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Abstract. Generative models have proven effective at modeling 3D
shapes and their statistical variations. In this paper we investigate their
application to point clouds, a 3D shape representation widely used in
computer vision for which, however, only few generative models have yet
been proposed. We introduce a latent variable model that builds on nor-
malizing flows with affine coupling layers to generate 3D point clouds of
an arbitrary size given a latent shape representation. To evaluate its ben-
efits for shape modeling we apply this model for generation, autoencod-
ing, and single-view shape reconstruction tasks. We improve over recent
GAN-based models in terms of most metrics that assess generation and
autoencoding. Compared to recent work based on continuous flows, our
model offers a significant speedup in both training and inference times
for similar or better performance. For single-view shape reconstruction
we also obtain results on par with state-of-the-art voxel, point cloud, and
mesh-based methods.

Keywords: generative modeling, normalizing flows, 3D shape modeling,
point cloud generation, single view reconstruction

1 Introduction

Generative shape models are used in numerous computer vision applications
where they allow to encode 3D shape variations with respect to different at-
tributes, such as shape classes or shape deformations, as well as to infer shapes
from partial observations, for instance from a single or a few images. Central
to shape models is the representation chosen for shapes that can be extrinsic,
for example the ubiquitous voxels and octrees, or intrinsic as with meshes and
point clouds. While extrinsic representations enable relatively straightforward
extensions of 2D deep learning techniques to 3D, they suffer from their inherent
trade-off between precision and complexity. This is why 3D shapes are often
represented using intrinsic models, among which point clouds are a natural and
versatile solution, serving as a basis for many 3D capturing methods, including
most multi-view stereo and range sensing methods, e.g . kinect.
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Fig. 1: Top: Point clouds sampled from DPF-Net for the ShapeNet classes air-
plane, car, and chair. Middle: Latent space interpolation between two point
clouds from the test set. Bottom: Deformation of points across the flow steps.

Following the success of CNNs for 2D computer vision problems, many deep
learning models have been proposed that can handle 3D data. This includes
works on voxel grids [5, 10, 14, 16, 28, 34, 51, 52], octrees [45, 47], meshes [21, 36,
48, 50], point clouds [13, 22, 27, 33, 41, 42, 49], and implicit functions [35, 38]. While
they provide effective tools to build predictive models of 3D shapes, e.g . from a
single image, we investigate in this paper the less extensively explored and more
generic problem of probabilistic generative 3D shape modeling.

Significant advances have been made in generative modeling of natural images
using deep neural networks with convolutional architectures. Consequently, they
can easily be adapted to generative shape models which are based on extrinsic
representations, using regular 3D convolutional layers [51, 5, 28]. On the other
hand, their extensions to intrinsic representations, such as point clouds and
meshes, are less obvious and, to the best of our knowledge, so far, only Yang et
al . [53] have studied generative models from which arbitrary size point clouds
can be sampled without any conditioning information.

We explore a hierarchical latent variable model that treats the points as
exchangeable variables, which allows us to model and sample point clouds of ar-
bitrary size. Within this framework, each point cloud is considered as a sample
from a shape-specific distribution over the 3D surface of the object, and these
distributions are embedded in a latent space. To sample a point cloud, first, a
vector is sampled in the latent shape space, and then, any desired number of
3D points can be sampled i.i.d. conditioned on the latent shape representation.
Our model shares the high-level structure with PointFlow [53], but differs in the
underlying network architectures, reducing the training and sampling time by
more than an order of magnitude. In particular, our model builds on discrete nor-
malizing flows with affine coupling layers [12] rather than continuous flows, and
FiLM conditioning layers [39] to construct a flexible density on 3D points given
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the latent shape representation. In Figure 1 we illustrate diverse point clouds
sampled from our class-specific models, interpolation between point clouds in
the learned latent shape space, and the sequential process by which the discrete
normalizing flow warps the points to obtain the final shape.

We evaluate generative and autoencoding capabilities of our model, as well as
its use for single-view shape reconstruction. We obtain similar or better perfor-
mance compared to GAN-based models in terms of metrics that assess genera-
tion and autoencoding. Compared to recent work based on continuous flows, our
model offers a significant speedup, for similar or better performance. For single
view reconstruction our model performs on par with state-of-the-art methods,
yet allows to reconstruct with arbitrarily large point clouds. Moreover, we ana-
lyze various design choices regarding data splitting and normalization.

