
From Image to Stability:
Learning Dynamics from Human Pose

Jesse Scott∗1, Bharadwaj Ravichandran∗1, Christopher Funk2,
Robert T. Collins1, Yanxi Liu1

1School of EECS, Pennsylvania State University
2Kitware, Inc.

(jus121,bzr49)@psu.edu, christopher.funk@kitware.com,
(rcollins, yanxi)@cse.psu.edu

Abstract. We propose and validate two end-to-end deep learning archi-
tectures to learn foot pressure distribution maps (dynamics) from 2D or
3D human pose (kinematics). The networks are trained using 1.36 mil-
lion synchronized pose+pressure data pairs from 10 subjects performing
multiple takes of a 5-minute long choreographed Taiji sequence. Using
leave-one-subject-out cross validation, we demonstrate reliable and re-
peatable foot pressure prediction, setting the first baseline for solving a
non-obvious pose to pressure cross-modality mapping problem in com-
puter vision. Furthermore, we compute and quantitatively validate Cen-
ter of Pressure (CoP) and Base of Support (BoS), two key components
for stability analysis, from the predicted foot pressure distributions.

Keywords: Stability; Center of Pressure; Base of Support; Foot Pres-
sure Estimation; 3D Human Pose, Deep Regression Models

1 Introduction

Current computer vision research on human pose focuses on extracting skeletal
kinematics from images or video [9, 12, 15, 16, 20, 24, 47, 68]. A more effective
analysis of human movement should take into account the dynamics of the human
body [59]. Understanding body dynamics such as foot pressure is essential to
study the effects of perturbations caused by external forces and torques on the
human postural system, which change body equilibrium in static posture and
during locomotion [73]. Computing stability from visual data could unlock a
wide range of applications in the fields of healthcare, kinesiology, and robotics.

For understanding the relation between a body pose and the corresponding
foot pressure of a human subject (Figure 1), we explore two deep convolutional
residual architectures, PressNet and PressNet-Simple (Figure 5), and train them
on a dataset containing 1,363,400 data pairs of body pose with corresponding
foot pressure measurements. Body pose is input to a network as either 2D or
3D human joint locations extracted from the Openpose [12] Body25 model (3D

∗Co-First Authors

mailto:jus121@psu.edu
mailto:jus121@psu.edu


2 J. Scott et al.

KNN

PressNet

PressNet-Simple

PressNet 3D

PressNet-Simple 3D

PressNet 3D-Bio

PressNet-Simple 3D-Bio

Video 2D Joints
Stereo 

Reconstruction
Biomechanical 

Joint corrections

Machine and 
Deep Learning 

Models
Foot Pressure

2D Video Joints

3D Video Joints

3D BioPose Joints

Stability 
Analysis

1 2 3 4 5 6 7
Fig. 1: Our PressNet and PressNet-Simple networks learn to predict a foot pressure
heatmap from 2D or 3D human body joints. We also compute Center of Pressure
(CoP) and Base of Support (BoS), two key components for stability estimation, from
predicted foot pressure distributions (rightmost).

(A) Two Views

Demographics Dataset Pressure (kPa)

Subject Mass (kg) Height (m) Years Gender # Data Pairs Mean Std

1 52.20 1.60 9 Female 158,875 6.44 19.31
2 66.67 1.72 10 Male 123,825 6.18 32.39
3 63.50 1.60 6 Female 101,950 6.67 28.34
4 77.11 1.70 9 Male 146,700 9.46 33.46
5 60.00 1.56 5 Female 123,915 10.54 34.90
6 55.00 1.54 32 Female 157,785 9.25 35.36
7 68.00 1.69 40 Male 153,130 8.37 25.00
8 70.00 1.80 4 Male 124,805 5.26 26.64
9 60.00 1.63 10 Female 126,845 5.86 22.81

10 64.50 1.73 4 Male 145,570 6.44 23.99

Mean 63.70 1.66 13 5M,5F 136,340 7.45 28.22
Std 6.95 0.08 12 17,774 1.71 5.29

(B) Subject Demographics (C) Joints

Fig. 2: (A) Top-down view of the motion capture space highlighting the region of per-
formance relative to the two video cameras. (B) Dataset statistics. A total of 1,363,400
frames of data have been collected, providing (C) 25 body joints from each video frame,
time-synchronized with foot pressure map data.

joints are derived by 2-view stereo triangulation of 2D joints). Each network
predicts a foot pressure heatmap as output, providing an estimated distribution
of pressure applied at different foot locations (Figure 1, stage 6).

The main contributions of this work include 1) Novelty: Our PressNet and
PressNet-Simple networks are the first vision-based networks to regress foot
pressure (dynamics) from 3D or 2D body pose (kinematics). Furthermore, we
introduce a 3D Pose Estimation Network (BioPose) that enhances body joint po-
sitions biomechanically. 2) Dataset: We have collected the largest synchronized
Video, motion capture (MoCap), and foot pressure dataset of a 5-minute long,
complex human movement sequence (Figure 2). 3) Application: For validation,
Center of Pressure (CoP) and Base of Support (BoS), two key components in
the analysis of stability, are bench-marked for potential future applications.



