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1 Hyperparameter choices

In this section, we will detail the hyperparameter choices and validation protocols
that, for lack of space, we did not include in the main paper.
ZSL. For each dataset, we use the train, validation and test split provided by
[11]. In all the settings we employ features extracted from the second-last layer
of a ResNet-101 [6] pretrained on ImageNet as image representation, without
end-to-end training. For CuMix , we consider f as the identity function and as
g a simple fully connected layer, performing the mixing directly at the feature-
level while applying our alignment loss in the embedding space (i.e. LM-IMG and
LM-F coincide in this case and are applied only once.) All hyperparameters have
been set dataset-wise following [11], using the available validation sets. For all
the experiments, we use SGD as optimizer with an initial learning rate equal
to 0.1, momentum equal to 0.9, a weight-decay set to 0.001 for all settings but
AWA, where is set 0. The learning-rate is downscaled by a factor of ten after 2/3
of the total number of epochs and N = 30. In particular, for CUB and FLO we
train our model for 90 epochs, setting βmax = 0.8 and ηI = ηF = 10.0 for CUB,
and βmax = 0.4 and ηI = ηF = 4.0 for FLO. For AWA, we train our network for
30 epochs, with βmax = 0.2 and ηI = ηF = 1.0. For SUN, we train our network
for 60 epochs, with βmax = 0.8 and ηI = ηF = 10. In all settings, the batch-size
is set to 128.
DG. We use as base architecture a ResNet-18 [6] pretrained on ImageNet. For
our model, we consider f to be the ResNet-18, g to be the identity function
and ω will be a learned, fully-connected classifier. We use the same training
hyperparameters and protocol of [7], setting βmax = 0.6, ηI = 0.1, ηF = 3 and
N = 10.
ZSL+DG. For all the baselines and our method we employ as base architec-
ture a ResNet-50 [6] pretrained on ImageNet, using SGD with momentum as
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optimizer, with a learning rate of 0.001 for the ZSL classifier and 0.0001 for the
ResNet-50 backbone, a weight decay of 5 · 10−5 and momentum 0.9. We train
the models for 8 epochs (each epoch counted on the smallest source dataset),
with a batch-size containing 24 sample per domain. We decrease the learning
rates by a factor of 10 after 6 epochs. For our model, we consider the backbone
as f and a simple fully-connected layer as g. We set N = 2, ηI = 10−3 for all the
experiments, while βmax in {1, 2} and ηF in {0.5, 1, 2} depending on the scenario.

2 ZSL+DG: analysis of additional baselines

In Table 3 of the main paper, we showed the performance of our method in
the new ZSL+DG scenario on the DomainNet dataset [8], comparing it with
three baselines: SPNet [10], simple mixup [14] coupled with SPNet and SPNet
coupled with EpiFCR [7], an episodic-based method for DG. We reported the
results of these baselines to show 1) the performance of a state-of-the-art ZSL
method (SPNet), 2) the impact of mixup alone (mixup+SPNet) and 3) the re-
sults obtained by coupling state-of-the-art models for DG and for ZSL together
(EpiFCR+SPNet). We chose SPNet and EpiFCR as state-of-the-art references
for ZSL and DG respectively due to their high performances on their respective
scenarios, plus because they are very recent approaches.

In this section, we motivate our choices by showing that other baselines of
ZSL and DG achieve lower performances in this new scenario. In particular we
show the performances of two standard ZSL methods, ALE [1] and DEVISE [4]
and a standard DG/DA method, DANN [5]. We choose DANN since it is a strong
baseline for DG on residual architectures, as shown in [7]. As in the main paper,
we show the performances of the ZSL methods alone, ZSL methods coupled
with DANN, and with EpiFCR. For all methods, we keep the same training
hyperparameters, tuning only the method-specific ones. The results are reported
in Table 1. As the table shows, CuMix achieves superior performances even
compared to these new baselines. Moreover, these baselines achieve lower results
than the EpiFCR method coupled with SPNet, as expected. This motivates
our choices of the main paper. It is also worth highlighting how coupling ZSL
methods with DANN for DG achieves lower performances than the ZSL methods
alone in this scenario. This is in line with the results reported in [8], where
standard domain alignment-based methods are shown to be not effective in the
DomainNet dataset, leading also to negative transfer in some cases [8].