2 Related work

Generative Models. Deep neural networks have sparked significant progress
in generative modeling. The most widely adopted models are variational autoen-
coders (VAEs) [26, 44], generative adversarial networks (GANs) [15, 23], and nor-
malizing flows [11, 12]. All three approaches share the basic principle of defining
a latent variable z with a simple prior, e.g . unit Gaussian, and construct a com-
plex conditional p(x|z) on data x by means of deep neural networks. Maximum
likelihood training of the resulting marginal p(x) is generally intractable due to
the non-linearities. To train the model, VAEs rely on an amortized inference
network that produces a variational posterior q(z|x). GANs, on the other hand,
use a discriminator network to distinguish training examples and model samples,
and use it as a signal to train the generative model. Alternatively to previous
approaches, normalizing flow models rely on invertible neural network architec-
tures to avoid the intractability of the marginalization altogether. In this case,
the likelihood can be computed exactly by the means of the change of variable
formula, and latent variables can be inferred deterministically. A variety of dif-
ferent normalizing flows has recently been proposed, see e.g . [2, 8, 12, 17, 24, 25,
43]. See [29, 37] for recent comprehensive reviews on normalizing flows.

Affine coupling layers [12] allow for a computation of the inverse in a closed
form that is as efficient as the function itself. Within this approach, the activa-
tions A` in layer ` are partitioned in two groups, A`1 and A`2. The first group is
unchanged, and used to update the other group by scaling and translation, i.e.
A`+1

2 = A`2 � s(A`1) + t(A`1), where � denotes element-wise multiplication, and
s(·) and t(·) can be arbitrary (non-invertible) neural networks. The inverse is
trivially obtained by subtraction and division, since A`+1

1 = A`1. Many coupling
layers with changing variable partitioning can be stacked to construct a complex
invertible flow. Training and sampling the model require to compute the flow
reverse directions, and since affine coupling layers are equally efficient in both
directions, it means that both processes are fast. This is in contrast to some
other normalizing flows, such as invertible ResNets [2, 8], or planar and radial
flows [43], for which the inverse flow does not have a closed form.
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Neural ordinary differential equations were recently proposed as a generaliza-
tion of deep residual networks (ResNets, [19, 20]) in the limit of infinite depth [8].
Chen et al . [8] demonstrated that Neural ODEs can be used to define normalizing
flow, which are referred to as “continuous normalizing flows”.

Several conditional flow-based models have recently been proposed for vision
tasks. In [31] flows conditioned on an input image are used for image segmenta-
tion, inpainting, denoising, and depth refinement. Their model is trained directly
via maximum likelihood estimation, as their model does not include a global la-
tent variable. Similarly, C-Flow [40] does not involve a global latent variable,
and rather than treating point clouds as sets, it sorts the points to a regular
pixel grid, and applies 2D normalizing flows for single image point cloud re-
construction. A conditional VAE model, where flow is used to define a flexible
distribution on the latent variable given the conditioning data was introduced
by [3]. This is similar in structure to our model for single view reconstruction.
Their experiments, however, concern the prediction of point trajectories in 2D
for hand-written digits, and traffic participants such as pedestrians and cars.
The generative image model of [32] is related to ours, as a VAE model with a
flow-based decoder. The application contexts, RGB images vs. point clouds, and
resulting architectures are, however, quite different.

Point Cloud Generating Networks. Deep learning models for point cloud
processing have received significant attention in recent years, see e.g . [1, 18, 27,
30, 41, 42, 46, 54, 53]. The PointNet architecture of Qi et al . [41] was the first
to propose a deep network for recognition of point clouds. The points are first
processed in an identical and independent manner by an MLP, and global max-
pooling is used to aggregate the per-point information. KD-Net [27] and Point-
Net++ [42] add a notion of spatial proximity to the architecture, replacing
global max-pooling with local aggregation. While these models can interpret
point clouds, they cannot generate them.