From Image to Stability: Learning Dynamics from Human Pose 3

2 Related Work

Seethapathi et al. [59] reviewed the limitations of video-based measurement
of human motion for use in movement science, and indicated that more accu-
rate kinematics and estimation of dynamics information, such as contact forces,
should be a key research goal in order to use computer vision as a tool in biome-
chanics. In this paper, we use body kinematics to predict foot pressure dynamics
and to develop a quantitative method to analyze human stability from video.
Earlier work in computer vision and graphics has incorporated dynamics equa-
tions into models of human motion and person tracking, and has even estimated
contact forces from video and kinematics [7, 8, 39, 42, 71], but their estimates of
contact dynamics tend to be simple force vectors rather than full foot pressure
maps, as in our work.

Studying human stability during standing and locomotion [3, 19, 38] is typi-
cally addressed by direct measurement of foot pressure using force plates or insole
foot pressure sensors. Previous studies have shown that foot pressure patterns
can be used to discriminate between walking subjects [50, 70]. Instability of the
CoP of a standing person is an indication of postural sway and thus a measure of
a person’s ability to maintain balance [27, 28, 37, 49]. Grimm et al. [23] predicts
the pose of a patient using foot pressure mats. The authors of [45] and [55] eval-
uate foot pressure patterns of 1,000 subjects ages 3 to 101 and determine there
is a significant difference in the contact area by gender but not in magnitude of
foot pressure for adults. As a result, the force applied by females is lower but
is accounted for by female mass also being significantly lower. In [11], a depth
regularization model is trained to estimate dynamics of hand movement from
2D joints obtained from RGB video cameras. Stability analysis of 3D printed
models is presented in [4, 53, 54]. Although these are some insightful ways to
analyze stability, there has been no vision-based or deep learning approach to
tackle this problem.

Estimation of 2D body pose in images is a well-studied problem in computer
vision, with state-of-the-art methods being based on deep networks [9,12,15,16,
20, 22, 24, 30, 47, 66, 68]. We adopt one of the more popular approaches, CMU’s
OpenPose [12], to compute the 2D pose input to our networks. Success in 2D
human pose estimation also has encouraged researchers to detect 3D skeletons
by extending existing 2D human pose detectors [6, 14, 44, 46, 48, 62, 75] or by
directly using image features [1, 51, 57, 64, 74]. Martinez et al. [44] showed that
given high-quality 2D joint information, the process of lifting 2D pose to 3D pose
can be done efficiently using a relatively simple deep feed-forward network. All

Table 1: Comparison of our dataset with other available human pose datasets.
Name # Data samples # Subjects Scenario MoCap joints Image joints Foot pressure Humans per image

Human3.6M [32,33] 3,600,000 11 Indoor X X - Single
HumanEva [61] 80,000 4 Indoor X X - Single

MPII Human Pose [2] 25,000 N/A Indoor/Outdoor - X - Single/Multiple
MS-COCO [40] 200,000 N/A Indoor/Outdoor - X - Multiple
PoseTrack [34] 66,000 N/A Indoor/Outdoor - X - Multiple

Taiji Stability (Ours) 1,363,400 10 Indoor X X X Single
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these papers concentrate on pose estimation by learning to infer joint angles or
joint locations, which can be broadly classified as learning basic kinematics of a
body skeleton. These methods do not predict external torques/forces exerted by
the environment, balance, or physical interaction of the body within the scene.

Table 1 shows a summary of available pose datasets. Human3.6M dataset
[32,33] is one of the top public datasets that is used for pose estimation tasks. It
has 3.6 million frames of synchronized 3D MoCap-based human pose and video
data. This data was collected from 6 male and 5 female subjects for 17 differ-
ent scenarios. HumanEva [61] is a similar dataset with MoCap and video data,
but it is smaller in size than the Human3.6M dataset. Another dataset that is
widely popular is the MPII Human Pose dataset [2]. This dataset consists of
25,000 images containing over 40,000 individuals with Ground Truth (GT) hu-
man body joints, covering over 410 human activities. The Posetrack [34] dataset
consists of about 1,400 video sequences with over 66,000 annotated video frames
and 276,000 body pose annotations. The MS-COCO [40] dataset has more than
200,000 images and 250,000 individuals with labeled keypoints of human pose.

A major motivation for computing foot pressure maps from pose is to esti-
mate body stability from video in the wild, accurately and economically, rather
than in a biomechanics lab. Fundamental elements used in stability analysis
(Figure 3C) include Center of Mass (CoM), Base of Support (BoS), and Cen-
ter of Pressure (CoP). The relative locations of CoP, BoS, and CoM have been
identified as a determinant of stability in a variety of tasks [27,28,49].

