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Abstract. We present inertial safety maps (ISM), a novel scene repre-
sentation designed for fast detection of obstacles in scenarios involving
camera or scene motion, such as robot navigation and human-robot in-
teraction. ISM is a motion-centric representation that encodes both scene
geometry and motion; different camera motion results in different ISMs
for the same scene. We show that ISM can be estimated with a two-
camera stereo setup without explicitly recovering scene depths, by mea-
suring differential changes in disparity over time. We develop an active,
single-shot structured light-based approach for robustly measuring ISM
in challenging scenarios with textureless objects and complex geometries.
The proposed approach is computationally light-weight, and can detect
intricate obstacles (e.g., thin wire fences) by processing high-resolution
images at high-speeds with limited computational resources. ISM can be
readily integrated with depth and range maps as a complementary scene
representation, potentially enabling high-speed navigation and robotic
manipulation in extreme environments, with minimal device complexity.

1 Introduction

Imagine a drone flying through a forest or a robot arm repairing a complex
machine part. In order to determine if they are on a collision course with an
obstacle, they require knowledge of the 3D structure of the surroundings, as
well as their own motion. Although classical approaches such as SLAM [5, 29]
can recover 3D geometry and motion, doing so at high-speeds needed for fast
collision avoidance is often prohibitively expensive. While a full 3D map and
precise motion may be needed for long-term navigation policies (and for other
applications such as augmented reality), it may not be critical for making short-
term but time-critical decisions like detection and avoidance of obstacles.

In this paper, we propose weak 3D cameras which recover scene representa-
tions that are less informative than 3D maps, but can be captured considerably
faster, with limited power and computation budgets. These weak 3D cameras
are based on inertial safety maps (ISM), a novel scene representation tailored for
time-critical and resource-constrained applications such as fast collision avoid-
ance. ISM, for each pixel, is defined as the product of scene depth and time-to-
contact (TTC) – time it will take the camera to collide with the scene if it keeps
moving with the current velocity [19]. ISM is a motion-centric scene represen-
tation; it encodes both the 3D scene geometry as well as scene-camera relative
motion.1 Given a scene, different motions of the camera lead to different ISMs,

1 In contrast, a 3D map is a motion-invariant scene representation.
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Inertial Safety Map (ISM): A Motion-Centric Scene Representation

Fig. 1. Inertial Safety Map (ISM) is a motion-centric scene representation tailored
for fast collision avoidance. (a-b) An example scene – a room with several pillars. (c-e)
For the same scene, different camera motion results in different ISMs. A low value of
ISM indicates a higher likelihood of collision, whereas higher values convey safety in
the immediate future. (f) For a given value of ISM, the possible (z, τ) pairs lie on a
hyperbolic curve called the z−τ curve, which can be used for navigation policy design.
(g-h) Scenes with intricate objects that are a few millimeters thick being observed
from a distance of 1.5m. (i-j) Conventional depth cameras based on structured-light
or time-of-flight have low spatial resolution, and cannot resolve these thin objects.
(k) The proposed ISM estimation algorithm, due to its low computational complex-
ity, can use high-resolution images for detecting intricate obstacles, while maintaining
high speeds. With conventional 3D imaging techniques, increasing the resolution comes
with increased device complexity or high computational cost, often precluding real-time
performance. (l-n) Quantitative timing comparisons show that for the same image res-
olution, the unoptimized CPU, and the GPU implementation of the proposed method
are up to one order of magnitude faster than existing matching methods.
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as shown in Fig. 1(a-e). ISM lends itself to intuitive interpretations that can be
readily incorporated in robot navigation policies; small ISM indicates potentially
imminent danger of collision, whereas large values convey relative safety.

