
P2Net: Patch-match and Plane-regularization
for Unsupervised Indoor Depth Estimation

Zehao Yu∗1,2, Lei Jin∗1,2, and Shenghua Gao†1,3

1 ShanghaiTech Univsertiy
2 DGene Inc

3 Shanghai Engineering Research Center of Intelligent Vision and Imaging
{yuzh,jinlei,gaoshh}@shanghaitech.edu.cn

https://github.com/svip-lab/Indoor-SfMLearner

Abstract. This paper tackles the unsupervised depth estimation task
in indoor environments. The task is extremely challenging because of
the vast areas of non-texture regions in these scenes. These areas could
overwhelm the optimization process in the commonly used unsupervised
depth estimation framework proposed for outdoor environments. How-
ever, even when those regions are masked out, the performance is still
unsatisfactory. In this paper, we argue that the poor performance suf-
fers from the non-discriminative point-based matching. To this end, we
propose P2Net. We first extract points with large local gradients and
adopt patches centered at each point as its representation. Multiview
consistency loss is then defined over patches. This operation significantly
improves the robustness of the network training. Furthermore, because
those textureless regions in indoor scenes (e.g ., wall, floor, roof, etc.) usu-
ally correspond to planar regions, we propose to leverage superpixels as
a plane prior. We enforce the predicted depth to be well fitted by a plane
within each superpixel. Extensive experiments on NYUv2 and ScanNet
show that our P2Net outperforms existing approaches by a large margin.

Keywords: Unsupervised Depth estimation, Patch-based Representa-
tion, Multiview Photometric Consistency, Piece-wise Planar Loss

1 Introduction

Depth estimation, as a fundamental problem in computer vision, bridges the gap
between 2D images and 3D world. Lots of supervised depth estimation meth-
ods [7, 10, 30] have been proposed with the recent trend in convolution neural net-
works (CNNs). However, capturing a large number of images in different scenes
with accurate ground truth depth requires expensive hardware and time [4, 15,
38, 41, 43]. To overcome the above challenges, another line of work [14, 16, 46,
55] focuses on unsupervised depth estimation that only uses either stereo videos
or monocular videos as training data. The key supervisory signal in these work
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is the appearance consistency between the real view and the view synthesized
based on the estimated scene geometry and ego-motion of the camera. Bilinear
interpolation [20] based warping operation allows the training process to be fully
differentiable.

While recent works of unsupervised depth estimation [50, 54, 56] have demon-
strated impressive results on outdoor datasets, the same training process may
easily collapse [53] on indoor datasets such as NYUv2 [41] or ScanNet [4]. The
primary reason is that indoor environments contain large non-texture regions
where the photometric consistency (the main supervisory signal in unsuper-
vised learning) is unreliable. In such regions, the predicted depth might decay
to infinite, while the synthesized view still has a low photometric error. Similar
problems [16, 17, 32, 50] are also observed on outdoor datasets, especially in road
regions. While the propotion of such regions is small on outdoor datasets, which
would only lead to degradation in performance, the large non-texture regions on
indoor scenarios can easily overwhelm the whole training process.

An intuitive try would be to mask out all the non-texture regions during the
loss calculation. However, as the experimental results will demonstrate, merely
ignoring the gradients from these non-texture regions still leads to inferior re-
sults. The reason is that we are minimizing per pixel (point) based multi-view
photometric consistency error in the training process, where each point should
be matched correctly across different views. Such point-based representation is
not discriminative enough for matching in indoor scenes, since many other pix-
els in images could have the same intensity values. This operation could easily
result in false matching. Taking inspiration from traditional multi-view stereo
approaches [12, 39] that represent a point with a local patch, we propose to re-
place point-based representation with a patch-based representation to increase
the discriminative ability in the matching process. Specifically, points with large
local gradients are selected as our keypoints. We assume the same depth for
pixels within a local window around every keypoint. We then project these local
patches to different views with the predicted depth map and camera motion,
and minimize multi-view photometric consistency error over the patches. Com-
pared to point-based representation, our patch-based solution leads to a more
distinctive characterization that produces more representative gradients with a
wider basin of convergence.

