
Bridging Knowledge Graphs
to Generate Scene Graphs:
Supplementary Material

Alireza Zareian, Svebor Karaman, and Shih-Fu Chang

Columbia University, New York NY 10027, USA
{az2407,sk4089,sc250}@columbia.edu

Fig. 1. Comparison of our method GB-Net with KERN [1] in terms of recall at 50 per
predicate class, without graph constraint. The horizontal axis was ordered decreasingly
based on frequency in VG.

In this document, we provide additional details that were omitted from the
main manuscript due to the space constraint. We start by an analysis of our
quantitative results, were we show our method addresses the shortcoming of
the state of the art in modeling the tail of the predicate distribution. We then
report an empirical analysis of the computational cost of our method, showing
it is significantly faster than the state of the art, while also more accurate. After
that, we clearly describe the process of creating our commonsense graph, and
we provide a set of qualitative examples to illustrate how our method exploits
such commonsense knowledge. We conclude by describing the code that we will
provide to reproduce the results.

1 Per-class performance

Figure 1 illustrates the recall of our method for each predicate class separately,
where predicates are ordered decreasingly according to their frequency in the
training set. While state-of-the-art methods such as KERN [1] obtain much lower
performance on the tail of the distribution, our method significantly improves



2 Alireza Zareian et al.

Table 1. Time and memory cost of our method compared to the state of the art

Method
Test time Train time # parameters

(sec/image) (min/epoch) (million)

KERN [1] 0.79 401.2 405.2
GB-Net 0.52 191.6 444.6

the performance of the tail without losing on the frequent predicates, resulting
in a more reliable and consistent performance overall.

2 Computational cost

We compute the training and test speed of our method and compare to KERN
[1] using identical hardware, with one GPU of type NVIDIA GeForce GTX 1080
Ti with 11 gigabytes of memory, and summarize the results in Table 1. Perhaps
the most important aspect of computation is the run time when deploying the
model on new images. To this end, we run each trained model on the entire test
set of Visual Genome (VG), i.e. 26446 images, and get the average run time over
all images in terms of seconds. Our method is 34% faster than the state of the
art, while being significantly more accurate as demonstrated in Table 1 of the
main paper.

Another important factor is the duration of training. We record the time it
takes to train each model on one epoch of the VG training set, i.e. 56224 images,
and get the average over 10 training epochs. As Table 1 shows, our method is
more than twice faster than the state of the art. One of the reasons is that
KERN has two stages of message passing, each with three steps, first to infer
entities, and then to infer predicates, while our method infers both entities and
predicates jointly, through 3 steps of global message passing.

Finally, we compare the number of trainable parameters each method has.
Our method has 10% more parameters than KERN, while it is 52% and 34%
faster than KERN during training and test respectively. Note that in all methods,
139.8 millions of the parameters belong to the Faster R-CNN detector, which we
fix while training for scene graph generation.

3 Commonsense graph construction

Our method utilizes a background knowledge graph which encodes commonsense
knowledge about the target entity and predicate classes. Such information have
been proved to be effective for scene graph generation [1, 3]. Intuitively, this is
because they can help the model disambiguate between possible visual classes,
using higher-level semantic meanings and relationships of classes. For instance,
object affordance is a type of commonsense, because a typical human knows
a Bike can be used for riding. This fact can be used by the model when it



Bridging Knowledge Graphs to Generate Scene Graphs 3

perceives a bounding box of Person above a bounding box of Bike, and it is not
sure whether to classify their relationship as riding or onTopOf or mountedOn.

Commonsense does not have to be homogeneous. Besides affordance, onto-
logical hierarchy is another type of useful information for scene graph generation.
A typical human knows Man and Woman are both subtypes of Person, and hence
can generalize the properties of Man to Woman. Another example is statistical
commonsense, where an average human knows a Vase is more likely to be on

a Table than anywhere else, not because of its semantic characteristics, but
because it is usually that way.

Our method is independent of the content of the commonsense graph, as
long as its nodes are exactly the set of classes required by the target task,
and every fact is encoded as a directed, typed, weighted edge. Accordingly, our
commonsense graph has 150 entities and 50 predicates as conventionally used in
the SGG task, and we compile the edges (i.e. facts) from a variety of sources,
to make it as rich and comprehensive as possible. To this end, we first manually
find for each of the 200 VG classes, the WordNet Synset [6] that represents its
meaning. This step is required to fix a deterministic meaning for each class,
such that for instance, Cabinet always represents the furniture piece and is not
confused with its meaning in politics.