Active ISM using structured illumination: Consider a robot equipped with
a stereo camera pair. Our key insight is that it is possible to directly recover the
ISM without explicitly computing the disparities and depths, by performing
a differential analysis of stereo image formation. Based on this, we develop a
theoretical model of active ISM, the structured light (SL) counterpart of stereo-
based ISM, where one of the cameras from the stereo pair is replaced with
a projector (which is treated as an inverse camera). The projection of coded
intensity patterns enables robust estimation of ISM even in challenging scenarios,
such as textureless and geometrically complex objects. Based on the active ISM
model, we develop a practical single-shot ISM recovery method that requires
projecting and capturing only a single image2. This can be readily implemented
with low complexity optical devices (e.g., an LED with a static mask), and is
amenable to high-speed motion scenarios.

Fast detection of intricate obstacles: Single-shot structured light meth-
ods typically require computationally expensive algorithms for computing cor-
respondences. Since ISM requires only differential disparity and not absolute
correspondences, we design a fast algorithm based on Fourier analysis of the
images, which enables real-time estimation of ISM even for high-resolution im-
ages using only commodity hardware with a limited computational budget. As
a result, the proposed approaches can detect intricate obstacles (e.g., tree twigs,
thin wire fences) that are beyond the capabilities of commodity 3D cameras [43],
which have low resolution due to constraints on device complexity and compu-
tational resources (Fig. 1(g-k)). While it is theoretically possible to increase the
resolution of conventional 3D imaging techniques, it often comes with a high
computational cost. For example, we perform timing comparisons of CPU-based
MATLAB and GPU-based CUDA C++ implementations of our approach, both
of which are up to one order of magnitude faster than current methods at the
same spatial resolution (Fig. 1(l-n)). With such computational benefits across
computing architectures, ISMs can help robots with limited computation bud-
gets navigate challenging environments with intricate obstacles.

Scope and limitations: ISM should not be seen as a replacement for conven-
tional scene representations such as depth maps, which are needed for long-term
path planning. Instead, ISM should be considered a complementary represen-
tation that can be recovered at lower time and power budgets, but only pro-
vides conservative collision estimation. In general, it is not possible to recover
depth maps from ISMs. However, it is possible to recover depth map from the
same captured data used for estimating single-shot active ISM, albeit with a
higher computational cost. In future, we envision navigation policies with par-
allel threads utilizing the same data – a fast thread to estimate ISM that makes
fast navigation decisions such as braking and collision avoidance, and a slow
thread to create a full 3D map to aid high-level navigation. Developing such
policies, although beyond the scope of this paper, is an important next step.

2 The method is “single-shot” in that we compute N ISMs from N + 1 frames (single-
shot except one initial frame).
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2 Related Work

Single-shot structured light 3D imaging. Single-shot structured light (SL)
methods project only one pattern to recover depths and thus are suitable for dy-
namic scenes. Common patterns include sinusoids [36, 37], de Bruijn stripes [23,
33], grids [21, 34], or random dots [43]. These methods often rely on computa-
tionally expensive search algorithms, and cannot operate at high frame rates.
Recently, Fanello et al. [6] treated SL matching as a classification problem and
showed depth recovery at 1kHz for 1MP images. Our goal is different: We define
a motion-centric safety measure that is fundamentally easier to compute than
depths. An interesting next step is to apply learning techniques to further in-
crease the efficiency of ISM computation. Furukawa et al. [9] has a similar idea of
utilizing the disparity change due to object motion, but require one or more color
projectors, which increases the hardware complexity and reduces robustness for
scenes with non-uniform color distributions [38].

Collision detection based on other modalities. Proximity sensors based
on various modalities (LiDAR [12], ultrasound [35], RADAR [1], programmable
light curtain [2, 40]) either measure a single global proximity value or require me-
chanical scanning for generating a 2D map. Time-of-flight (ToF) [15] and Doppler
ToF-based methods [16] require correlation sensors. Because of their hardware
complexities, all these methods are usually limited in resolution (see Fig. 1 for
examples). Navigation based on optical flow [4, 11] and time-to-contact [19, 28,
41] uses passive sensors and is not suitable for textureless scenes and low-light
environment. Our method is active, single-shot, has low hardware and computa-
tional complexity, and recovers a high-resolution 2D safety map with fine details
that can be used for avoiding obstacles with thin structures.