Finally, to handle the rest large non-texture regions in indoor scenes, we draw
inspiration from the recent success of work [11, 29, 51] that leverages the plane
prior for indoor scene reconstruction. We make the assumption that homogeneous-
colored regions, for example, walls, can be approximated with a plane. Here we
adopt a similar strategy with the previous work [2, 3] that approximates the
planar regions with superpixels. Specifically, we first extract planar regions by
superpixels [9], then use a planar consistency loss to enforce the predicted depth
in these regions can be well fitted by a plane, i.e., low plane-fitting error within
each superpixel. This allows our network to produce a more robust result.

Compared with MovingIndoor [53], a pioneer work on unsupervised indoor
depth estimation that requires to first establish sparse correspondences between
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consecutive frames, and then propagates the sparse flows to the entire image,
our P2Net is direct, and no pre-matching process is required. Therefore, there
is no concern for falsely matched pairs that might misguide the training of the
network. Further, the supervisory signal of MovingIndoor [53] comes from the
consistency between the synthesized optical flow and the predicted flow of the
network. Such indirect supervision might also lead to a sub-optimal result. Our
P2Net instead supervises the network from two aspects: local patches for tex-
tured regions and planar consistency for the non-texture regions.

Our contributions can be summarized as follows: i) we propose to extract
discriminative keypoints with large local gradients and use patches centered at
each point as its representation. ii) patch-match: A patch-based warping process
that assumes the same depth for pixels within a local patch is proposed for a
more robust matching. iii) plane-regularization: we propose to use superpixels
to represent those homogeneous-texture or non-texture piece-wise planar regions
and regularize the depth consistency within each superpixel. On the one hand,
our P2Net leverages the discriminative patch-based representation that improves
the matching robustness. On the other hand, our P2Net encodes the piece-wise
planar prior into the network. Consequently, our approach is more suitable for
indoor scene depth estimation. Extensive experiments on widely-used indoor
datasets NYUv2 [41] and ScanNet [4] demonstrate that P2Net outperforms state-
of-the-art by a large margin.

2 Related Work

2.1 Supervised Depth Estimation

A vast amount of research has been done in the field of supervised depth estima-
tion. With the recent trend in convolution neural networks (CNNs), many differ-
ent deep learning based approaches have been proposed. Most of them frame the
problem as a per-pixel regression problem. Particularly, Eigen et al. [5] propose a
multi-scale coarse-to-fine approach. Laina et al. [25] improve the performance of
depth estimation by introducing a fully convolutional architecture with several
up-convolution blocks. Kim et al. [22] use conditional random fields to refine
the depth prediction. Recently, Fu et al. [10] treat the problem from an ordinal
regression perspective. With a carefully designed discretization strategy and an
ordinal loss, their method is able to achieve new state-of-the-art results in super-
vised depth estimation. Other work focus on combining depth estimation with
semantic segmentation [21, 52] and surface norm estimation [6, 34]. Yin et al. [49]
show that high-order 3D geometric constraints, the so-called virtual normal, can
further improve depth prediction accuracy. However, all of these methods rely
on vast amounts of labeled data, which is still a large cost in both hardware and
time.