Finally, we want to underline that coupling EpiFCR with any of the ZSL
baselines, is not a straightforward approach, but requires to actually adapt this
method, re-structuring the losses. In particular, we substitute the classifier orig-
inally designed for EpiFCR with the classifier specific of the ZSL method we
apply on top of the backbone. Moreover, we additionally replace the classifica-
tion loss with the loss devised for the particular ZSL method. For instance, for
EpiFCR+SPNet, we use as classifier the semantic projection network, using the
cross-entropy loss in [10] as classification loss. Similarly, for EpiFCR+DEVISE
and EpiFCR+ALE, we use as classifier a bi-linear compatibility function [11]
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Table 1. ZSL+DG scenario on the DomainNet dataset with ResNet-50 as backbone.

Method Target Domain
DG ZSL clipart infograph painting quickdraw sketch avg.

-
DEVISE [4] 20.1 11.7 17.6 6.1 16.7 14.4

ALE [1] 22.7 12.7 20.2 6.8 18.5 16.2
SPNet [10] 26.0 16.9 23.8 8.2 21.8 19.4

DANN [5]
DEVISE [4] 20.5 10.4 16.4 7.1 15.1 13.9

ALE [1] 21.2 12.5 19.7 7.4 17.9 15.7
SPNet [10] 25.9 15.8 24.1 8.4 21.3 19.1

EpiFCR [7]
DEVISE [4] 21.6 13.9 19.3 7.3 17.2 15.9

ALE [1] 23.2 14.1 21.4 7.8 20.9 17.5
SPNet [10] 26.4 16.7 24.6 9.2 23.2 20.0

CuMix 27.6 17.8 25.5 9.9 22.6 20.7

Table 2. Results on DomainNet dataset with Real-Painting as sources and ResNet-50
as backbone.

Method/Target Clipart Infograph Sketch Quickdraw Avg.

SPNet 21.5±0.6 14.1±0.2 17.3±0.3 4.8±0.4 14.4
Epi-FCR+SPNet 22.5±0.5 14.9±0.7 18.7±0.6 5.6±0.4 15.4

MixUp img only 21.2±0.4 14.0±0.7 17.3±0.3 4.8±0.1 14.3
MixUp two-level 22.7±0.3 16.5±0.4 19.1±0.4 4.9±0.3 15.8
CuMix reverse 22.9±0.3 15.8±0.2 18.2±0.3 4.8±0.5 15.4

CuMix 23.7±0.3 17.1±0.2 19.7±0.3 5.5±0.3 16.5

coupled with a pairwise ranking objective [4] and with a weighted pairwise rank-
ing objective [1] respectively.

3 ZSL+DG: ablation study

In order to further investigate our design choices on the ZSL+DG setting, we
conducted experiments on a challenging scenario where we consider just two do-
mains as sources, i.e. Real and Painting. The results are shown in Table 3. On
average our model improves SPNet by 2% and SPNet + Epi-FCR by 1.1%. Our
approach without curriculum largely outperforms standard image-level mixup
[14] (more than 2%). Applying mixup at both feature and image level but with-
out curriculum is effective but achieves still lower results with respect to our
CuMix strategy (as in Tab. 2). Interestingly, if we apply the curriculum strat-
egy but switching the order of semantic and domain mixing (CuMix reverse),
this achieves lower performances with respect to CuMix, which considers do-
main mixing harder than semantic ones. This shows that, in this setting, it
is important to correctly tackle intra-domain semantic mixing before including
inter-domain ones.
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Table 3. ZSL results.

Method CUB SUN AWA1 FLO

ALE [1] 54.9 58.1 59.9 48.5
SJE [2] 53.9 53.7 65.6 53.4
SYNC [3] 56.3 55.6 54.0 -
GFZSL [9] 49.3 60.6 68.3 -
SPNet [10] 56.5 60.7 66.2 -

Baseline 52.4 58.2 62.5 58.4
CuMix 60.4 62.4 64.0 59.7

4 ZSL results

In this section, we report the ZSL results in tabular form. The results are shown
in Table 3. With respect to Figure 3 of the main paper, in the table, we also report
the results of a baseline which uses just the cross-entropy loss term (similarly
to [10]), without the mixing term employed in our CuMix method. As the table
shows, our baseline is weak, performing below most of the ZSL methods in all
scenarios but FLO. However, adding our mixing strategy allows to boost the
performances in all scenarios, achieving state-of-the-art performances in most of
them. We also want to highlight that in Table 3, as in the main paper, we do not
report the results of methods based on generating features of unseen classes for
ZSL [12, 13]. This choice is linked to the fact that these methods can be used as
data augmentation strategies to improve the performances of any ZSL method,
as shown in [12]. While using them can improve the results of all the baselines
as well as CuMix , this falls out of the scope of this work.
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