
MPCC: Matching Priors and Conditionals for
Clustering

A Matching marginals and conditionals is equivalent to
matching joints

In the following sections we demonstrate that for the Kullback–Leibler diver-
gence matching the marginals and conditionals is equivalent to matching the
joint distributions. In Section A.1 we demonstrate this equivalence for the two
variable case using the forward KL [9], this can be trivially demonstrated for the
reverse KL [10] interchangeably replacing the variables z and x, and the models
p and q. In Section A.2 we demonstrate the equivalence for the three variable
case using the reverse KL (MPCC). The demonstration for the three-variable
forward KL is equivalent requiring only to replace the variables y and x, and the
models p and q.

A.1 Matching marginals and conditionals, two variable case

In Section 2 of the paper we show that maximizing the VAE objective (ELBO)
can be interpreted as matching the conditional distributions in observed space
and the marginal distributions in latent space. Let p(x, z) and q(x, z) be the
decoder (generation) and encoder (inference) joint distributions, respectively,
where x represents the observed variable (data) and z represents the continuous
latent variable. The dependencies in these distributions are expressed as p(x, z) =
p(z)p(x|z) and q(x, z) = q(z|x)q(x). In what follows we prove, for the two variable
case, that matching conditionals and marginals is equivalent to matching the
joint distributions in terms of the Kullback-Leibler divergence. Starting from
the KL divergence between the joint distributions we can show that

DKL (q(x, z)||p(x, z))

=

∫
x

∫
z

q(x, z) log
q(x, z)

p(x, z)
dz dx

=

∫
x

q(x)

∫
z

q(z|x) log
q(z|x)

p(z|x)
dz dx+

∫
x

q(x) log
q(x)

p(x)
dx

= Ex∼q(x) [DKL (q(z|x)||p(z|x))] +DKL (q(x)||p(x)) , (1)

i.e. the forward KL divergence between the joints is indeed equivalent to the
forward KL between the marginals in data space plus the expected value under
the data distribution of the forward KL between the conditionals in latent space.
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A.2 Matching priors and conditionals for three variables a.k.a
MPCC case

In Section 3 of the paper we define the MPCC model starting from a joint distri-
bution matching perspective. Let p(x, z, y) and q(x, z, y) be the decoder (genera-
tion) and encoder (inference) joint distributions, respectively, where x represents
the observed variable (data), z represents the continuous latent variable and y
represents the cluster membership. The dependencies in these distributions are
expressed as p(x, z, y) = p(y)p(z|y)p(x|z, y) and q(x, z, y) = q(y|z)q(z|x)q(x).
The only assumption is that q(y|x, z) = q(y|z). In what follows we prove, for the
three variable case, that matching conditionals and marginals is equivalent to
matching the joint distributions in terms of the Kullback-Leibler divergence.

Starting from the (reverse) KL divergence between the joint distributions we
show that

DKL (p(x, z, y)||q(x, z, y))

=

∫
x

∫
y

∫
z

p(x, z, y) log
p(x, z, y)

q(x, z, y)
dx dy dz

=

∫
y

∫
z

p(z, y)

∫
x

p(x|z, y) log
p(x|z, y)

q(x|z, y)
dx dy dz

+

∫
y

p(y)

∫
z

p(z|y) log
p(z|y)

q(z|y)
dz dy +

∫
y

p(y) log
p(y)

q(y)
dy

= Ez,y∼p(z,y) [DKL (p(x|z, y)||q(x|z, y))]

+ Ey∼p(y) [DKL (p(z|y)||q(z|y))] +DKL (p(y)||q(y)) , (2)

i.e. the KL between the joints is the sum of the KL divergences for x|(z, y), z|y
and y, respectively. The KL divergence is non-negative so if we match the priors
and conditionals then the joints have to match too.