2.2 Unsupervised Depth Estimation

Unsupervised learning of depth estimation has been proposed to ease the demand
for large-scale labeled training data. One line of work exploits stereo images or
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videos [46, 14, 16] as training data and trains a network to minimize the photo-
metric error between synthesized view and real view. Godard et al. [16] introduce
a left-right disparity consistency as regularization. Another line of work learns
depth from monocular video sequences. Zhou et al. [55] introduce a separate
network to predict camera motion between input images. Their method learns
to estimate depth and ego-motion simultaneously. Later work also focus on joint-
learning by minimizing optical flow errors [37, 50], or combining SLAM pipelines
into deep networks [40, 44]. However, none of the above approaches produce
satisfactory results on indoor datasets. MovingIndoor [53] is the first to study
unsupervised depth estimation in indoor scenes. The authors propose an opti-
cal flow estimation network, SFNet, initialized with sparse flows from matching
results of SURF [1]. The dense optical flows are used as the supervisory signal
for the learning of the depth and pose. By contrast, we propose to supervise the
training with a more discriminative patch-based multi-view photometric consis-
tency error and regularize the depth within homogeneous-color regions with a
planar consistency loss. Our method is direct, and no pre-matching process is
required. Therefore, there is no concern for falsely matched pairs that might
misguide the training of the network.

2.3 Piece-wise Planar Scene Reconstruction

Piece-wise planar reconstruction is an active research topic in multi-view 3D re-
construction [11, 13], SLAM [2, 3] and has drawn increasing attention recently [29,
48, 51, 28]. Traditional methods [12, 13] generate plane hypotheses by fitting
planes to triangulated 3D points, then assign hypotheses to each pixel via a
global optimization. Concha and Civera [2, 3] used superpixels [9] to describe
non-texture region in a monocular dense SLAM system. Their method has shown
impressive reconstruction results. Raposo et al. [36] proposed πMatch, a vS-
LAM pipeline with plane features to for a piecewise planar reconstruction. In
their more recent work [35], they recovered structure and motion from planar
regions and combined these estimations into stereo algorithms. Together with
Deep CNNs, Liu et al. [29] learn to infer plane parameters and associate each
pixel to a plane in a supervised manner. Yang and Zhou [48] learn a similar net-
work with only depth supervision. Following work [28, 51] further formulate the
planar reconstruction problem as an instance segmentation problem and have
shown significant improvements. Inspired by these work, we incorporate the pla-
nar prior for homogeneous-color regions into our unsupervised framework and
propose a planar consistency loss to regularize the depth map in such regions in
the training phrase.

3 Method

3.1 Overview

Our goal is to learn a depth estimator for indoor environments with only monoc-
ular videos. Following recent success on unsupervised depth estimation [55], our
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Fig. 1: Overall network architecture. Given input images, DepthCNN predicts the
corresponding depth for the target image It, PoseCNN outputs the relative pose
from the source to the target view. Our P2Net consists of two parts: a) Patch-
match Module: We warp the selected pixels along with their local neighbors
with a patch-based warping module. b) Plane-regularization Module: We
enforce depth consistency in large superpixel regions.

P2Net contains two learnable modules: DepthCNN and PoseCNN. DepthCNN
takes a target view image It as input and outputs its corresponding depth Dt.
PoseCNN takes a source view image Is and a target view image It as input and
predicts the relative pose Tt−→s between two consecutive frames. A commonly
used strategy is to first synthesize a novel view I ′t with the predicted depth map
Dt and camera motion Tt−→s, and minimize the photometric consistency error
between the synthesized view I ′t and its corresponding real view It. However, the
training process soon collapses when directly applying this strategy to indoor
scenarios.

Our observation is that the large non-texture regions in indoor scenes might
easily overwhelm the whole training process. Therefore, we propose to select
representative keypoints that have large local variances. However, representing
a point with a single intensity value, as done in previous unsupervised learning
frameworks [16, 17], is non-discriminative and may result in false matching. To
address this problem, we propose a Patch-match Module, a patch-based rep-
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resentation that combines a point with the local window centered at that point
to increase their discriminative abilities and minimize patch-based multi-view
photometric consistency error. To handle the large non-texture regions, we pro-
pose a Plane-regularization Module to extract homogeneous-color regions
using large superpixels and enforce that the predicted depth map within a su-
perpixel may be approximated by a plane. The overview of our P2Net is depicted
in Fig. 1.