Given the 200 nodes that are grounded on WordNet, we start collecting
commonsense facts to encode as edges. The most prominent repository of com-
monsense knowledge is ConceptNet [5], which is a large-scale graph where nodes
are concepts, including but not limited to entity and predicate classes, and edges
encode relational facts about pairs of concepts. There are over 21 million edges
of 34 types connecting over 8 million nodes in ConceptNet. We query each of
our 200 nodes to find its semantically closest node in ConceptNet, by using the
WordNet Synset title and the ConceptNet search API. Then we query all Con-
ceptNet edges between each pair of those 200 nodes, and further manually clean
and prune those edges, leading to 104 edges of 5 types. Those 5 edge types are:
partOf as in Hand-partOf-Person, relatedTo as in Lamp-relatedTo-Light,
isA as in Dog-isA-Animal, mannerOf as in MountedOn-mannerOf-AttachedTo,
and usedFor as in Bike-usedFor-Riding. Further, for asymmetric relation-
ships (all except relatedTo), we create a reverse edge with a distinct type. For
instance, because we have Hand-partOf-Person, we also create the fact Person-
hasPart-Hand. Our message passing framework, unlike conventional ones, only
propagates messages in the direction of each edge, and not backwards. Hence,
the way the Person node is affected by Hand would be different from how Hand

is affected by Person, because we do not share parameters across edge types.
Since there is no edge confidence in ConceptNet, these edges all have a binary
weight (1.0 if exists and 0.0 if not).

Besides ConceptNet, we also use WordNet to get ontological similarity of
words. Although WordNet is not originally identified as a commonsense graph,
the knowledge we extract from it is trivial, generally known information, and
hence can be considered commonsense. Inspired in part by [4], we use three sim-
ilarity metrics of the WordNet API (namely path similarity, Leacock Chordorow



4 Alireza Zareian et al.

(LCH) similarity, and Wu-Palmer (WUP) similarity [6]), and a manually tuned
threshold for each, to determine whether two entity classes are relevant or not.
This is encoded in the edge type WordNetSimilarTo with binary weights. This
strategy does not work well for predicate classes, so this edge is only between
pairs of entities.

Finally, we use the VG training set to get co-occurrence statistics between
categories, inspired by [7] but in a more comprehensive manner. We estimate
conditional probabilities of subject given predicate, object given predicate, pred-
icate given subject, predicate given object, subject given object, and object given
subject, as well as the correlation of entity classes as they connect to the same
predicate, and the correlation of predicate classes as they connect to the same
entity. These edge types capture a variety of statistical interactions between
classes. Each of those statistics result in a pairwise matrix, which we then spar-
sify by keeping the top 5 element in each row and setting the rest to zero. For
instance, riding is connected to its top 5 most likely objects, namely Horse,
Bike, Skateboard, Motorcycle and Wave. Note that although riding is not con-
nected to Elephant, its 6th most likely object, Elephant and Horse are both
connected to Animal through isA edges, and they are connected to each other
through WordNetSimilarTo, allowing our message passing framework to exploit
this rich structure and infer Elephant can be ridden too.

Overall, these three sources lead to 19 edge types (including backward edge
types for asymmetric relationships). Carefully compiled from multiple sources,
our commonsense graph is more sophisticated and complete, compared to those
made for recent knowledge-aware computer vision systems such as [2] and [4].
Note that none of those papers publicized their knowledge graph, so we were
unable to compare. The process of graph generation involves manual effort, thus
we have made our commonsense graph publicly available as a part of our code.

4 Qualitative results

To demonstrate the performance of our method qualitatively, Figures 2-14 show
examples of scene graphs generated by our method, compared to the ones gener-
ated by KERN. These examples illustrate how our method predicts more com-
monsensical graphs despite visual ambiguities in the scene. We observed several
patterns in which our method outperforms KERN. Since KERN (and most other
SGG methods such as [7]) first classify each entity and then classify predicates,
they are unable to utilize predicate semantics to enhance entity classification.
Thus in many cases, KERN misclassifies an entity, due to visual ambiguity and
clutter, while our method makes the correct prediction that might be less ap-
parent visually, but lead to a more consistent scene graph semantically. In some
other cases, KERN misclassifies an entity not because it is visually cluttered, but
because the bounding box is too loose and covers a big portion of background.
Our method is more robust to such bounding box inaccuracies, resulting a higher
overall performance. Finally, in some cases entities are classified correctly by
KERN, but the choice of predicates is inappropriate. Our method usually picks



