Supplementary material for: P²Net: Patch-match and Plane-regularization for Unsupervised Indoor Depth Estimation

Zehao Yu*^{1,2}, Lei Jin*^{1,2}, and Shenghua Gao^{\dagger 1,3}

 ¹ ShanghaiTech Univsertiy
 ² DGene Inc
 ³ Shanghai Engineering Research Center of Intelligent Vision and Imaging {yuzh,jinlei,gaoshh}@shanghaitech.edu.cn https://github.com/svip-lab/Indoor-SfMLearner

1 Surface normal visualization

We provide more visualizations of surface normal prediction on the ScanNet [1] dataset. In our implementation, we directly fit the surface normal from ground truth depth annotation. Black pixels indicate invalid regions where no ground truth depths are provided. Compared to MovingIndoor [3], our surface normal estimation better preserves the boundary of the planar regions, thanks to our superpixel constraint.

2 Point clouds visualization

We further provide some point clouds visualization on NYUv2 [2] and ScanNet [1] dataset in Figure 2.

3 The effect of different patterns.

We compare the effect of different patterns in our Patch-match module. We experiment with different Ns and report the result in Table 1. Setting N to 3 gives best results.

^{*} Equal Contribution

[†] Corresponding author

2 Yu et al.

N	rms ↓	$\mathrm{rel}\downarrow$	$\delta < 1.25$	$\uparrow \delta < 1.25^2$	$\uparrow \delta < 1.25^3 \uparrow$
1	0.629	0.173	0.746	0.939	0.984
2	0.618	0.170	0.748	0.937	0.984
3	0.612	0.166	0.758	0.945	0.985
4	0.634	0.173	0.741	0.938	0.984

Table 1: Comparison between different patterns in our Patch-match module.

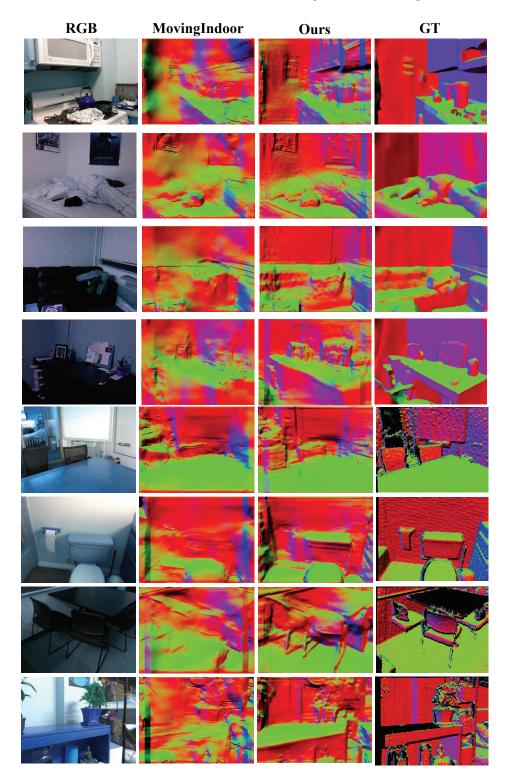


Fig. 1: Visualization of surface normal results on the ScanNet [1] dataset. From left to right: input RGB, MovingIndoor [3], our results and surface normal fitted from ground truth depth. Black pixels in ground truth indicate invalid regions where no depth ground truth are provided.

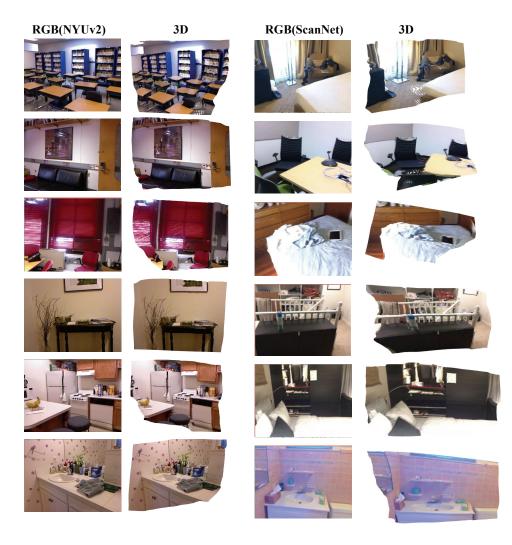


Fig. 2: Point cloud visualization. From left to right: input RGB from NYUv2, point cloud in 3D, RGB from ScanNet, point cloud in 3D.

References

- Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nie
 ßner, M.: Scannet: Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)
- 2. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)
- 3. Zhou, J., Wang, Y., Qin, K., Zeng, W.: Moving indoor: Unsupervised video depth learning in challenging environments. In: ICCV (2019)