3 Our Approach and Motivation

Mapping from human pose to foot pressure (Figure 1) is an ill-posed problem. On
the one hand, similar poses of different subjects can yield different foot pressure
maps (Figure 3B) due to differences in movement, mass, height, gender, and
foot shape. On the other hand, PCA analysis (Figure 3A) suggests the top
principal components capture statistically similar “modes” of variation across
subjects. Thus, we formulate our problem as learning foot pressure distribution
conditioned on human pose rather than trying to directly regress precise foot
pressure magnitude. For simplicity, we assume the conditional distribution of
pressure given pose is Gaussian, with a mean that can be learned through deep
learning regression using MSE and KL Divergence loss. Our networks are trained
to map from pose, encoded as 25 joint locations (2D or 3D), to the mean of a
corresponding foot pressure map intensity distribution (Figure 5).

3.1 Data Collection and Pre-Processing

We have collected a tri-modal dataset containing synchronized video, motion
capture, and foot pressure data (Figure 2) of 24-form simplified Taiji Quan
(Taiji or Tai Chi) [72]. Justifications for this choice include 1) that Taiji is a low-
cost, low-impact, slow, and hands-free movement sequence, aiming at enhanced
balance; meanwhile, it contains ordinary body poses and movements such as
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(A) Mean Pressure Comparison

(B) Same Pose

(C) Key Stability Terms

Fig. 3: (A) Left: Pairwise absolute differences between mean foot pressure across all
subjects with inter-subject comparison of differences in pressure magnitude and spatial
distribution. Mean pressure is provided on the diagonal (yellow boxes). Right: Top-5
Principal Components of foot pressure data per subject. (B) Same “starting pose”
yields different foot pressure for different subjects. (C) Basic concepts in stability
analysis, including Center of Pressure, Center of Mass, and Base of Support.

1 2 3 4 5 6 7 8 9

Fig. 4: Example Taiji poses similar to ordinary movements: 1 - standing with hand
behind, 2 - standing with two arms down, 3 - step to left, 4 - bump (arm) to left, 5 -
bump (arm) to right, 6 - push to left, 7 - push to right, 8 - left kick, and 9 - right kick.

stand, turn, pull, push, bump, and kick (Figure 4) [72]; 2) Simplified 24-form
Taiji is practiced worldwide by people of every gender, race and ages; 3) the Taiji
routine (5 min) is significantly longer than existing publicly available motion
capture (MoCap) sequences in the computer vision community (Section 2).
Pose Extraction: Synchronized video is collected at 50 fps from two Vicon Vue
cameras. Locations for 2D body joints are first estimated in each video frame
using the OpenPose Body25 model, which uses non-parametric representations
called Part Affinity Fields to regress joint positions and body segment connec-
tions between the joints [12]. The output from OpenPose has X, Y pixel coordi-
nates and confidence of prediction for each of the 25 modeled joints. To generate
3D joint locations, a confidence-weighted stereo triangulation is performed on
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Table 2: (A) Subject-wise and (B) Joint-wise L2 distance error of 3D pose data.
The mean, std, min, median, and max are provided (in mm) for both OpenPose
and BioPose joint locations as compared to motion capture joint data. Difference
shows percentage improvement of BioPose over OpenPose.

Subject-wise L2 error relative to Motion Capture

Sub OpenPose(mm) BioPose(mm) Difference(%)

# mean std med mean std med mean std med

1 52.6 54.1 43.3 33.7 27.5 28.4 35.9 49.2 34.4
2 54.3 62.5 42.3 35.9 33.7 29.5 33.9 46.2 30.3
3 54.2 49.9 43.5 34.4 27.4 29.5 36.5 45.0 32.2
4 57.6 55.1 46.4 33.8 22.9 30.0 41.4 58.5 35.3
5 54.7 78.6 42.3 37.9 68.4 28.4 30.8 13.0 33.0
6 51.9 47.4 43.0 33.0 24.5 28.5 36.5 48.3 33.8
7 53.4 46.7 45.3 30.8 21.8 26.4 42.2 53.4 41.8
8 51.3 46.7 43.2 30.4 21.2 26.3 40.7 54.6 39.2
9 55.5 51.6 45.8 31.4 30.5 25.5 43.3 41.0 44.3

10 50.9 51.4 42.2 31.0 24.8 26.0 39.1 51.7 38.5

Mean 53.6 54.4 43.7 33.2 30.3 27.8 38.0 44.4 36.3
Std 2.1 9.8 1.5 2.4 14.0 1.7 4.0 12.7 4.5

(A) Subject-wise

Joint-wise L2 error relative to Motion Capture

Joint OpenPose(mm) BioPose(mm) Difference(%)