Metrics used for collision avoidance. The level of safety for a robot to nav-
igate without collision depends on not only distance to obstacles (depth map),
but also speed, mass, physical size, etc [27]. In robotics, several works [17, 20,
22, 44] have proposed safety metrics for collision avoidance. In this paper, we
propose a novel safety metric that captures both the geometry and the motion
aspects of safety, and can be estimated from visual data with minimal compu-
tation requirements. Deploying this metric in real-world robotic applications is
an exciting direction for future work.

3 Inertial Safety Map

In this section, we present inertial safety map (ISM), a novel representation of
the scene for collision avoidance in scenarios involving scene or camera motion
(e.g., robot navigation). Consider a rectified binocular stereo setup observing a
scene. Suppose a scene point R = (x, y, z) projects to pixel (u, v) in the right
view, and pixel (u + Υ, v) in the left view. Υ is called the disparity of R. The
disparity Υ and the depth z of R are related by the triangulation equation:

z =
fb

Υ
, (1)

where f is the focal length of the cameras (assumed same for both cameras). b is
the baseline of the stereo setup. Stereo algorithms compute depths z by estimat-
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ing corresponding pixels and disparity Υ between the stereo image pair, which
often requires computationally intensive search and optimization algorithms [6].

3.1 Differential Analysis of Triangulation Equation

Suppose the scene point R moves with respect to the camera pair due to scene/
camera motion. Due to this relative motion, the disparity Υ may change over
time. Our key observation is that, although computing absolute disparities Υ may
be expensive, it is possible to efficiently recover differential changes in disparity
∆Υ due to small motion. For instance, a differential disparity change may be
estimated by searching in a small local window instead of the entire epipolar
line [3]. Later in Section 5, we will discuss an approach for fast computation of
differential disparity change in an active stereo (coded structured light) system.

What information is recoverable from disparity change? We address
this question by performing a differential analysis of the triangulation equation
(Eq. 1). By re-writing Υ = fb

z as a function of depth z from Eq. 1, and taking
the derivative of Υ with respect to time t, we get:

dΥ

dt
= −fb

z2
dz

dt
. (2)

Assuming the time difference ∆t between two successive frames is small, we can
multiply both sides by ∆t and get

∆Υ = −fb
z2
∆z , (3)

where ∆Υ and ∆z are the changes in the disparity and depth of point R, re-
spectively, due to relative scene-camera motion. Next, we define time-to-contact
τ = − z

∆z , as the time it will take for the camera (the image plane of the right
camera) to collide with point R if the relative velocity between the camera and
the point remains the same [19]. By substituting in the above equation, and
rearranging the terms, we get the following key relationship:

z · τ =
fb

∆Υ
. (4)

Assuming a calibrated stereo system (known focal length f and baseline b),
the right-hand side involves only one unknown ∆Υ , which we assume can be
computed efficiently. The left-hand side is the product of two quantities that are
indicators of the chances of keeping moving safely. Intuitively, a large value of
the product of z and τ indicates low chances of collision. Based on this intuition,
we define the inertial safety measure for collision avoidance as follows:

Definition. The inertial safety measure S of a scene point with respect to its
relative motion to the stereo camera is defined as the product of its depth z and
time to contact τ ,

S = z · τ =
fb

∆Υ
. (5)

which can be computed from camera parameters f and b, and disparity change
∆Υ . The inertial safety map (ISM) is a per-pixel map of inertial safety measure.
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The inertial safety measure S encodes the level of safety if the camera keeps
its current motion. By estimating ∆Υ , we can compute S for collision avoidance.
For example, a robot can detect obstacles and get around them by identifying
image regions with low values of S, without explicitly computing depths.

3.2 Inertial Safety Map: Interpretations

Imagine a fast-moving drone navigating around pillars in a room (Fig. 1). For
this simulated scene, we plot the ground truth ISMs for three different motions.
The unit of ISM is mm × f , where depth is in mm and the time-to-contact
(TTC) is expressed in terms of the number of frames before collision. Darker
colors represent low values of the ISM, and therefore a higher level of danger of
collision. All values higher than a threshold, or less than zero (due to camera
moving away from the scene) are mapped to white.