Early point cloud generating networks [1, 13] produce point clouds with a
fixed number of points n, by using a network with n× 3 outputs. AtlasNet [18]
mitigates this limitation by using a set of k square 2D patches, and deforming
each of these non-linearly by using k patch-specific MLPs that takes as input
2D patch coordinates as well as a global shape representation. The shape vector
is obtained from a point cloud encoder network (for autoencoding), or from a
CNN trained for single-view image reconstruction. The point cloud GAN (PC-
GAN, [30]) is related, but uses a single generator that that takes a global shape
vector as input together with (arbitrarily many) samples from a unit Gaussian.
Similarly to [13], AtlasNet is a conditional model, that generates point clouds
given another point cloud or an image. In contrast, PC-GAN includes a second
generator that models a distribution on the latent shape space, so it can generate
point clouds in an unconditional manner.

The high-level hierarchical latent variable structure of PointFlow [53] is sim-
ilar to PC-GAN. Rather than using adversarial training, however, they train the
model using a VAE-like approach in which an inference network produces an
approximate posterior on the latent shape representation. Moreover, they use
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continuous normalizing flows [7] to define a prior on the shape space, and a
conditional distribution on 3D points given a latent shape representation. Our
work is based on the same high-level VAE-like structure as PointFlow, but dif-
fers in the design of the network components. Most importantly, we make use
of efficient “discrete” affine coupling layers, avoiding the use of computationally
expensive ODE solvers for training and generation needed for the “continuous”
flows, resulting in a significant speed-up to train and sample from the model.
We describe our “Discrete Point Flow Networks” in the next section.

3 Discrete Point Flow Networks

In this section we first present the high-level hierarchical latent variable model,
followed by a more detailed description of the model components in Section 3.2.

3.1 Hierarchical Latent Variable Model for Point Cloud Generation

Our goal is to define a generative model over point clouds of variable size that
represent 3D shapes. The defining characteristics of point clouds are that the
number of points may vary from one cloud to another, and that there is no
inherent ordering among the points.

Let X = {x1, . . . , xn} be a point cloud with xi ∈ IRd, where d = 3 for
point clouds for 3D shapes. The dimension d may be larger in some cases, e.g .
d = 6 when modeling 3D points equipped with surface normals. An exchangeable
distribution is one that is invariant to permutations of the data, i.e.

p(x1, . . . , xn) = p(xπ1
, . . . , xπn), (1)

where π is a permutation of the integers 1, . . . , n. Note that independence implies
exchangeability, but the reverse does not hold.

De Finetti’s representation theorem states that any exchangeable distribution
can be written as a factored distribution, conditioned on a latent variable:

p(X) =

∫
z

pψ(z)
∏
x∈X

pθ(x|z)dz. (2)

In the case of 3D point cloud modeling, the latent variable z can be thought
of as an element in an abstract shape space, sampled from a prior pψ(z). This
construction allows for point clouds of different cardinality, since conditioned on
the shape representation z, the elements of the point cloud are sampled i.i.d.
Given this general framework, also adopted in [30, 53], the challenge is to:

1. Design a flexible model so that the conditional distribution pθ(x|z) concen-
trates around the surface of the object represented by z.

2. Mitigate the intractability of the integral in Eq. (2) during training when
using, e.g ., deep neural networks to construct pθ(x|z).
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Before we consider the design of pθ(x|z) and pψ(z) in Section 3.2, we describe
how to deal with the integral in Eq. (2) using the VAE framework [26].

We efficiently approximate the intractable posterior p(z|X) with an amor-
tized inference network qφ(z|X). The approximate posterior allows us to define
a variational bound on the likelihood in Eq. (2) as using Jensen’s inequality [4]:

ln p(X) ≥
∑
x∈X

IEqφ(z|X)[ln pθ(x|z)]−DKL(qφ(z|X)||pψ(z)) ≡ −F . (3)

The first term aims to reconstruct the points x ∈ X using shape representations
sampled from qφ(z|X), whereas the second term ensures that the approximate
posterior cannot arbitrarily deviate from the prior. Following [26, 44] we use
Monte Carlo sampling and the reparametrization trick to jointly minimize the
loss F over θ, ψ and φ using stochastic gradient descent. The distributions
qφ(z|X), pθ(x|z), and pψ(z) and the underlying network architectures that make
up the loss are detailed in the following section.