Bridging Knowledge Graphs to Generate Scene Graphs 5

the correct predicate, in accordance to commonsense knowledge, such as object
affordances. More detailed discussion can be found in each figure’s caption.

glass glass_1

glass_2 glass_3

hair
man

man_1

glass bottle (glass_1)

glass_2 glass_3

hair
man

man_1

glass

glass_1

glass_2

glass_3

hair

man

holding

wearing

man_1

holding

wearing
has

glass

bottle (glass_1)

glass_2

glass_3

hair

man

wearing (holding)

wearing

man_1

holding

wearing
has

Fig. 2. Example comparison of our method GB-Net (left) with KERN [1] (right).
Misclassified entities and predicates are colored red, and the correct class is included in
parentheses. This is a challenging image with 4 occurrences of “glass” with two different
meanings (eyeglasses and beer glass). Our method is able to choose the appropriate
relation (wearing or holding) for each instance. KERN mistakes a glass for a bottle and
predicts a “wearing” relation between a man and his drink.

5 Software package

We will provide a software package that reproduces every single reported num-
ber, i.e., all numbers in Table 1 and 2 of the main paper. To make it easy to
reproduce, we provide an IPython Notebook for each experiment. We also pro-
vide a README file with a step by step guide, as well as a mapping between
the notebook files and table cells in the paper. To reproduce the results from
scratch, one would run the training notebook of each experiment followed by the
evaluation notebook. To bypass training, we provide all the parameter check-
points through a link in the README. This way the readers only need to run



6 Alireza Zareian et al.

building

clock
face

hand

building

clock
clock_1 (face)

hand

building

clock

on (attached to)

face

has

on

hand on

building

clock

on (attached to)

clock_1 (face)

has

on

hand on

Fig. 3. Example comparison of our method GB-Net (left) with KERN [1] (right).
The concept of a clock face is challenging for KERN but our method can produce such
output, by exploiting the prior knowledge and statistics that clocks can have faces and
the face would be on the clock. KERN predicts the triplet clock has clock, which does
not make sense.

the evaluation notebook. In case a GPU is not available for deploying the model,
we also provide a link to the pre-computed model outputs in the README. Fi-
nally, the notebooks already contain the saved evaluation results within them,
which can be checked without running evaluation at all.



Bridging Knowledge Graphs to Generate Scene Graphs 7

laptop

book
laptop_1

table

table_1

laptop_2
laptop_3

laptop

book
laptop_1

room (table)

desk (table_1)

laptop_2
laptop_3

laptop

table

on

book

near

on

table_1

on

laptop_1
on

with

with

laptop_2

on

laptop_3

on

laptop

room (table)

in (on)

book

near

on

desk (table_1)

on

laptop_1
in (on)

with

with

laptop_2

on

laptop_3

in (on)

Fig. 4. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the table as a room, possibly because the bounding box contains
the entire scene, but this leads to incorrect triplets such as laptop on room. Our method
predicts the more appropriate class table, that makes every triplet more commonsen-
sical.



8 Alireza Zareian et al.

bench
boy

ear

hair

hand

nose

sidewalk bench
fence (boy)

ear

hair

hand

nose

sidewalk

bench sidewalkon

boy

ear

has

hairhas

hand

has

nose

has

bench sidewalkon

fence (boy)

ear
has

hairhas

hand

behind (has)

nose

has

Fig. 5. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the boy as fence, which leads to the nonsensical triplets fence has
ear, fence has nose, etc. Our method is less likely to make such meaningless predictions.



Bridging Knowledge Graphs to Generate Scene Graphs 9

zebra

ear

nose

tail
zebra_1

zebra_2 zebra

ear

nose

ear_1 (tail)
zebra_1

zebra_2

zebra

ear zebra_2of

nose of

tail zebra_1of

zebra

ear zebra_2on (of)

nose on (of)

ear_1 (tail) zebra_1of

Fig. 6. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN predicts triplets such as ear on zebra and nose on zebra, etc., while our method
predicts more semantically sound triplets ear of zebra and nose of zebra, reflecting the
ownership relationship between the zebra and its body parts.