A motion-centric scene representation: From Figs. 1(c-e), we observe that
for the same scene, different motions results in different ISMs. This is because
the TTC depends on the z-velocity. The amount of z-motion between frames is
doubled in (d) compared to (c), so the TTC is halved for every pixel. In (e), since
there is no z-motion, the ISM is +∞ everywhere. Thus, the inertial safety map
can be considered a motion-centric scene representation as it depends both on
the scene’s geometry, as well as the relative scene-camera motion; it encodes the
degree of safety (from collision) if the camera/scene keeps its current motion.

z − τ curve: A given value of the ISM corresponds to an infinite number of
possible z − τ pairs, which trace out a hyperbolic curve called the z − τ curve
in the 2D z − τ space (Fig. 1(c,f)). The z − τ curves corresponding to three
highlighted scene points are plotted in (f), with the exact (z, τ) values indicated
by the colored rectangles. Although we cannot determine the true z and τ values
from an estimate of the ISM, the ISM can be used as a fast and conservative
safety check in robot navigation policies. This is because when ISM is high,
both z and τ have to be high, so the robot is safe. When ISM is low, it can
be due to either high z and low τ , or low z and high τ . This ambiguity can be
resolved by designing a more sophisticated navigation policy, or by triggering
a full depth recovery algorithm for collision avoidance. See the supplementary
technical report for a detailed discussion.

4 Active Inertial Safety Map

So far we have defined the inertial safety map for a passive two-camera stereo
system. However, the ISM can be generalized to any two-view imaging system,
including active methods such as structured light (SL), where the second camera
is replaced by a projector (an inverse camera). In SL, a coded light pattern is
projected to enable robust scene recovery even in challenging scenarios including
lack of scene texture and insufficient lighting. In this section, we develop math-
ematical model and approaches for active ISM, i.e., recovering ISM using SL.
Specifically, we consider active ISM recovery from single-shot SL where a single
image is captured with a single projected pattern.

Consider a projector-camera system with a horizontal baseline For ease of
analysis, we assume that the projector projects a pattern with 1D translational
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symmetry, i.e., all the projector pixels in a column have the same intensity. Such
patterns are used in several SL 3D imaging systems [23, 37], and can be expressed
as a 1D function P (c), where c is the projector column index.

Suppose a scene point R is illuminated by projector column index c, and
imaged at camera pixel (u, v) at time t. The intensity of pixel (u, v) at t is:

i(u, v, t) = α(u, v, t)P (c) + β(u, v, t) , (6)

where α(u, v, t) encapsulates the reflectance properties of point R, and β(u, v, t)
is the intensity component due to ambient light. The projector column index c,
camera pixel index u and the disparity Υ are related as:

Υ (u, v, t) = c− u. (7)

Suppose point R moves with respect to the camera (due to camera or scene
motion) from time t to t + ∆t. After motion, let the point be illuminated by
projector column index c + ∆c, and imaged at camera pixel (u + ∆u, v + ∆v).
Similar to Eq. 6, the observed intensity of point R at t+∆t is given as:

i(u+∆u, v +∆v, t+∆t) = α′ P (c+∆c) + β′ , (8)

where α′ = α(u + ∆u, v + ∆v, t + ∆t), β′ = β(u + ∆u, v + ∆v, t + ∆t). The
disparity of point R after motion is then:

Υ (u+∆u, v +∆v, t+∆t) = (c+∆c)− (u+∆u) . (9)

Recovering the ISM requires measuring the disparity change ∆Υ , which is
the difference between the new and old disparity, i.e., ∆Υ = Υ (u+∆u, v+∆v, t+
∆t)− Υ (u, v, t). From Eqs. 7 and 9, we get:

∆Υ = ∆c−∆u . (10)

Computational considerations: To compute ∆Υ , we need to estimate both
the “texture flow” (∆u) and the “illumination flow” ∆c, which are the projected
motion of the scene point on the camera’s and projector’s image planes [39].
This problem is challenging due to several non-linearly coupled unknowns for
each pixel (α, β, Υ,∆u,∆c). Solutions require expensive nonlinear optimization
and therefore are not suitable for applications with limited computational budget
and extreme timing requirements.

