixel convolution layer before the output
layer for SRGAN and MR-GAN to deal with the upscaling scale factor of 8 in
the face dataset.

4.3 Evaluation metrics

Since VarSR-Net is not developed to generate a deterministic result, we perform
the evaluations based on the mean and best scores among diverse super-resolved
images. Traditional image quality measures including PSNR, SSIM, and MSE



VarSR: Variational Super-Resolution for Very Low Resolution Images 11

(a) Attribute editing (b) Attribute transfer

Fig. 4. Qualitative results in face attribute editing and transfer by latent vector manip-
ulations. (a) Given a latent vector zLR of a LR image IL downsampled from the leftmost
HR image, we generate super-resolved images by G(IL, zk) with zk = zLR + ksZ̄att,
where Z̄att is the mean of latent vectors EH(·) of HR images having a particular at-
tribute such as “male” or “smile”, and s is a scaling constant. The 5 super-resolved
images are corresponding to different k ∈ {−2,−1, 0, 1, 2}. (b) We denote a pair of LR
and HR images, IjL and IkH , at the jth column on the uppermost row and kth row on the
leftmost column, respectively. The images G(IjL, EH(IkH)) super-resolved from IjL with
the latent vector EH(IkH) of IkH are presented at jth column of kth row of the central
3 × 5 image array to validate that the attributes of HR images can be transferred to
super-resolved images by its latent variable.

are used. In addition, we perform the image classification in digit datasets to
quantify how well the models produce semantically reliable outputs. For the
face dataset, we use the perceptual image quality metrics to quantitatively mea-
sure the capabilities of tested methods to generate perceptually plausible images.
Specifically, we utilize LPIPS score [36] and the distance between features ex-
tracted by a face verification network FaceNet [26]. In addition, we also measure
the diversity of super-resolved face images as the average LPIPS distance among
multiple resulting images according to Zhu et al. [39].

4.4 Qualitative results

The qualitative results on the human face and digit datasets are shown in
Fig. 3. The deterministic baseline suffers from the blurriness of outputs due to
the inherited uncertainty of one-to-many mapping and generates inappropriate
attributes. Besides, MR-GAN and PRSR succeed to generate diverse outputs,
however, the most resulting images are perceptually unsatisfied while our VarSR-
Net produces diverse and visually realistic images.

Furthermore, we validate that our common latent distribution shared by
LR and HR domains reflects high-level semantics. We specifically perform at-
tribute editing and transfer via manipulation of latent vectors, and the results
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Table 1. Quantitative results on CelebA dataset. For Ours and MR-GAN, the PSNR,
SSIM, and MSE scores are computed with the image having the best PSNR among 10
samples, while the best LPIPS and Facenet scores within 10 samples are reported.

w/o adversarial loss w/ adversarial loss

SRResNet
Ours Ours

SRGAN MR-GAN
Ours Ours

(λKL=1e-2) (λKL=2e-2) (λKL=1e-2) (λKL=2e-2)

PSNR 22.57 22.46 22.74 22.28 21.21 21.87 22.14
SSIM 0.7242 0.7162 0.7278 0.7042 0.6476 0.6855 0.6948
MSE 73.93 72.87 72.30 74.49 77.77 74.64 73.74

LPIPS 0.1172 0.0885 0.0927 0.0679 0.0591 0.0539 0.0538
Facenet 0.0463 0.0425 0.0430 0.0463 0.0434 0.0422 0.0426

Table 2. Diversity and consistency measure on CelebA dataset.

SRGAN MR-GAN
Ours Ours

(λKL=1e-2) (λKL=2e-2)

Diversity 0.0000 0.0665 0.0353 0.0238
Consistency 3.595 4.139 3.402 3.411

are shown in Fig. 4. We observe that the edited results successfully reflect the
attributes encoded by the conditional latent vectors. More importantly, edited
images maintain the original characteristics of the given input LR images. This
confirms that the latent vectors estimated by encoders describe the high-level
semantics that is complementary to the information LR images have.

4.5 Quantitative results

We perform the quantitative experiments on the human face dataset. We gener-
ate 10 SR images for each LR image input. The tested methods are categorized
into two groups depending on; training with adversarial loss or not. The re-
sults of traditional metrics are shown in Table 1. Without adversarial loss, our
model with λKL=2e-2 achieves the highest scores in PSNR/SSIM/MSE, and the
model with λKL=1e-2 also shows comparable results to the baselines. Unlike the
aforementioned cases, SRGAN shows better performance than ours when trained
with adversarial loss. However, our models are still significantly better than an-
other stochastic model MR-GAN and accomplished higher scores in perceptual
metrics.