3.2 Keypoints Extraction

Different from outdoor scenes, the large proportion of the non-texture regions
in indoor scenes can easily overwhelm the training process, leading to trivial
solutions where DepthCNN always predicts an infinity depth, and PoseCNN
always gives an identity rotation. Thus, only points within textured regions
should be kept in the training process to avoid the network being stuck in such
trivial results. Here, we adopt the points selection strategy from Direct Sparse
Odometry (DSO) [8] for its effectiveness and efficiency. Points from DSO are
sampled from pixels that have large intensity gradients. Examples of extracted
DSO keypoints are shown in Fig. 3.

A critical benefit of our direct method over matching based approaches [53]
is that we do not need to pre-compute the matching across images, which itself
is a challenging problem. As a result, our points need to be extracted from the
target image once only. No hand-crafted descriptor for matching is needed.

3.3 Patch-based Multi-view Photometric Consistency Error
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Fig. 2: Two types of warping operations. a) Naive point-based warping. b) Our
proposed patch-based warping. Note that we are defining pixels over its support
domain and warp the entire window. Combining support domains into the pixel
leads to more robust representations. Best viewed in color.

With the extracted keypoints from the previous step, we can simply define
a photometric consistency error by comparing the corresponding pixels’ values.
However, such point-based representation is not representative enough and may
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easily cause false matching because there are many pixels with the same intensity
values in an image. In traditional sparse SLAM pipelines [8], to overcome the
above challenge, a support domain Ωpi is defined over each point pi’s local
window. Photometric loss is then accumulated over each support domain Ωpi

instead of a single isolated point. This operation would lead to more robust
results as the extracted keypoints combined with their support domains are
becoming much more unique.

Inspired from the above operation, here we propose a patch-based warping
process as in Fig. 2. Specifically, we extract DSO keypoints pti from the target
view t, the original point-based warping process first back-projects the keypoints
to the source view Is with:

pt−→s
i = KT t−→sD(pi)K

−1pti (1)

where K denotes the camera intrinsic parameters, T t−→s the relative pose be-
tween the source view Is and the target view It, and D(pi) the depth of point
pi.Then we sample the intensity values with bilinear interpolation [20] at pt−→s

i

in the source view.
On the contrast, our approach assumes a same depth within each pixel’s local

window Ωt
pi

. Then, for every extracted keypoint, we warp the point together with
its local support region Ωt

pi
with the exact same depth. Our warping process can

thus be described as :

Ωt−→s
pi

= KT t−→sD(pi)K
−1Ωt

pi
(2)

where Ωt
pi

and Ωt−→s
pi

denotes the support domains of the point pi in the target
view and the source view, respectively. From a SLAM perspective, we character-
ize each point over its support region, such patch-based approaches makes the
representation of each point more distinctive and robust. From a deep learning
perspective, our operation allows a larger region of valid gradients compared to
the bilinear interpolation with only four nearest neighbors as in Equation (1).

Given a keypoint p = (x, y), we define its support region Ωp over a local
window with size N as:

Ωp = {(x+ xp, y + yp), xp ∈ {−N, 0, N}, yp ∈ {−N, 0, N}} (3)

N is set to 3 in our experiments. Following recent work [17], we define our patch-
based multi-view photometric consistency error as a combination of an L1 loss
and a structure similarity loss SSIM [45] over the support region Ωpi

:

LSSIM = SSIM(It
[
Ωt

pi

]
, Is
[
Ωt−→s

pi

]
) (4)

LL1 = ||It
[
Ωt

pi

]
− Is

[
Ωt−→s

pi

]
||1 (5)

Lph = αLSSIM + (1− α)LL1 (6)

where It [p] denotes pixel values at p in image It via a bilinear interpolation, and
α = 0.85 a weighting factor. Note that when more than one source images are
used in the photometric loss, we follow [17] to select the one with the minimum
Lph for robustness purpose.
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Fig. 3: Examples of input images, their corresponding keypoints, superpixels and
piece-wise planar regions obtained from large superpixels.