To make the computation tractable, instead of considering the disparity
change ∆Υ of a fixed scene point, we consider ∆Υ of a fixed pixel in the camera
image. At time t+∆t, we analyze the image intensity at the same pixel (u, v):

i(u, v, t+∆t) = α(u, v, t+∆t)P (c+∆ΥR) + β(u, v, t+∆t) ,

where α(u, v, t + ∆t) and β(u, v, t + ∆t) are the reflectance and ambient terms
for the scene point imaged at pixel (u, v) after motion, and

∆ΥR = Υ (u, v, t+∆t)− Υ (u, v, t) (11)

is the disparity change along the camera ray at pixel (u, v). This definition of
active ISM does not compute correspondences between frames, instead relying
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Fig. 2. Overview of active ISM recovery method. (1) The scene is illuminated
by a high-frequency sinusoidal pattern, which can mathematically be represented as
a multiplication in the spatial domain and a convolution in the frequency domain
(ignoring ambient light). The frequency domain images are plotted in log scale. (2) A
bandpass filter is applied to extract the term G. (3) Inverse FFT is used to get wrapped
phase maps at time t and t+∆t. (4) Combine both maps to get the disparity change
(Eq. 19). (5) Compute ISM (Eq. 5).

on a differential analysis that estimates the differential depth change between two
frames at each pixel. The resulting active ISM provides a conservative measure of
danger that detects all potential collisions: When a collision is about to happen,
the depth at the corresponding pixel will decrease to zero. Therefore, the ISM
will be small at the pixel at some point before collision. As we show in Section 5,
it is possible to estimate ∆ΥR with simple (linear) analytic expressions that can
be computed extremely fast with limited computational resources.

ISM estimation under sharp depth variations: Due to relative scene-
camera motion, pixel (u, v) may image different scene points at times t and
t + ∆t. As a result, the computed ISM value may result in overly conservative
collision warnings, especially at depth edges where the depth changes signifi-
cantly across frames. This issue can be mitigated by spatio-temporal filtering
the estimated ISM. See the supplementary report for a detailed discussion.

5 ISM from Single-Shot Structured Light

In this section, we present practical approaches for computing active ISM from
single-shot structured light. One way to estimate ISM is to directly estimate
scene disparities by using globally-unique patterns such as de Bruijn [23, 33] and
random patterns [6]. Once disparities Υ are computed before and after motion,
ISM can be trivially computed by taking their difference (Eq. 11). However,
single-shot SL methods typically requires computationally intensive algorithms
which are not suitable for scenarios with limited computational budget.

5.1 Fast Fourier Domain Computation of ISM

We propose a fast method for computing ISM, based on projecting a 1D high-
frequency sinusoid pattern. A pictorial summary of the method is shown in
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Fig. 2. Let the projected sinusoid pattern be given as:

P (c) = 0.5 + 0.5 cos (ωc), (12)

where ω is the angular frequency of the sinusoid. Substituting in Eq. 6, the
intensity at pixel (u, v) is:

i = α+ α cos (ωu+ ωΥ ) + β , (13)

where abusing the notation, the constant 0.5 is absorbed with α. For brevity,
we drop the indices (u, v, t). Eq. 13 is an underconstrained nonlinear equation
in three unknowns (α, β and Υ ), and thus, challenging to solve directly.