In order to measure diversity, we compute the average LPIPS scores among
generated samples. Furthermore, we also evaluate the consistency of generated
images by measuring the pixel-level L1 distance between an input low resolution
image and the downsampled version of generated SR images. A higher consis-
tency score indicates that resulting SRs are less relevant to the corresponding
HR image. Note that, the same downsampling scheme to construct the training
set is utilized to measure the consistency. As reported in Table 2, we observe
that MR-GAN generates more diverse images but shows much lower consistency
compared to our method. It is mainly because the MR-GAN generates many
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Table 3. Quantitative results on digit datasets. The PSNR, SSIM, and MSE scores
of PRSR, MR-GAN, and Ours are computed with the image having the best PSNR
among 5 samples. ‘Det.’ denotes a deterministic model.

MNIST LP
PSNR SSIM MSE PSNR SSIM MSE

Det. 20.64 0.8250 15.81 21.16 0.9354 88.50
PRSR 18.04 0.7637 15.62 19.22 0.8793 94.45

MR-GAN 21.05 0.8512 15.19 21.54 0.9422 87.93
Ours 22.00 0.8642 14.97 22.00 0.9494 85.95

Table 4. Classification results of super-resolved images in MNIST and LP datasets.
“Best” is measured by the criteria that there is at least one correctly classified image
among 5 sampled images, and “Mean” is the average softmax values of 5 samples. Note
that, the classification accuracies for ground truth HR images are 98.04% and 99.24%
for MNIST and LP datasets, respectively.

MNIST LP
Best Mean Best Mean

Det. 84.74 84.74 93.14 93.14
PRSR 84.42 70.22 96.10 92.19

MR-GAN 92.73 84.44 95.53 91.87
Ours 92.79 85.58 96.33 93.01

samples less relevant to the HR ground truth. On the other hand, our method
shows even higher consistency score than the deterministic model.

We now perform the quantitative experiments on digit datasets. We sample
5 images for each low resolution image in digit datasets. In Table 3, our model
shows superior performance in traditional metrics in both datasets. Also, we
observe that the proposed model achieves higher classification accuracy com-
pared to baseline models as reported in Table 4. Those results support that the
deterministic model generates semantically or visually incorrect images in both
MNIST and LP datasets. On the other hand, MR-GAN generates diverse out-
puts that contain correctly classified images, but shows low scores in distortion
measures as shown in Table 3. PRSR records the lowest score except for classifi-
cation results in the LP dataset. Note that, a low score of “Mean” in the tables
do not degrade our method, because the proposed model can suggest the correct
outputs which indicated by the “Best” in Table 4.

One may argue that the “Best” accuracy in Table 4 can be unfair because
higher score can be achieved if the model produce just diverse digits regardless
of the input. For instance, if a model always produces 5 different digits, the
accuracy of “Best” must be largely improved. Therefore, we measure the number
of distinct classes within 5 predictions and report in Table. 5. In most cases, 5
sampled images belong to one or two classes. This validates that our model does
not just generate diverse images but produce semantically reasonable results.
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Table 5. Semantic consistency. The number of distinct classes within 5 generated
samples in digit datasets is measured to evaluate semantic consistency. Note that, the
class labels are predicted by a pre-trained digit classification model. In more than
90% of cases, the 5 samples produced by our method belong to less than 2 different
semantic classes. The scores of “Best” are measured by a criteria that there is at least
one correctly classified image among 5 sampled images.