3.2 Design of Model Components

Shape-conditional Point Distribution. The density on points for a given
latent shape, pθ(x|z), needs to be flexible enough to concentrate its support
around the surface of the 3D shape. To this end we construct a conditional form
of normalizing flows based on affine coupling layers [12].

Let y ∈ IR3 denote a latent variable for each 3D point x, with a Gaussian con-
ditional distribution given by pθ(y|z) = N (y; νθ(z),diag (ωθ(z))), where νθ(z)
and ωθ(z) are non-linear functions of z. In the affine coupling layer, we par-
tition the coordinates of y in two groups, yc and yu, and update yu by affine
transformation conditioned on yc and the latent shape representation z, i.e.
xu = yu � sθ(yc, z) + tθ(y

c, z), while leaving the conditioning coordinates un-
changed, i.e. xc = yc. To achieve the desired expressivity, we stack many affine
coupling layers, cycling through the six possible partitionings of the three coor-
dinates. Each coupling layer in the resulting flow fθ(x; z) is conditioned on the
latent shape representation z by the means of the FiLM conditioning mechanism
[39] in the scaling and translation functions.

In practice, the scaling and translation functions are implemented by MLPs,
which inflate the dimensionality of yc to Dinf, and then deflate it to the dimen-
sionality of yu. Simultaneously, a separate MLP takes the latent variable z and
outputs conditioning coefficients of size Dinf, with which we multiply and shift
the inflated hidden units in the scaling and translation functions. In Figure 2 we
provide an overview of the architecture of our conditional coupling layers.

Using fθ(x; z) to denote the invertible flow network that maps x to y, the
change of variable formula allows to write the density of 3D points x given z as:

pθ(x|z) = N (fθ(x; z); νθ(z),diag (ωθ(z)))

∣∣∣∣det

(
∂fθ(x; z)

∂x>

)∣∣∣∣ , (4)

which enters into the loss defined in Eq. (3).
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Fig. 2: Architecture of our conditional affine coupling layer applied to a single
3D point, with red dimension of the point being updated given the blue ones.

Amortized Inference Network. The amortized inference network qφ(z|X)
takes a point cloud and produces a distribution on the latent shape repre-
sentation. We use a permutation invariant design based on the PointNet ar-
chitecture for shape classification [41]. As an output, the model produces the
mean and diagonal covariance matrix of a Gaussian on z ∈ IRD, i.e. qφ(z|X) =
N (z;µφ(X),diag (σφ(X))).

Latent Shape Prior. Rather than using a unit Gaussian prior in the latent
space, as is common in deep generative models, we learn a more expressive prior
pψ(z) by means of another normalizing flow gψ(z) based on affine coupling layers,
similar to [9, 53]. In our experiments it reduces the KL divergence in Eq. (3) by
adapting the prior to fit the marginal posterior

∑
X qφ(z|X), rather than forcing

the inference network to induce a unit Gaussian marginal posterior, resulting
in improved generative performance. Using this construction, we obtain the KL
divergence as:

DKL(qφ(z|X)||pψ(z)) = IEqφ(z|X)[ln pψ(z)]−H(qφ(z|X)) (5)

= IEqφ(z|X)

[
lnN (gψ(z); η,diag (κ)) + ln

∣∣∣∣det

(
∂gψ(z)

∂z>

)∣∣∣∣]− 1> lnσφ(X), (6)

where we use Monte Carlo sampling to approximate the expectation.

Single-View Reconstruction Architecture. For single-view reconstruction,
we follow [28] and define the model as:

p(X|v) =

∫
z

pψ(z|v)
∏
x∈X

pθ(x|z)dz, (7)

where we replaced the latent shape prior pψ(z) with an image conditioned one,
pψ(z|v). In this case, the latent shape flow gψ does not deform a parametric
Gaussian, but rather a Gaussian whose mean and variance are computed from
an image v by a CNN encoder. We train the model by optimizing a variational
bound similar to Eq. (3), and using the PointNet inference network to obtain an
approximate posterior. Figure 3 provides an overview of the data flow between
the model components for training and point cloud generation.
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Fig. 3: Overview of DPF-Net: arrows indicate data flow to sample new point
clouds (blue) and point cloud autoencoding (red), black arrows are used in both
processes. During training flow modules are traversed in the reverse direction. For
single-view reconstruction the shape prior is conditioned on the image (dashed).