B Variational Deep Embedding (VaDE)

B.1 Variational Deep Embedding matches conditionals and
marginals in data space

Here we show that Variational Deep Embedding (VaDE) [7] is in fact matching
the joint distributions of the encoder and decoder by matching posteriors and
marginal in the space of the observed variable x (data). We start by expanding
the divergence between the joint distribution of the encoder and decoder as:

DKL (q(x, z, y)||p(x, z, y))

=

∫
x

∫
y

∫
z

q(x, z, y) log
q(x, z, y)

p(x, z, y)
dx dy dz

= Ez,x∼q(z,x) [DKL (q(y|z, x)||p(y|z, x))]

+ Ex∼q(x) [DKL (q(z|x)||p(z|x))] +DKL (q(x)||p(x)) . (3)
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The first divergence in the right hand side of Eq. (3) is

DKL (q(y|z, x)||p(y|z, x)) =

∫
q(y|x) log

q(y|x)p(z)

p(z|y)p(y)
dy

= Ey∼q(y|x)

[
log

q(y|x)

p(z|y)p(y)

]
+ log p(z), (4)

where we used the replacements q(y|z, x) = q(y|x) and p(y|z, x) = p(x|z)p(z|y)p(y)
p(x|z)p(z) ,

which come from the graphical model assumptions considered in [7].
The second divergence in the right hand side of Eq. (3) is

DKL (q(z|x)||p(z|x)) =

∫
q(z|x) log

q(z|x)p(x)

p(x|z)p(z)
dz

= Ez∼q(z|x)

[
log

q(z|x)

p(x|z)
− log p(z)

]
+ log p(x), (5)

and the third divergence in the right hand side of Eq. (3) is

DKL (q(x)||p(x)) = Ex∼q(x) [log q(x)− log p(x)] . (6)

If we add the expectation over q(z, x) = q(z|x)q(x) of Eq. (4) with the expecta-
tion over q(x) of Eq. (5) and Eq. (6) we obtain:

Ez,x∼q(z,x) [DKL (q(y|z, x)||p(y|z, x))] + Ex∼q(x) [DKL (q(z|x)||p(z|x))]

+ DKL (q(x)||p(x))

= Eq(x)[log q(x)− Ez,y∼q(z,y|x)[log p(x|z)− log q(z|x)− log q(y|x)

+ log p(z|y) + log p(y)]]

= Eq(x) [log q(x)− LVaDE(x)] ,

where LVaDE(x) corresponds to Eq. (9) in [7]. This means that by maximizing
VaDE’s loss function one is matching the conditionals and marginals between
encoder and decoder in data space. Note that the entropy of the data distribution
Eq(x) [log q(x)] is constant during optimization.

B.2 Why extending VaDE to any multi-modal distribution is
harder than MPCC?

In MPCC the latent space can be naturally extended to any mixture of dis-
tributions, the only requirement being that the entropy of each distribution
component p(z|y) should have a closed-form or at least a bound. In general any
model decomposed by the reverse KL enjoy this property.

Forward KL decompositions, such as the case of VAE and VaDE, need a
closed-form solution for the divergence between the posterior and the prior. In
VaDE this term corresponds to

Eq(x)Eq(z,y|x)[log q(z|x)− log p(z|y)] = Eq(x)Eq(y|x)[DKL(q(z|x)||p(z|y))], (7)
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which has a closed-form since q(z|x) and p(z|y) are Gaussians. Other dis-
tributions can be used however they need to be from the exponential family
and to have the same distribution [14], although some exceptions exists [19], [2].
In addition to the exponential family requirement, a reparameterization trick is
needed for the posterior distribution further limiting the distributions that can
be used and requiring other forms of reparameterization [4], [17], [6].

Alternatively, adversarial training can be used to match the marginal poste-
rior with more flexible priors. However it has been observed [16] that this kind of
optimization [11], [12] underestimates its Kullback-Leibler divergence and also
worsen the likelihood of the decoder likely affecting its clustering capabilities.

C Details on neural network architectures

In MPCC we use the BigGAN model techniques [1] as a base for all our exper-
iments. This architecture employs ResNet [5] and Spectral Normalization [13].
The residual block components of the generator and discriminator/encoder are
shown in Fig. 1 (a) and (b), respectively. All the 3×3 Conv use a padding equal
to one while 1 × 1 Conv have no padding. The upsampling operation of the
generator is done using bilinear interpolation. A general scheme of the genera-
tor, discriminator and encoder architecture is shown in Fig. 2. The first residual
block of the discriminator/encoder inverts the order of the 1 × 1 Conv and the
average pooling and omits the first ReLU activation. Residual blocks with an
asterisk correspond to the ones that do not perform average pooling and as a
consequence they do not use 1× 1 Conv.