10 Alireza Zareian et al.

banana

banana_1pant (jean)

man
shirt

table

woman

banana

banana_1pant (jean)

man
shirt

fruit (table)

woman

banana

table

on

banana_1

on

pant (jean)

man shirtwearing

woman wearing

banana

fruit (table)

in (on)

banana_1

in (on)

pant (jean)

man shirtwearing

woman wearing

Fig. 7. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the table as fruit, possibly because it is entirely covered by fruites.
But this leads to nonsensical triplet banana in fruit. Our method correctly classifies
the table, which leads to a more commonsensical scene graph.



Bridging Knowledge Graphs to Generate Scene Graphs 11

house (building)

door

light

sign

surfboard

tree
car

house (building)

door

light

sign

surfboard

tree
street (car)

house (building)

door

car

on

light
on

sign on

surfboard
on

tree

in front of

has

house (building)

door

street (car)

on

light
on

sign on

surfboard
on

tree

in front of

has

Fig. 8. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies car as street, possibly because the bounding box is too loose and
contains a large portion of the street. Our method is aware that door on street is not
commonsensical, and hence predicts the more appropriate choice, i.e. car.

beach

girl
kite

beach

girl
tail (kite)

beach

girl

on (walking on)

kite

holding

beach

girl

on (walking on)

tail (kite)

with (holding)

Fig. 9. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the kite as a tail, because it actually looks more like a tail. Our
method predicts kite that is visually less clear, but leads to a more commonsensical
graph overall.



12 Alireza Zareian et al.

curtaincurtain_1

desk
lamp (laptop)

window curtaincurtain_1

desk
lamp (laptop)

curtain_2 (window)

curtain
window

on

curtain_1

on

desklamp (laptop) on

curtain
curtain_2 (window)

on

curtain_1

near (on)

desklamp (laptop) on

Fig. 10. Example comparison of our method GB-Net (left) with KERN [1] (right). Our
method correctly detects the two pieces of curtain on window, while KERN predicts
the less appropriate triplet curtain on curtain, possibly because the bounding box of
the window contains the curtain as well.



Bridging Knowledge Graphs to Generate Scene Graphs 13

bear

bear_1

face
head

leg

bear

rock (bear_1)

face
head

leg

bear

bear_1

face of

head

of

leg of bear

rock (bear_1)

face on (of)

head

on (of)

leg of

Fig. 11. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the bear as rock, possibly due to the too loose bounding box that
includes rocks as well. This leads to nonsensical triplets such as face on rock and head
on rock, while our method produces more likely and accurate triplets face of bear and
head of bear.

carcat

nosenose_1

carcar_1 (cat)

nosenose_1

carcat in front of (on)
nose of

nose_1

of carcar_1 (cat) near (on)
nose of

nose_1
of

Fig. 12. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the cat as a car, possibly because the bounding box is too loose
and covers a large area of both cars. Our method exploits the fact that cars are unlikely
to have noses.



14 Alireza Zareian et al.

fencegiraffe

legleg_1 leg_2

neck

fencefence_1 (giraffe)

legleg_1 leg_2

neck

fence

giraffe

near (in front of)

leghas

leg_1

has

leg_2

has

neck of

fence

fence_1 (giraffe)

on (in front of)

leghas

leg_1

has

leg_2

has

neck on (of)

Fig. 13. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies the giraffe as a fence, leading to nonsensical triplets such as fence
on fence, fence has leg, etc. Our method avoids such inappropriates compositions.

car windshield street (car)windshield

carwindshield on
street (car)windshield on

Fig. 14. Example comparison of our method GB-Net (left) with KERN [1] (right).
KERN misclassifies car as street due to the extreme occlusion, while our method ex-
ploits the fact that cars are more likely to have windshields than streets.



Bridging Knowledge Graphs to Generate Scene Graphs 15

References

1. Chen, T., Yu, W., Chen, R., Lin, L.: Knowledge-embedded routing network for scene
graph generation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6163–6171 (2019)

2. Chen, X., Li, L.J., Fei-Fei, L., Gupta, A.: Iterative visual reasoning beyond convo-
lutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 7239–7248 (2018)

3. Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with ex-
ternal knowledge and image reconstruction. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 1969–1978 (2019)

4. Kato, K., Li, Y., Gupta, A.: Compositional learning for human object interaction.
In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 234–
251 (2018)

5. Liu, H., Singh, P.: Conceptnet—a practical commonsense reasoning tool-kit. BT
technology journal 22(4), 211–226 (2004)

6. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11), 39–41 (1995)

7. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: Scene graph parsing
with global context. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 5831–5840 (2018)