Location mean std med mean std med mean std med

Rshoulder 34.7 18.7 33.0 26.4 16.6 24.7 24.0 11.3 25.3
Relbow 52.0 49.7 41.1 34.1 28.3 27.8 34.5 43.0 32.2
Rwrist 67.9 85.8 44.9 42.2 40.5 31.9 37.8 52.8 29.1

Lshoulder 40.9 21.6 39.3 28.2 17.0 26.4 31.2 21.2 32.7
Lelbow 65.5 60.5 46.7 37.9 29.9 31.0 42.1 50.5 33.5
Lwrist 87.9 100.5 51.1 49.5 43.8 36.7 43.7 56.4 28.3

Rhip 55.3 22.7 53.3 34.9 18.5 33.9 36.9 18.5 36.3
Rknee 51.3 34.5 48.9 28.2 24.3 25.0 45.2 29.6 48.8

Rankle 49.7 47.8 44.2 26.9 31.5 22.3 46.0 34.0 49.6
Lhip 59.9 24.9 59.3 32.0 18.0 30.8 46.5 27.5 48.1

Lknee 39.7 28.6 37.1 32.4 25.6 29.7 18.3 10.6 20.0
Lankle 42.1 41.2 37.6 27.8 32.6 23.2 33.9 21.0 38.2

Mean 53.6 54.4 43.7 33.2 30.3 27.8 38.0 44.4 36.3

(B) Joint-wise

2D Openpose joints across the two synchronized and calibrated camera views.
Finally, the 3D joints are corrected spatially using a deep regression network,
named BioPose, trained separately to predict offsets between triangulated Open-
Pose joints and biomechanical joints computed from motion capture data using
the Vicon Plug-in-Gait module (Tables 2A and 2B). Pose detectors and BioPose
corrections were tested and evaluated in detail by [56]; showing that OpenPose
is more biomechanically accurate than HRNet [63] and Biopose correction of
OpenPose creates the most biomechanical accuracy joint locations.

Foot Pressure: Foot pressure is collected at 100 fps using a Tekscan F-Scan
insole pressure measurement system. Each subject wears a pair of canvas shoes
with cut-to-fit capacitive pressure measurement insoles. Maximum recorded pres-
sure values are clipped at an upper bound of 862 kPa based on the technical
limits of the pressure measurement sensors. The foot pressure heatmaps are 2-
channel images of size 60 × 21 (Figure 1) and have been evaluated as accurate
measurement sensors by [29].

Dataset Statistics: Figure 2B presents demographic information of the 10
subjects. Each subject performs two to three sessions of 24-form Taiji at an
average of four repeated performances per session. The dataset contains a total
of 1,363,400 frames of synchronized video body pose and foot pressure maps.
This new dataset captures significant statistical variations: 1) Diversity in the
subjects in terms of gender, age, mass, height, and years of experience in Taiji
practice for amateurs and professionals. 2) Kernel density plots (on project page)
of the distributions of body joint locations show the subject performances are
statistically similar to one another spatially. 3) PCA analysis (Figure 3) of foot
pressure highlights that each subject has a unique pressure distribution relative
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Fig. 5: Our foot pressure regression architectures have a 96-coordinate input represent-
ing 24 3D joint locations and confidences (24 × 4 = 96) and a 2520-prexel output
representing 60 × 21 pressure maps for both feet (60 × 21 × 2 = 2520). (A) A resid-
ual block, one of the building blocks of PressNet network, upsamples the data and
computes features. (B) Final set of layers of PressNet include a fully connected layer
and a concurrent branch to preserve spatial consistency. (C) The PressNet-Simple net-
work architecture is defined by two hyperparameters: the depth (# of layers, N) of the
network and the width (# of fully connected nodes, W) of those layers.

to other subjects, but the top principal components encode similar modes of
variation (e.g., variability in left/right foot pressure, toe/heel pressure, etc.).
Preprocessing: Body joints are centered by subtracting off the hip center joint
location (making it the origin) to remove camera-specific offsets during video
recording. Other joint locations are normalized per body joint by subtracting
each dimension (2D or 3D) by the mean and dividing by its standard deviation,
leading to a zero-mean, unit-variance distribution.

Foot pressure data is recorded in kilopascals (kPa) at discretized sensor lo-
cations (prexels) on the shoe insoles. Prexel values are clipped between 0 to 862
kPa based on pressure sensor technology limitations. The clipped data is further
normalized by dividing each prexel by its max intensity value over the entire
training set. The left and right normalized foot pressure maps are concatenated
as two channels to form a ground truth heatmap of size (60×21×2), with prexel
intensities in the range [0, 1].

3.2 PressNet Network

The design of our PressNet network (Figures 5A and 5B) is initially motivated
by the residual generator of the Improved Wasserstein GAN [25]. We use a
generator-inspired architecture because our input is 1D body joints and the
output is a 2D foot pressure heatmap. This design aids in capturing information
at different resolutions, acting like a decoder network for feature extraction.
The primary aim of this network is to extract features without loss of spatial
information across different scales.