Solving Eq. 13 by linearizing and regularizing: The cos term on the right
hand side can be expanded into a sum of complex functions:

i = α+ α · (ejω(u+Υ ) + e−jω(u+Υ ))/2 + β

= α+ β︸ ︷︷ ︸
f

+ 0.5α ejωΥ︸ ︷︷ ︸
g

ejωu + 0.5α e−jωΥ︸ ︷︷ ︸
g∗

e−jωu, (14)

where j =
√
−1. The above is now a linear equation in three unknowns f , g and

g∗ (conjugate of g):

i(u, v, t) = f(u, v, t) + ejωu g(u, v, t) + e−jωu g∗(u, v, t). (15)

Regularizing by assuming global smoothness: One way to solve Eq. 15
is to make the restrictive assumption that the variables f , g and g∗ are locally
constant and stack the equations in a local neighborhood into a linear system
(similar to Lucas-Kanade image alignment [26]). However, inspired by Fourier
transform profilometry [36, 37], we make a less restrictive assumption that scene
reflectance and depths (and thus, α, β and Υ ) vary smoothly horizontally (in
each row) compared to the pattern frequency ω. In this case, f and g are band-
limited signals. Taking the 2D Fourier Transform with respect to u and v:

I(ωu, ωv, t) =F (ωu, ωv, t) +G(ωu − ω, ωv, t)
+G∗(ωu + ω, ωv, t) .

(16)

The spectra F , G and G∗ can be separated from each other by ω, as shown in
Fig. 2. We extract the spectrum G(ωu − ω, ωv, t) by applying a bandpass filter
(a 2D Hanning window as in [24]) and transform it back to the primal domain.
The complex signal g is recovered as:

g(u, v, t) = 0.5α(u, v, t) ejωΥ (u,v,t). (17)

The disparity can be estimated from the complex argument:

Υ̂ = arg(g(u, v, t))/ω . (18)

Oriented 2D filter: Consider a tilted thin thread in front of a wall, as shown in
Fig. 3 (a). The disparity no longer changes smoothly in each row, which makes
the spectra inseparable by using simple vertical bandpass filters (Fig. 3 (b)).
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(a) Scene (b) Fourier Transform (c) Oriented Filter (d) Filtered Spectrum
(e) Estimated ISM
(Oriented Filter)

(f) Estimated ISM
(Vertical Filter)

Fig. 3. Oriented 2D filter for resolving thin structures with different ori-
entations. (a) A tilted thin thread in front of a wall. Disparity changes abruptly in
each row. (b-d) The spectra are no longer separable by using simple vertical bandpass
filters. Instead, they can be separated using oriented filters. (e-f) An oriented filter
recovers the ISM with higher accuracy as compared to a vertical filter.

However, if we filter the spectrum using an oriented 2D filter, as shown in (c),
it is still possible to separate the signal G from F , as shown in Fig. 3 (d). As a
result, the estimated ISM (Fig. 3 (e)) is more accurate than using a vertical filter
(Fig. 3 (f)). In practice, it is possible to divide the image into small patches, and
filter each patch using different oriented filters to detect thin structures with
different orientations. See the supplementary report for details.

Need for phase unwrapping? It may appear from first glance that absolute
disparity Υ can be recovered from Eq. 18. To recover the absolute disparity, one
needs to recover the absolute phase φu = ωΥ . However, we can only recover the
wrapped phase φw, related to φu by φu = φw + 2kπ for some unknown k ∈ N.3

Absolute phase φu can be recovered by spatial phase unwrapping methods [10],
which require global reasoning and are highly computationally intensive.

Fortunately, to compute the ISM SE , we only need to compute the disparity
change ∆ΥR, instead of the absolute disparity Υ . Assuming a small change in
Υ across consecutive frames, i.e., ∆ΥR ∈ (−π/ω, π/ω], it is possible to compute
∆ΥR by taking the difference of wrapped phases:

∆ΥR(u, v, t) =wrap(arg(g(u,v,t+∆t))−arg(g(u,v,t))/ω , (19)

where wrap(φ) is a function that wraps a phase to the principal values. As a
result, a dense SE map can be computed efficiently without phase unwrapping.