4 Experiments

Datasets. In order to provide a comparison with prior academic studies on
shape generation, we perform experiments on subsets of ShapeNet [6] dataset.
For autoencoding we use the ShapeNetCore.v2, containing roughly 55k meshes
from 55 classes. In the generative setting, following [53], we use single class
subsets (airplanes, cars, and chairs) from the same dataset. For the single-view
reconstruction task we used a subset of 13 major classes of ShapeNetCore.v1
from Choy et al . [10], which comes with rendered 137 × 137 images from 24
randomized viewpoints per shape. We substitute the voxel grids provided by
Choy et al . with the original meshes to sample point clouds for training and
evaluation.

Data Split. For autoencoding we use a random split of the data, distributed
across train, validation, and test sets in a 70/10/20 proportion per class. In the
generative setting, we use single class subsets from the same random split. By
using a random data split per class we intentionally deviate from the official
ShapeNet data split, used in [53], which splits into significantly different data
subsets per class. For example, in case of airplanes, training and validation sets
mostly contain regular passenger aircraft, while the test set is populated with
fighter jets and spaceships. While such a split could be useful in the context of
autoencoding to assess out-of-distribution generalization, a significant mismatch
between training and test set is undesirable for evaluation of generative models
which are supposed to fit the training distribution. For single-view reconstruction
we use the train/test split from [10].

Normalization. The original meshes in the ShapeNet are not normalized for
position and scale which negatively affects the reconstruction quality. We there-
fore, additionally use a normalized version of the dataset, where we preprocess
each mesh separately so that the sampled point clouds are (approximately) zero
mean, and tightly fit in a unit diameter sphere. For generative experiments we use
models trained and evaluated on normalized data. In case of the autoencoding,
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we report results for two separate DPF-Nets trained either on non-normalized
or normalized data, where in the latter case we rescale point clouds to original
scales before evaluation for comparability with the rest of the models. While
using non-normalized data, similarly to [53], we perform global normalization
across all shapes by translation to the aggregate center of all the training shapes,
but do not rescale to unit global variance. For single-view reconstruction we com-
pare models trained on normalized data, but evaluate them in the unit radius
sphere scale for comparability with related work.

Point clouds are uniformly sampled from the meshes by sampling polygons
with a probability proportional to their area, and then uniformly sampling a
point per each selected polygon. Unlike previous works using precomputed point
clouds, we perform this procedure on the fly, thus obtaining a different random
point cloud each time we process a 3D shape. During both training and eval-
uation we sample two point clouds for each shape: one is used as input to the
inference network, the other for optimization or evaluation of the decoder. We
use 2, 048, 2, 048, and 2, 500 points for training and quantitative evaluation for
generative, autoencoding, and single-view reconstruction tasks accordingly.
Evaluation Metrics. We follow the standard protocol [1, 13, 53] and use Cham-
fer distance (CD) and earth mover’s distance (EMD) to assess point cloud re-
constructions. To measure the generative properties we follow [1, 53], and use
metrics to compare equally sized sets of generated and reference point clouds:

– The Jensen-Shannon divergence (JSD) compares the marginal distributions
obtained by taking the union of all generated (or reference) point clouds,
and quantizing the distributions to a voxel grid.

– The Minimum matching distance (MMD) computes the average distance of
reference point clouds to their nearest (in CD/EMD) generated point cloud.

– Coverage (COV) is the fraction of reference point clouds matched by mini-
mum CD/EMD distance by at least one generated point cloud.

– 1-nearest neighbour accuracy (1-NNA) classifies generated and reference
point clouds as belonging to either of these two sets using a leave-one-out
1-nearest neighbor classifier (using CD/EMD). Ideal accuracy is 50%.