PressNet is a feed forward Convolutional Neural Network with an input layer
that is a flattened vector of joint coordinates of size 96×1 (24 joints × 4, consist-
ing of x,y,z coordinates and joint detection confidences). The input is processed
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through a fully connected layer with an output dimension of 6144 × 1. This
output is reshaped into an image of size 4 × 3 with 512 channels. The network
contains four residual convolution blocks that perform nearest neighbor upsam-
pling. Each residual block of PressNet (Figure 5A) has three parallel convolution
layers with kernel sizes 5 × 5, 3 × 3 and 1 × 1. The number of channels of each
residual block is progressively halved as the resolution doubles, starting at 512
channels and decreasing to 64. The output of the final residual block is split and
sent to a convolutional branch and a fully connected branch (Figure 5B). The
convolutional branch serves to preserve spatial coherence while the fully con-
nected branch has a field of view over the entire prediction. PressNet contains
separable convolutions [17], batch normalization (BN) [31], spatial dropouts [67]
and leaky ReLU [43] layers.

3.3 PressNet-Simple Network

The “simple yet effective” network of [44] was originally designed to jointly esti-
mate the unobserved third dimension of a set of 2D body joint coordinates (pose)
on a per frame basis. We use it as a basis for our PressNet-Simple architecture
(Figure 5C) by adapting the network architecture to use a modified pose input
format and by completely reconfiguring the output format to produce pressure
map data of each foot. The input pose coordinates are passed through a fully
connected layer then through a sequence of N repeated layers. Each of the N
layers has two iterations of the sequence: fully connected, batch normalization,
ReLU, and 50% dropout layers. The result of each of the N layer sequences is
then added to the results from the previous layer sequence (N-1) and finally
passed through a 2520 fully connected layer to produce the output foot pres-
sure. The PressNet-Simple architecture is configured via two hyper-parameters:
the depth (# of layers, N) of the network and the width (# of fully connected
nodes, W) of those layers. For this study, through empirical testing, it was deter-
mined that the optimal hyper-parameters are N=4 and W=2560. Because of the
sequential nature of this network with fully connected layers, this network archi-
tecture does not maintain the spatial coherence that PressNet has established
with upsampling and convolutional layers.

3.4 Training Details

We use a Leave-One-Subject-Out (LOSO) cross-validation to determine how the
network generalizes to an unseen individual. Furthermore, the training data is
split sequentially in a 9:1 ratio where the smaller split is used as validation data.

PressNet is trained for 35 epochs with a piecewise learning rate starting at
10−4 and a batch size of 32 and takes 7.5 hours to train each LOSO data split on
a NVIDIA Tesla P100 GPU. A binary footmask (produced by the foot pressure
capturing system) is element-wise multiplied with the predictions of the network.
This enables the network to not have to learn the approximate shape of the foot
in the course of training, only the pressure distribution. The learning rate is
reduced by 50% after every 13 epochs to ensure a decrease in validation loss
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Table 3: Analysis for each network architecture by subject using error metrics:
Mean Absolute Error (MAE), Similarity (SIM), KL Divergence (KLD), and
Information Gain (IG). Results from inference on input poses with 25 valid joints
are included in the evaluation. Best values are shown in bold. Arrow indicates
direction of better value. Networks Evaluated are KNN 2D with K=5 (K5),
PressNet-Simple 2D (PNS2), PressNet-Simple 3D (PNS3), PressNet-Simple 3D
using BioPose(PNS3B), and PressNet 3D using BioPose and KL loss (PN3BK).

Mean Error of Estimated Foot Pressure relative to Measured Ground Truth

Sub # Mean Absolute Error (MAE) ↓ Similarity (SIM) ↑ KL Divergence (KLD) ↓ Information Gain (IG) ↑
1 9.56 7.55 7.21 7.06 N/A 0.30 0.44 0.49 0.50 0.48 17.02 2.79 2.04 2.65 1.16 -4.35 -0.74 -0.50 -0.77 -0.27
2 9.98 9.44 10.10 9.90 N/A 0.22 0.23 0.25 0.28 0.27 14.34 5.21 4.39 3.50 1.98 -1.23 -0.41 -0.34 -0.27 -0.14
3 9.73 8.82 7.77 7.87 N/A 0.31 0.39 0.44 0.44 0.43 14.80 2.95 1.61 2.02 0.43 -2.76 -0.54 -0.29 -0.39 -0.18
4 10.91 9.38 9.12 10.07 N/A 0.32 0.45 0.48 0.42 0.43 14.42 1.88 1.59 3.53 0.43 -3.70 -0.52 -0.42 -0.92 -0.23
5 11.21 10.14 9.28 9.22 N/A 0.40 0.47 0.55 0.53 0.50 12.19 1.94 1.51 1.96 0.50 -2.65 -0.44 -0.36 -0.46 -0.21
6 11.06 9.98 10.04 9.13 N/A 0.38 0.45 0.45 0.51 0.44 10.48 1.54 1.07 1.60 0.44 -1.56 -0.22 -0.14 -0.25 -0.12
7 11.08 10.18 8.97 9.14 N/A 0.26 0.34 0.42 0.42 0.39 18.49 4.44 2.70 3.19 1.87 -4.39 -0.98 -0.65 -0.74 -0.37
8 8.94 8.31 7.32 7.75 N/A 0.30 0.33 0.34 0.38 0.38 13.32 3.32 3.02 2.48 1.62 -1.51 -0.34 -0.32 -0.29 -0.17
9 9.26 8.24 7.43 7.63 N/A 0.32 0.37 0.47 0.45 0.43 13.09 2.82 1.45 2.04 1.14 -2.16 -0.46 -0.25 -0.35 -0.16