5.2 Practical Considerations

Computational efficiency: ISMs can be computed at high speeds even for
very high resolution images, as demonstrated in Fig. 1(l-n). A direct comparison
between ISM and other single-shot SL methods is difficult since their code is usu-
ally not publicly available. Instead, we compare the computational speeds of the
proposed ISM algorithm and a few widely-used stereo matching algorithms. The
CPU (MATLAB) implementation of the method is up to one order of magnitude
faster than MATLAB’s semi-global matching algorithm [18]. We also develop a
GPU implementation of the proposed method, which is able to reach 1kfps at
1 megapixel resolution, and achieves real-time performance even for very high

3 It is possible to recover absolute phase using a unit-frequency sinusoid, however at
a considerably lower phase-recovery precision than high-frequency sinusoids.
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0 2.0
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Depth Map
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Fig. 4. Simulation results for example robot navigation scenarios through
intricate obstacles. The proposed approach can recover the ISM for scenes with
complex, overlapping thin structures (bamboos, tree branches, warehouse racks).

resolution (90fps at 9 megapixel), which is 9x faster than OpenCV’s CUDA im-
plementation of block matching and considerably faster than belief propagation
(BP) [7] and constant-space BP [42]. See the supplementary report for details
on the experiment setting. These comparisons demonstrate the computational
benefit of ISM for both computational architectures. In practice, the exact im-
plementation needs to be tailored to the available computing resources.

Allowable range of inter-frame motion vs. pattern frequency: The maxi-
mum inter-frame motion is determined by the recoverable disparity change ∆ΥR,
which is constrained by the pattern period Λ = 2π

ω as ∆ΥR <
Λ
2 . A low pattern

frequency enables recovering a wider range of ∆ΥR, thus allowing faster cam-
era motion. Typical velocities for the current hardware prototype are 1-10 cm/s
(captured at 30fps). On the other hand, using a higher frequency pattern can
separate f and g with wider frequency bands, which means higher robustness for
scenes with high-frequency textures or cluttered geometry. Finally, although our
image model (Eq. 6) assumes only direct lighting, in practice, inter-reflections
may result in erroneous estimates of SE map. Using a high-frequency pattern
also mitigates this effect [13, 30].
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Depth Map

Higher Danger

Fig. 5. Ground truth comparison. Our prototype structured light system consists
of a Canon DSLR camera and an Epson 3LCD projector. The projector projects a
1920×1080 high-frequency sinusoidal pattern with a period of 8 pixels. Zoom in to see
the pattern. ISMs estimated using the proposed method are compared with ground
truth, which is obtained by projecting binary SL patterns using the same hardware.
Depth maps of the scenes are also shown for comparison (not used in computing ISM).
(Top) A piecewise planar scene consisting of three books. (Bottom) A spherical ball.
Our method recovers the ISMs of both scenes accurately.

6 Experimental Results

Simulations. Fig. 4 shows three simulated scenes that emulate different robot
navigation scenarios. Our method is able to estimate the ISM of the thin, com-
plex geometry of bamboos, tree branches and warehouse racks.

Experiment setup. We build a prototype structured light system using a
Canon DSLR camera and an Epson 3LCD projector. The projector projects
a 1920× 1080 high-frequency sinusoidal pattern with a period of 8 pixels. After
rectification, a 3714 × 2182 captured image is used for ISM computation. The
camera-projector baseline is 353mm. Details on calibration and rectification can
be found in the supplementary technical report.

Ground truth comparison. Fig. 5 shows the comparison between the ISM
estimated by our method and the ground truth, which is obtained by projecting
a sequence of binary-coded SL patterns. The camera translates for roughly 3mm
along the z-axis. Our method correctly estimates the ISM for scenes with planar
and curved surfaces with strong depth edges.