For single-view reconstruction we additionaly report F1-score. For more detailed
descriptions of these metrics we refer to [1, 53].

4.1 Experimental Setup

Inference Network. We use a PointNet encoder [41] with the number of fea-
tures progressing over layers as 3−64−128−256−512, followed by a max-pooling
across points, and two fully-connected layers of sizes 512 and D, where D is the
size of the latent space. We use D = 512 in the autoencoding and single-view
reconstruction experiments, and D = 128 for generative modeling.
Latent Shape Prior. We use 14 affine coupling layers to construct the latent
space prior. In the coupling layers, we alternate between two orthogonal parti-
tioning schemes: odd and even dimensions are split in different groups; the first
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D/2 dimension go in one group, and the remaining in the other. For single-view
reconstruction we use ResNet18 image encoder, similarly to [18, 50, 49].
Point Decoder. The point decoder p(x|z) starts with a three-dimensional Gaus-
sian with mean and variances computed from z by an MLP with two hidden lay-
ers. This Gaussian is transformed by 63 of our conditioned affine coupling layers,
each consisting of (i) two fully-connected layers that map z to the FiLM con-
ditioning coefficients, each of size 64, (ii) two fully-connected layers that inflate
input dimensionality to 64 hidden units (at which point the FiLM conditioning
is performed), (iii) a final fully-connected layer that deflate the dimensionality
to compute the scaling and translation functions.
Baselines. We retrained AtlasNet [18], l-GAN-CD/EMD [1], PointFlow [53],
and DCG [49] with our split of the ShapeNet dataset, using the implementa-
tion provided by the authors and our data processing pipeline. For improved
comparability we also modified the point cloud encoders in all models to match
each other (except for l-GANs, since it significantly worsened their results). To
match other approaches, we used 2, 048 points per cloud for AtlasNet in the
autoencoding task and consequently set the number of learned primitives to 16.
Oracles. For all the tasks we also provide an “oracle” to assess the best possible
performance values. For autoencoding and single-view reconstruction, the oracle
samples a second point cloud from the ground truth mesh, rather than generating
a point cloud. For generative modeling, the oracle uses the point clouds from the
training set, instead of sampling point clouds from the model.
Our code is publicly available at https://github.com/Regenerator/dpf-nets.

4.2 Generative Modeling Evaluation

Efficiency Comparison with PointFlow. We compare our DPF-Networks in
terms of computational efficiency and memory footprint to PointFlow [53]. We
train both models for point cloud generation, and report the number of parame-
ters and total training time. To compute the training memory footprint, training
time, and generation time per sample (point cloud), we divided total GPU mem-
ory occupied during training, batch iteration time, and batch generation time,
respectively, by the batch size.

Both models were run on a single TITAN RTX GPU. We estimate the total
training time for PointFlow after the initial 100 epochs of training, which took
2 days, and assume that the full training procedure requires 4, 000 epochs, as
reported by the authors of PointFlow. We observed that the training procedure

Table 1: Efficiency comparison for DPF-Nets and PointFlow generative models.
Model Nr. params., Mem. footprint, tr. time, total tr. time, gen. time,

106 Mb/sample ms/sample days ms/sample

PointFlow [53] 1.63 470 500 80 150
DPF-Net (Ours) 3.76 370 16 1.1 4
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Table 2: Generative modeling results. Oracle results are underlined when the are
not the best. JSD and MMD-EMD are multiplied by 102, MMD-CD by 104.

JSD↓ MMD↓ COV↑, % 1-NNA↓, %
Category Model CD EMD CD EMD CD EMD

l-GAN-CD [1] 2.76 5.69 5.16 39.5 17.1 72.9 92.1
l-GAN-EMD [1] 1.77 6.05 4.15 39.7 40.4 75.7 73.0

Airplane PointFlow [53] 1.42 6.05 4.32 44.7 48.4 70.9 68.4
DPF-Nets (Ours) 0.94 6.07 4.26 46.8 48.4 70.6 67.0
Oracle 0.50 5.97 3.98 51.4 52.7 49.8 48.2