Fig. 2 (a) shows the generator used for the CIFAR10/20 datasets. Fig 2 (b)
shows the unconditional architecture of the discriminator. In the case of the
conditional discriminator a term Embed(y) · h is added where h is the output
of the global sum pooling (see Table 2). We can write the architectures for all
datasets in a general way as in Fig. 2 or more specific as in Tables 1, 2 and 3,
where C, J and D change between datasets.

As we observed in the paper (Table 3) we found an improvement in terms of
sampling quality and reconstruction error when parameters between the discrim-
inator and the encoder are shared. We experimented on the number of residual
blocks shared and found that the best performance was obtained when sharing
the first three residual blocks.

We use the Adam optimizer [8] with its default parameters β1 = 0 and β2 =
0.999. We use exponential moving average (EMA) with a decay rate of 0.9999 for
the Generator for both sampling and reconstruction task. EMA is applied after
the 1000th iteration. All generator, discriminator and encoder parameters use
Spectral Normalization and are initialized with N (0, 0.02I), while an orthogonal
initialization is used for prior parameters [18]. With the exception of the prior
parameters we use a learning rate of 2e − 4 for all networks and experiments.
For evaluation we use standing statistics [1] i.e. in evaluation mode we run
many times (in our case 16) the forward propagation of the generator model
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x̃ ∼ p(x, z, y) storing the means and variances aggregated across all forward
passes.

We use three techniques depending on the dataset to deliver the latent infor-
mation z and y into the decoder distribution p(x|z, y). The first two correspond
to a hierarchical latent space architecture [1] which concatenate Embed(y) with
a subset of z, and then a linear transformation to estimate the statistics of the
batch norm layers is applied (see Fig. 1). The first method is the one observed
in Fig. 2 which splits the latent variable z into equal chunks, delivering each
one to a different part of the network. In this case we have four chunks (1 entry
+ 3 residual blocks). The second method is similar to first, the only difference
being that all z is shared and no split operation is done. The schematic of this
generator is equivalent to Fig. 2 (a) except that the purple box performs a copy
instead of split operation. The third method passes all the latent z as usual [15]
and uses conditional batch normalization [3]. This method learns embeddings
conditioned on y which are different for each layer, i.e. the linear transforma-
tion in the yellow boxes of Fig. 1 correspond to an embedding, and the shared
embedding should be ignored.

• For CIFAR10 and CIFAR20 we use the first method since this is the default
architecture used in BigGAN. For simplicity we kept this configuration for
all ablation and clustering experiments with these datasets. We found that
mode collapse problems would appear if the third method is used in these
datasets. The configuration of the parameters for these datasets is C = 96,
D = 3 (RGB), J = 128 and ηp = 6 · 10−4.

• For datasets with simpler distributions such as MNIST and Omniglot, the
third method is more stable and yields the best results. We found that if
we use hierarchical latent space architectures poor results were obtained. In
particular we observed that the chunks in the first method are decorrelated,
which is particularly bad for simpler datasets such as MNIST and Omniglot
because the network gains lot of capacity ignoring the embedding y and
learning the full real distribution in all the clusters. The configuration of the
parameters for these datasets isD = 1 (grayscale), J = 24 and ηp = 1.6·10−3.
For MNIST C = 12 and for Omniglot C = 16.

• For FMNIST we observed that a poor performance was obtained with both
the first and third method. The best results for this dataset were obtained us-
ing the second method. The configuration of the parameters for this dataset
is C = 24, D = 1 (gray), J = 16 and ηp = 1.6 · 10−3.

We develop a Pytorch implementation for MPCC based on the implemen-
tation of BigGAN1. The IS and FID scores are calculated using the official
implementations2. We run each model in a GeForce RTX 2080 Ti, the amount
of time that MPCC iterates depends on the dataset but it is within the range
of 12-24 hours.