The number of distinct classes among 5 samples
1 2 3 4 5

MNIST
Ratio 73.52% 20.18% 4.86% 0.83% 0.06%
Best 94.83 88.02 82.95 82.18 87.96

LP
Ratio 89.29% 9.67% 0.94% 0.08% 0.00%
Best 96.85 92.24 89.92 96.66 -

5 Conclusion

In this paper, we have highlighted the ill-posed nature of the single image super-
resolution (SR) problem where multiple high resolution (HR) images can have a
common matched low resolution (LR) image due to the difference in their repre-
sentation capabilities. Despite of the many-to-one nature of the problem, most
previous super-resolution techniques deterministically generate outputs. To es-
tablish the diversity of super-resolved images, we have modeled stochastic latent
distributions for both LR and HR domains and train our VarSR-Net to match
two distributions by adopting the KL divergence. The LR encoder learns to imi-
tate the latent distribution of the HR encoder while the HR encoder is trained to
extract the informative features of HR images. To produce diverse super-resolved
images, we sample multiple latent variables from the parametric distribution es-
timated by the LR encoder. We intensively evaluate our proposed VarSR-Net
against deterministic SR models, and the experimental results validate that our
method is capable to produce more accurate and perceptually plausible SR im-
ages from very low resolution images. To our knowledge, our VarSR-Net is the
first stochastic attempt to overcome the underdetermined characteristic of the
SR problem. We believe that our work will stimulate the researcher to pay more
attention to resolve the ill-posed nature of the SR problem.
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10. Grm, K., Scheirer, W.J., Štruc, V.: Face hallucination using cascaded super-
resolution and identity priors. IEEE Transactions on Image Processing 29(1),
2150–2165 (2019)

11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in neural information processing systems.
pp. 5767–5777 (2017)

12. Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-srnet: A wavelet-based cnn for multi-
scale face super resolution. In: Proceedings of the IEEE International Conference
on Computer Vision. pp. 1689–1697 (2017)

13. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer
and super-resolution. In: European conference on computer vision. pp. 694–711.
Springer (2016)

14. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very
deep convolutional networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1646–1654 (2016)

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks
for fast and accurate super-resolution. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 624–632 (2017)

17. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010),
http://yann.lecun.com/exdb/mnist/



16 S. Hyun and J.-P. Heo

18. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,
A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 4681–4690 (2017)

19. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-
image translation via disentangled representations. In: Proceedings of the Euro-
pean conference on computer vision (ECCV). pp. 35–51 (2018)

20. Lee, S., Ha, J., Kim, G.: Harmonizing maximum likelihood with gans for multi-
modal conditional generation. arXiv preprint arXiv:1902.09225 (2019)

21. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
Proceedings of International Conference on Computer Vision (ICCV) (December
2015)

22. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 (2014)

23. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:
Conditional image generation with pixelcnn decoders. In: Advances in neural in-
formation processing systems. pp. 4790–4798 (2016)

24. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

25. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: Enhancenet: Single image super-resolution
through automated texture synthesis. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 4491–4500 (2017)

26. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face
recognition and clustering. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 815–823 (2015)

27. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: Advances in neural information processing sys-
tems. pp. 3483–3491 (2015)
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Holistic recognition of low quality license plates by cnn using track an-
notated data. In: 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS). pp. 1–6. IEEE (Aug 2017).
https://doi.org/10.1109/AVSS.2017.8078501

29. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual net-
work. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 3147–3155 (2017)

30. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

31. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image
super-resolution by deep spatial feature transform. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 606–615 (2018)

32. Yu, X., Fernando, B., Ghanem, B., Porikli, F., Hartley, R.: Face super-resolution
guided by facial component heatmaps. In: Proceedings of the European Conference
on Computer Vision (ECCV). pp. 217–233 (2018)

33. Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution
face images with supplementary attributes. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 908–917 (2018)

34. Yu, X., Porikli, F.: Ultra-resolving face images by discriminative generative net-
works. In: European conference on computer vision. pp. 318–333. Springer (2016)



VarSR: Variational Super-Resolution for Very Low Resolution Images 17

35. Yu, X., Porikli, F.: Hallucinating very low-resolution unaligned and noisy face
images by transformative discriminative autoencoders. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 3760–3768 (2017)

36. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 586–595 (2018)

37. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: Ranksrgan: Generative adversarial net-
works with ranker for image super-resolution. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision. pp. 3096–3105 (2019)

38. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image
super-resolution. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2472–2481 (2018)

39. Zhu, J.Y., Zhang, R., Pathak, D., Darrell, T., Efros, A.A., Wang, O., Shechtman,
E.: Toward multimodal image-to-image translation. In: Advances in neural infor-
mation processing systems. pp. 465–476 (2017)

40. Zhu, S., Liu, S., Loy, C.C., Tang, X.: Deep cascaded bi-network for face hallucina-
tion. In: European conference on computer vision. pp. 614–630. Springer (2016)