10 8.82 7.44 7.53 7.26 N/A 0.33 0.44 0.42 0.41 0.41 15.30 3.18 3.14 3.81 1.50 -2.84 -0.60 -0.65 -0.73 -0.24

Mean 10.06 8.95 8.48 8.50 N/A 0.31 0.39 0.43 0.43 0.42 14.35 3.01 2.25 2.68 1.11 -2.71 -0.53 -0.39 -0.52 -0.21
Std 0.89 0.98 1.09 1.05 N/A 0.05 0.07 0.08 0.07 0.06 2.18 1.08 0.98 0.74 0.59 1.09 0.20 0.16 0.24 0.07

Model K5 PNS2 PNS3 PNS3B PN3BK K5 PNS2 PNS3 PNS3B PN3BK K5 PNS2 PNS3 PNS3B PN3BK K5 PNS2 PNS3 PNS3B PN3BK

with training. KL Divergence (KL) is used as the loss function along with Adam
Optimizer for supervision, as we are learning the distribution of prexels [5].

PressNet-Simple is trained with an initial learning rate of 10−4 for 40 epochs
at a batch size of 128. PressNet-Simple takes 3 to 3.5 hours to train each LOSO
data split on an NVIDIA TitanX GPU with 12GB of memory. The learning
rate is reduced by 75% every 7 epochs, and MSE loss is used with the Adam
Optimizer.

4 Evaluation and Visualization of Results

4.1 Quantitative Evaluation

KNN Baseline: KNN provides a convenient data-driven (memory-based, non-
linear) way to directly map between two different modalities; in this case, pose
to pressure. As the number of data samples becomes large, even simple NN
(aka 1-NN) retrieval can perform surprisingly well, both theoretically [18] and
empirically [65], due to the “Unreasonable Effectiveness of Data” [52]. The main
drawback of KNN is the high cost of computing distances between a pose query
and all samples in a large dataset; thus, we use it only as a baseline in our work.

The distance metric for KNN is the sum of Euclidean distances between corre-
sponding normalized body joint locations. The foot pressure maps corresponding
to these nearest neighbors are combined as a weighted average to generate the
output pressure map prediction, using inverse distance weighting [60]. Empirical
tests with K ranging from 1 to 50 showed that error reduces as K increases with
diminishing improvements. Results from KNN-based pressure estimation, where
K=5 and K=50, are included in Figure 7 for comparison with the deep learning
based methods.
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Table 4: Cross-view validation using PNS trained on camera View 1 to predict
pressure maps from View 2 (Figure 2A). The reported metrics are Mean Absolute
Error (MAE), Similarity (SIM), KL Divergence (KLD), and Information Gain
(IG). Only outputs generated from input poses with 25 valid joints are included
in the evaluation. Best values are shown in bold. Best is defined as closer to 1
for SIM and closer to 0 for MAE, KLD, and IG. Arrow indicates direction of
better value.

Foot Pressure Error Metrics for Viewpoint Comparison (Mean / Std)

Sub MAE ↓ SIM ↑ KLD ↓ IG ↑
# View 1 View 2 View 1 View 2 View 1 View 2 View 1 View 2

1 7.55 / 1.54 9.15 / 1.94 0.44 / 0.10 0.36 / 0.12 2.79 / 1.99 4.27 / 3.23 -0.74 / 0.50 -1.00 / 0.74
2 9.44 / 2.93 9.94 / 2.76 0.23 / 0.15 0.25 / 0.16 5.21 / 5.38 4.65 / 5.72 -0.41 / 0.41 -0.36 / 0.41
3 8.82 / 2.37 8.82 / 2.51 0.39 / 0.13 0.41 / 0.12 2.95 / 2.70 2.54 / 1.89 -0.54 / 0.47 -0.51 / 0.46
4 9.38 / 2.42 9.76 / 2.55 0.45 / 0.11 0.45 / 0.12 1.88 / 1.39 2.16 / 1.53 -0.52 / 0.45 -0.57 / 0.51
5 10.14 / 2.53 10.15 / 2.61 0.47 / 0.13 0.49 / 0.13 1.94 / 1.52 1.77 / 1.52 -0.44 / 0.37 -0.39 / 0.35
6 9.98 / 2.35 10.67 / 2.45 0.45 / 0.12 0.44 / 0.12 1.54 / 1.35 1.41 / 1.44 -0.22 / 0.23 -0.18 / 0.20
7 10.18 / 2.23 10.08 / 2.16 0.34 / 0.09 0.36 / 0.11 4.44 / 2.61 3.65 / 2.22 -0.98 / 0.63 -0.81 / 0.47
8 8.31 / 3.58 8.30 / 3.55 0.33 / 0.13 0.36 / 0.14 3.32 / 2.63 2.62 / 2.36 -0.34 / 0.27 -0.29 / 0.24
9 8.24 / 2.88 7.77 / 2.41 0.37 / 0.13 0.40 / 0.13 2.82 / 2.58 2.28 / 2.00 -0.46 / 0.40 -0.37 / 0.34