1 https://github.com/ajbrock/BigGAN-PyTorch
2 https://github.com/bioinf-jku/TTUR

https://github.com/ajbrock/BigGAN-PyTorch
https://github.com/bioinf-jku/TTUR
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(a) Generator block (b) Discriminator/Encoder
block

Fig. 1. Residual blocks used for MPCC generator, discriminator and encoder networks.
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(a) Generator (b) Discriminator

(c) Encoder

Fig. 2. Architectures of MPCC generator, discriminator and encoder networks, re-
spectively
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yi ∈ {0, . . . ,K − 1} ∼ Cat(φ)
zi ∈ RJ ∼ N (µyi

, σ2
yi

)
Share Embed(y) ∈ RJ

Linear(J) → 4× 4× 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Resblock up 4C → 4C

Output Layer:
BN, ReLU, 3× 3 Conv C → 3

Tanh

Table 1. Generator

x ∈ R32×32×D

Resblock down 4C → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock 4C → 4C

ReLU, Global sum pooling

(linear → 1)
if conditional :+ Embed(y)·h

Table 2. Discriminator

x ∈ R32×32×D

Resblock down 4C → 4C

Resblock down 4C → 4C

Resblock 4C → 4C

Resblock down 4C → 4C

Resblock down 4C → 4C

Flatten

×2 : Linear (32//24 × 4C)→ (32//24 × 4C)//2

×2 : Linear ((32//24 × 4C)//2)→ J

Table 3. Encoder

D Optimization problems

We observed two types of errors which restrict the architecture and the optimiza-
tion techniques. Theses difficulties are particularly relevant for the CIFAR10 and
CIFAR20 datasets which present the more complex distributions. We used the
default parameters of the CIFAR10 architecture unless otherwise stated.

The first problem is associated with the batch size. We found that we can’t
optimize MPCC with a big batch size while using a large learning rate of the
prior parameter ηp. Note that the latter is necessary to obtain good accuracy
performance as it was shown in the paper (Table 2 in the paper). The batch
size is relevant to increase the IS and FID scores [1]. Artifacts or saturation
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problems would appear when doing a small modification in the optimization.
The examples shown in Fig. 3 (a) use a batch size slightly larger than the one
used in the paper (50). We observe that using a slightly larger batch size (64)
with a prior learning rate of ηp = 8 · 104 the results change drastically and the
generated images show notable saturation.

Mode collapse is an important topic in GANs research and is the second
problem that we observed in MPCC. Usually it is associated with the limitations
in generation quality caused by the model, which memorize only a small part of
the real distribution affecting the performance of the GAN. In MPCC the mode
collapse problem can make an entire cluster collapse. Setting Dstep = 4 solves
this problem partially for a large amount of models and is sufficient to obtain
good performance. In Fig. 3 (b) we show samples from a model trained with
bs = 64 and ηp = 2 · 10−4 where we can see how a mode collapse problem looks
in MPCC. We observed that when using a large prior learning rate ηp = 6 · 10−4

this problem would regularly appear after 150,000 iterations. This doesn’t occur
for the best configuration of MPCC (the one reported in the paper) and setting
ηp = 2 · 10−4 even after a large number of iterations, however we would like
to increase ηp further as we observed that it correlates with better clustering
accuracy (Table 2 in the paper).

(a) Saturation problems (b) Mode collapse problems

Fig. 3. Generated images with bad optimization setting at iteration 50000. Sub-figure
(a) shows images associated with saturation problems and (b) with mode collapse
problems. Each row represents a different cluster.
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E Additional qualitative results

In this section we provide additional reconstructions and samples for the CIFAR-
10 dataset in Figures 4 and 5, and for the MNIST dataset in 6 and 7. To give
more insight about MPCC’s capacity we also include samples for datasets with a
high number of classes, CIFAR-20 and Omniglot in Figures 8 and 9 respectively.

Fig. 4. Generated images for the CIFAR-10 dataset. Every two columns we set a
different value for the categorical latent variable y. i.e. the samples shown correspond
to a different conditional latent space z ∼ p(z|y).

Fig. 5. Reconstructions for rhe CIFAR-10 dataset. Odd columns represent real data
and even columns correspond to their reconstructions. The real label is used to sort
the column pairs.
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Fig. 6. Generated images for the MNIST dataset. Every two columns we set a different
value for the categorical latent variable y. i.e. the samples shown correspond to a
different conditional latent space z ∼ p(z|y).

Fig. 7. Reconstructions for the MNIST dataset. Odd columns represent real data and
even columns correspond to their reconstructions. The real label is used to sort the
column pairs.
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Fig. 8. Generated images for CIFAR-20 dataset. In every row we set a different value
for the categorical latent variable y, i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y).
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Fig. 9. Generated images for Omniglot dataset. In every row we set a different value
for the categorical latent variable y, i.e. the samples shown correspond to a different
conditional latent space z ∼ p(z|y). 30 cluster were randomly chosen.
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