l-GAN-CD [1] 2.65 8.83 5.36 41.3 15.9 62.6 92.7
l-GAN-EMD [1] 1.31 9.00 4.40 38.3 32.9 65.2 63.2

Car PointFlow [53] 0.59 9.53 4.71 42.3 35.8 70.1 74.2
DPF-Nets (Ours) 0.45 9.59 4.61 43.4 45.7 70.3 64.3
Oracle 0.37 9.24 4.56 52.8 52.7 50.9 50.5

l-GAN-CD [1] 3.65 16.66 7.91 42.3 17.1 68.5 96.5
l-GAN-EMD [1] 1.27 16.78 5.75 44.3 43.8 66.6 67.8

Chair PointFlow [53] 1.51 17.15 6.20 43.3 46.5 67.0 70.4
DPF-Nets (Ours) 1.01 17.08 6.14 46.9 48.5 63.5 64.8
Oracle 0.49 16.39 5.71 52.8 53.4 49.7 49.6

slowed down over the course of training, because ODE-solver gradually increases
the number of iterations to meet the required tolerance. Thus, all timings in
Table 1 for PointFlow should be understood as lower bounds.

From the results in Table 1 we see that even though DPF-Networks have
more parameters, the associated training memory footprint is lower and, our
model is approximately 30 times faster both in training and inference iterations,
and can be trained in a single day.
Quantitative Results. We compare to l-GANs and PointFlow models and
report oracle performance as a reference. Given the prohibitive computation
cost of complete PointFlow training, we provide results obtained after training
for four days, which is four times the full training time of DPF-Net in the same
setting. In order to account for random sampling every model is evaluated using
ten different sets of generated objects, each of the size of the test set. Thus, for
each metric we report mean values over ten runs. In addition to the best values,
in Table 2 we also write in bold results that are within two standard deviations
of the best result.

Overall, DPF-Networks yield the best results in terms of JSD, COV-CD/EMD
and 1-NNA-CD/EMD, except for the 1-NNA-CD for car. This confirms that our
DPF-Network is capable of generating more realistic and diverse sets of point
clouds, for random samples from our model see Figure 1.

L-GAN-CD experiences mode collapses, and generates objects with good CD
values, but with very poor coverage and 1-NNA in terms of the EMD metric.
PointFlow shows performance similar to ours, except for JSD, while being sig-
nificantly slower in both training and sampling. In contrast to the evaluations
performed in [53], based on the official split, in our experiments the oracle ob-
tains the best performances for all metrics, except for MMD (see underlined
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Table 3: Autoencoding results. † - results from [53] on the official split, ∗ - results
for equal training time as DPF-Net on the random split.

Metric CD ×104 EMD ×102

l-GAN-CD [1] 7.07 7.70
l-GAN-EMD [1] 9.18 5.30
AtlasNet [18] 5.66 5.81

PointFlow† [53] 7.54 5.18
PointFlow∗ 10.22 6.58
DPF-Net, orig. 6.85 5.06
DPF-Net, norm. 6.17 4.37
Oracle 3.10 3.13

results). We believe that this highlights the fact the MMD metric does not favor
diversity in the generated point clouds, but instead favors point clouds with low
CD/EMD distances to all the reference shapes. If the generated point clouds
contain a subset of high quality modes from the test subset, the metric can yield
good results, even better than the oracle. DPF-Nets and PointFlow yield quali-
tatively similar point cloud samples, we provide a comparison of samples in the
supplementary material.

4.3 Autoencoding Evaluation

We compare DPF-networks with other models in terms of autoencoding perfor-
mance in Table 3. Similarly to generative experiments, we restricted the training
time of PointFlow, this time, to match the training time of our approach which
was approximately a week. Among models trained on non-normalized data, DPF-
Net (orig.) achieve the best results in the EMD metric and second best in the CD
metric, outperformed only by the non-generative AtlasNet which is trained by
optimization of the CD metric. The DPF-Net outperforms both l-GANs which
were specifically optimized for the CD/EMD metrics, while being trained by

Input lGAN-CD lGAN-EMD AtlasNet PointFlow* DPF DPF norm.