10 7.44 / 2.51 7.68 / 2.53 0.44 / 0.14 0.46 / 0.14 3.18 / 3.22 2.62 / 2.23 -0.60 / 0.48 -0.52 / 0.44

Mean 8.95 / 2.53 9.23 / 2.55 0.39 / 0.12 0.40 / 0.13 3.01 / 2.54 2.80 / 2.41 -0.53 / 0.42 -0.50 / 0.42
Std 0.98 / 0.50 1.00 / 0.40 0.07 / 0.02 0.07 / 0.01 1.08 / 1.12 1.01 / 1.21 0.20 / 0.11 0.23 / 0.14

Evaluation Measures: We use six quantitative measures to evaluate the per-
formance of the trained networks and KNN baseline:
1. Mean Absolute Error (MAE in kPa) between estimated foot pressure maps

and measured ground truth pressure.
2. Three metrics for spatial distribution of the learned foot pressure map: Sim-

ilarity, KL Divergence, and Information Gain [10].
3. Two measures on accuracy for estimated Center of Pressure (CoP) and Base

of Support (BoS), which are directly related to the computation of stability
(Figure 3C). We use `2 distance (in mm)/IoU (in %) between the estimated
CoP from learned foot pressure maps and the CoP calculated directly from
ground truth foot pressure to quantify CoP and BoS quality, respectively.

Evaluation of Predicted Pressure Maps: Table 3 shows our evaluation
results using the first four metrics above on the KNN baseline and variations of
PNS and PN. For each pressure prediction method, only frames that have 25
detected joints are included in the analysis to minimize confounding factors on
the method’s effectiveness. KL Divergence and Information Gain both show the
advantages of networks on learning statistical distributions of the input data. The
key takeaway is that both networks excel at predicting the spatial distribution
of ground truth pressure more so than the overall magnitude.

Cross-view Validation. Our networks using 2D joint data were trained on
View 1 (Figure 2A) of the two video cameras. Table 4 presents results of running
a 2D network to predict foot pressure on images from the other camera, View
2. Results are similar to those in Table 3, indicating that both networks are
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Fig. 6: 2D offsets between ground truth CoP (black cross) and CoP predicted by PNS2
(blue), PNS3 (red), and PNS3B (green). Large dots plot the mean of each scatter plot
distribution; that they appear close to the Ground Truth (GT) indicates relatively
symmetrical distributions of spatial error around the GT CoP. The concentric circles
represent mean (solid) and median (dashed) offset distances as an error radius, and
they indicate PNS3 and PNS3B CoP estimates cluster more tightly about the GT than
PNS2.

(A) CoP (B) BoS

Fig. 7: (A) Comparison of CoP offset distance errors across methods and subjects,
characterized by robust estimation Median/rStd (robust STD). (B) Comparison of
BoS using Intersection over Union (IoU) relative to ground truth over a range of pres-
sure thresholds (Note: PN3BK has a normalized threshold scaled relative to kPa and
therefore a shorter line). All results differ statistically significantly from one another.
See more details in text.

robust to viewpoint and subject position/orientation relative to the camera view.
PressNet-Simple appears less affected by viewpoint than PressNet, based on
Similarity, KL Divergence, and Information Gain measures.

Distance to CoP: As a step towards estimating stability from pose, Center of
Pressure (CoP) is computed from predicted foot pressure maps and compared to
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ground truth CoP locations computed from insole foot pressure readings. CoP
is calculated as the weighted mean of the pressure elements (prexels) in the XY
ground plane. A systematic threshold starting from 0 kPa is applied to both the
ground truth and the predicted pressure, similar to the procedure used in [36].
Figure 6 provides scatter plots of CoP offset errors for each method. Also shown
on the plot are the mean of the offset error distributions, and an error radius
for each method derived from the mean and median of the offset distances. This
figure highlights the similarities across subjects as well as the clear improvement
that both deep learning networks make over KNN in more accurately predicting
CoP.