Resolving extremely thin structures. Fig. 1(g-k) demonstrates our method’s
capability of recovering thin structures by processing high-resolution images,
which is possible due to the hardware simplicity of structured light and the
computational efficiency of the proposed algorithm. The thinnest part of the
scenes are 4mm and 1.5mm, which could be challenging to resolve from 1.5m
away. We also show results for two commodity depth cameras: Kinect V1 and
V2, whose spatial resolutions are 640×480 and 512×424 respectively. From the
same distance, the depth cameras are only able to partially recover the thicker
parts of the fence in the top scene and completely miss the rings in the bottom
scene. This is not meant to be a direct comparison of the three approaches,
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Fig. 6. Navigation sequences with manually planned trajectories. (Top) A
simulated sequence where a drone flies through thin threads. As the drone detects the
threads, it aligns its pose to be parallel with the threads to avoid collision. (Bottom)
A real video sequence where a robot navigates around a pillar. The unrectified images
are shown here to better convey the scene, while the ISM is only computed for the
cropped area due to projector’s field-of-view. The robot moves forward (first three
frames), detects the pillar and moves to the left to circumvent it (last frame).

because the data is acquired from different cameras. With a higher resolution,
depth cameras may also be able to recover the scene details, albeit at a higher
computational cost, as shown in the timing comparisons in Fig. 1.

Navigation sequences. Fig. 6 shows a simulated sequence (top) where a drone
flies through thin threads, and a real captured sequence which emulates a robot
navigating around a pillar (bottom). Trajectories are manually planned in both
examples. As the robot approaches the threads and the pillar, danger is detected
from the estimated ISM, and the robot reacts accordingly to avoid collision.

Detecting object motion. ISMs can also be used to detect collision due to
moving objects. For example, in a co-robot scenario where robots and human
workers collaborate in the same environment [8, 25], it is important to prevent
collisions between human and robot arms for safety. Fig. 7 shows two examples
where a moving human hand and a thin cable are correctly detected in the
ISMs. The thin cable is an intricate obstacle, which is challenging to detect with
current depth cameras. The estimated ISMs can be used to avoid collision with
human co-workers and intricate dynamic objects in the working environment. All
complete video sequences can be found in the supplementary video.
See the technical report for additional results.
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Scene Estimated ISM

Detected cable

Scene Estimated ISM

Fig. 7. Detecting object motion. ISMs can also be used to detect collisions between
moving objects and a static camera. (Left): A hand moving towards the camera.
(Right): A thin cable (held by a person) moving towards the camera. The
unrectified images are shown here to better convey the scene, while the ISM is only
computed for the cropped area due to projector’s field-of-view.

Scene Estimated ISMGround Truth ISM Depth Map Estimated ISMGround Truth ISM

(a) (b)

Fig. 8. Failure modes. Scene (a): High-frequency albedo. A plane with a very
high-frequency bi-sinusoidal pattern, which violates the albedo smoothness assumption.
Scene (b): Fast motion at short range. A slanted plane (see the depth map) moving
fast in z-direction towards the camera. Disparity change in the closest part of the scene
wraps around the period and the estimated ISM becomes negative (shown as white).

7 Limitations and Future Outlook

Failure modes. The proposed method may fail to estimate the ISM correctly
when the assumptions made in Section 5.1 are not satisfied. This happens when
the albedo varies too quickly, or when the objects are moving too fast at a short
distance, causing disparity changes too abruptly (Fig. 8). See the supplementary
technical report for a quantitative analysis.

Resolving vertical depth edges. Our method cannot accurately recover thin
structures that are nearly vertical because the depth varies abruptly along the
epipolar lines, which violates the smoothness assumption. A potential solution
is to have one camera and two projectors in an L-configuration such that both
horizontal and vertical epipolar lines are available.

Performance in outdoor settings: Outdoor deployment under sunlight is
challenging for all power-limited active imaging systems due to photon noise
from sunlight. It is possible to mitigate this issue by spatio-temporal illumination
coding [14], as well as joint illumination and image coding [32, 31] to enable ISM
recovery under strong sunlight.
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3. Čech, J., Sanchez-Riera, J., Horaud, R.: Scene flow estimation by growing corre-
spondence seeds. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 3129–3136. IEEE (2011)

4. Coombs, D., Herman, M., Hong, T.H., Nashman, M.: Real-Time Obstacle Avoid-
ance Using Central Flow Divergence, and Peripheral Flow. IEEE Transactions on
Robotics and Automation 14(1), 49–59 (1998)
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