Fig. 4: Qualitative comparison of the models from Table 3 for the autoencoding
task with sparse (top) and dense (bottom) inputs.
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Input AtlasNet DPF-Net gr. truth Input AtlasNet DPF-Net gr. truth

Fig. 5: Qualitative comparison for single-view reconstruction task.

optimization of the likelihood lower bound. Importantly DPF-Nets outperform
PointFlow in both metrics under the same and extended computational budget.

When our model is trained on normalized data, results significantly improve,
achieving state-of-the-art among generative models for both metrics. This un-
derlines the importance of proper data normalization for shape modeling.

In Figure 4 we qualitatively compare our autoencoding results to l-GANs,
AtlasNet, and PointFlow. All approaches can work with arbitrary size inputs,
but only AtlasNet, PointFlow, and DPF-Nets can reconstruct with arbitrary
density. In this comparison we use 512 and 32, 768 points as sparse and dense
inputs, while reconstructing fixed 2, 048 points for l-GANs and 32, 768 point for
AtlasNet, PointFlow and DPF-Nets. Models with better CD values (l-GAN-
CD, AtlasNet) tend to concentrate points in some regions of reconstructed
shapes, while models with better EMD values (l-GAN-EMD, DPF-Nets) dis-
tribute points more evenly. While AtlasNet achieves best CD, its reconstructions
contain sharp plane-like artifacts. Our DPF-Nets produce overall smoother re-
constructions, but, on the other hand, suffer from more noise.

4.4 Single-View Reconstruction

In this section we test DPF-Nets on the inference of 3D point clouds from sin-
gle images. The architecture used for this specific task is depicted in Figure 3
and detailed in Section 3.2. We compare our results to recent state-of-the-art
methods in the field. This includes: the voxel-based PRN [28], point cloud-based
approaches of AtlasNet [18] and DCG [49], and the mesh-based Pixel2Mesh [50].

Although convenient, in general, comparison to voxel-based approaches should
be taken with a grain of salt, since it is biased. To compute the proposed metrics
either ground truth or reconstructed voxelized shapes are fed to the marching
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Table 4: Single-view reconstruction results. †: results taken from [50].
Model CD↓, ×103 EMD↓, ×102 F1↑, τ = 0.001,%

PRN [28] 7.56 11.00 53.1
AtlasNet [18] 5.34 12.54 52.2
DCG [49] 6.35 18.94 45.7

Pixel2Mesh† [50] 5.91 13.80 -
DPF-Nets 5.51 10.95 52.4
Oracle 1.10 5.70 84.0

cubes algorithm to obtain final meshes which are used to sample point clouds.
Resulting ground truth meshes in that case are crude approximations of the
original meshes, used in the evaluation of the point cloud and mesh-based ap-
proaches. Moreover, there are cases both in voxelized data and reconstructions,
when the marching cubes algorithm fails to output meshes.

The results in Table 4 show that DPF-Net clearly outperforms earlier works
in terms of the EMD metric. It also achieves best results in terms of the F1-
score among point cloud and mesh-based models. In terms of CD, similarly to
autoencoding it is outperformed only by AtlasNet with a small margin. This
validates the ability of normalizing flows to capture complex distributions in 3D
and to model shape surfaces.

Qualitative single-view reconstruction results can be found in Figure 5. Note
that a single reconstruction model has been trained across all 13 classes for
both AtlasNet and DPF-Net. Similarly to the autoencoding task, compared to
AtlasNet our approach produces more evenly distributed point clouds without
sharp dense clusters, but introduces more noise.

5 Conclusion

We presented DPF-Networks, a generative model for point clouds of arbitrary
size. DPF-Nets are based on a latent variable model and use normalizing flows
with affine coupling layers to construct a flexible, yet tractable, shape conditional
density on 3D points, and an expressive latent shape space prior. They are
trained akin to VAEs, using a permutation invariant point cloud encoder as
approximate posterior distribution over the latent shape space.

The evaluation on the ShapeNet dataset demonstrates that DPF-nets im-
prove generative performance metrics over previous work in most metrics and
classes. Compared to a recent related work based on continuous normalizing
flows, our model is between one and two orders of magnitude faster to train and
sample from. Applied to single view reconstruction, DPF-Nets outperform state-
of-the-art methods, hence showing promising capabilities in 3D shape modeling.
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