Figure 7A presents a robust analysis of outcomes where central location X,Y
is estimated by 2D geometric median, computed by Weiszfeld’s algorithm [69].
The spread of data is estimated by a robust standard deviation measure (rStd),
derived as median absolute deviation (MAD) from the median, multiplied by
a constant 1.4826 that scales MAD to be a consistent estimator of population
standard deviation [58]. Bar height in the chart corresponds to median CoP
offset distances, and the whiskers on each median bar represent rStd. Median
and rStd values, which are generally smaller than mean and std because robust
estimators suppress the effects of outliers. We computed p-values between all
pairs of methods, finding that all outcomes differ statistically significantly (p
<< 0.001), except PNS3/PNS3B (p=0.009), even with large variances, which
makes sense since our train/test set sizes are very large (Figure 2B). However,
the conclusion about relative merits of each method remain the same, with both
proposed networks outperforming the KNN baseline. It should be noted that
Subject 2 consistently under-performs for all methods, which may be an indi-
cation of inaccuracy in the input pose or ground truth pressure data, requiring
further investigation. Figure 7B presents an analysis of the Base of Support
(BoS) resulting from the predicted foot pressures relative to the ground truth
pressure using the Intersection over Union (IoU). With identical overlap (IoU =
1) being the goal, the results indicate that all networks outperform KNN (K5
and K50) with the PNS2 under-performing all 3D methods with 65-68% over-
lap. The X-axis presents the threshold (in kPa) used to calculate the BoS for
comparison for all but the PN3BK model, which is on a normalized and unitless
scale as part of data processing for KL Divergence loss. PN3BK is scaled relative
in Figure 7B to provide easy visual comparison.

4.2 Qualitative Evaluation

Figure 8 visualizes ground truth, foot pressure predictions, and their BoS and
CoP for some sample frames. For each subject, the foot pressure predictions and
ground truth are rendered with independent pressure scales (weight related)
based on the pressure range needed for each subject. In addition to the qual-
itative comparison by visualization, the respective mean absolute errors with
respect to ground truth frames have been calculated and included in Table 3.

Finally, we show preliminary results on exploring the potential use of esti-
mated foot-pressure distributions to obtain classic stability measures defined in
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Fig. 8: Sample output frames showing the ground truth and estimated Center of Pres-
sure (CoP) and Base of Support (BoS). Foot pressure is scaled for each subject based
on their range of pressure. BoS and CoP of Ground Truth (white), PNS (yellow), PNS3
(red), and PNS3B (green) plotted as an overlaid on the floor plane. Intersection over
Union (IoU) and distance to Ground Truth CoP (mm) are used to quantify the quality
of BoS and CoP estimation, respectively.

(A) CoM from CoP: R = −0.61 (B) TTC with BoS: R = 0.55

Fig. 9: Correlation between the number of years of Taiji experience/training N and two
different stability metrics can be seen here on two different Taiji poses. They seem to
confirm the general observation that the more experienced Taiji practitioners are more
stable, where N is larger: (A) distance between CoM and CoP is smaller; and (B) the
time to reach the boundary of BoS is longer.
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kinesiology [13,26–28,35,41]. Motivated by findings in medicine via randomized
trials that Taiji intervention may improve stability of certain populations [21],
we observe convincing correlations between years of Taiji practice and two sta-
bility measures (Figure 3C) for two different Taiji poses (Figure 9). The trend
of correlation is consistent with previous work; as with [21], the more Taiji prac-
tice, the more stable a subject is. Figure 9A shows negative correlation, meaning
CoM and CoP align better for more experienced Taiji subjects. Figure 9B shows
positive correlation, meaning: the most experienced subjects can maintain better
stability when CoM’s Time To Collision (TTC) with BoS is longer.

5 Conclusions

We present a fully validated approach to estimate foot pressure distributions
from 2D/3D human body pose. Given the multi-faceted complexity of this pose-
to-foot pressure mapping problem, we have gained several insights from this ex-
ercise: (1) KNN is a reasonable baseline predictor, while deep learning networks
surpass KNN statistically significantly; (2) 3D pose input has a high positive im-
pact over 2D, albeit with an upfront higher computational cost; (3) system per-
formance is surprisingly stable across subject weight, gender, height variations,
and the number of subjects in the training/testing data; (4) networks trained
on one camera view produce comparable results when tested on images from a
different view, confirming that the Taiji dataset provides adequate orientation
generalization information; (5) quantitative evaluations on a subset of ordinary
poses indicates that networks trained on Taiji movements can be generalized to
non-Taiji-specific poses; and (6) correlation between the quantified results of deep
learning networks support our initial hypothesis that learning a mapping from
kinematics to dynamics from static images is feasible, opening up a door for pre-
cision computer vision devoted to human body centered sciences. Access to im-
plementation and dataset details are available through the project website: http:
//vision.cse.psu.edu/research/dynamicsFromKinematics/index.shtml.
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