3.4 Planar Consistency Loss

Finally, to further constrain the large non-texture regions in indoor scenes, we
propose to enforce piecewise planar constraints into our network. Our assump-
tion is that, most of the homogeneous-color regions are planar regions, and we
can assume a continuous depth that satisfies the planar assumptions within these
regions. Following representative work on reconstruction of indoor scenes [3, 2],
we adopt the Felzenszwalb superpixel segmentation [9] in our approach. The
segmentation algorithm follows a greedy approach and segments areas with low
gradients, and hence produces more planar regions. Examples with images, su-
perpixels segmentation and piece-wise planar regions determined by superpixels,
are demonstrated in Figure 3. We can see that our assumption is reasonable, since
indoor scenes generally consists of many man-made objects, like floor, walls, roof,
etc. Further, previous work also shows the good performance of indoor scene re-
construction with a piece-wise planar assumption in [28, 29, 51].

Specifically, given an input image I, we first extract superpixels from the
image and only keep regions larger than 1000 pixels. An intuition is that the
planar regions, like walls, floor, the surface of a table, are more likely to be within
a larger area. Given an extracted superpixel SPPm and its corresponding depth
D(pn) from an image, where pn enumerates all the pixels within SPPm, we first
backproject all the points pn back to 3D space,

p3Dn = D(pn)K−1pn, pn ⊆ SPPm (7)

where p3Dn denotes the corresponding point of pn in 3D world. We define the
plane in 3D following [29, 51] as

A>mp
3D
n = 1 (8)

where Am is plane parameter of SPPm.
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We use a least square method to fit the plane parameters Am. Mathemat-

ically, we form two data matrices Ym and Pn, where Ym = 1 =
[
1 1 ... 1

]>
,

Pn =
[
p3D1 p3D2 ... p3Dn

]>
:

PnAm = Ym (9)

Then Am can be computed with a closed-form solution:

Am =
(
P>n Pn + εE

)−1
P>n Ym. (10)

where E is an identity matrix, and ε a small scalar for numerical stability. After
obtaining the plane parameters, We can then retrieve our fitted planar depth for
each pixel within the superpixel SPPm as D

′
(pn) = (A>mK

−1pn)−1. We then add
another constraint to enforce a low plane-fitting error within each superpixel:

Lspp =

M∑
m=1

N∑
n=1

|D(pn)−D
′
(pn)| (11)

Here M denotes the number of superpixels, and N number of pixels in each
superpixel.

3.5 Loss Function

We also adopt an edge-aware smoothness term Lsm over the entire depth map
as that in [16, 17]:

Lsm = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (12)

where ∂x denotes the gradients along the x direction, ∂y along the y direction
and d∗t = dt/dt is the normalized depth.

Our overall loss function is defined as :

L = Lph + λ1Lsm + λ2Lspp (13)

where λ1 is set to 0.001, λ2 is set to 0.05 in our experiments.

4 Experiments

4.1 Implementation Details

We implement our solution under the PyTorch [33] framework. Following the
pioneer work on unsupervised depth estimation in outdoor scenes, we use the
same encoder-decoder architecture as that in [17] with separate ResNet18s [18]
pretrained on ImageNet as our backbones, the same PoseCNN as that in [17].
Adam [23] is adopted as our optimizer. The network is trained for a total of 41
epochs with a batch size of 12. Initial learning rate is set to 1e−4 for the first 25
epochs. Then we decay it once by 0.1 for the next 10 epochs. We adopt random
flipping and color augmentation during training. All images are resized to 288×
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Methods Supervised rms ↓ rel ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Make3D [38] X 1.214 0.349 - 0.447 0.745 0.897
Liu et al. [31] X 1.200 0.350 0.131 - - -

Ladicky et al. [24] X 1.060 0.335 0.127 - - -
Li et al. [26] X 0.821 0.232 0.094 0.621 0.886 0.968

Liu et al. [30] X 0.759 0.213 0.087 0.650 0.906 0.976
Li et al. [27] X 0.635 0.143 0.063 0.788 0.958 0.991
Xu et al. [47] X 0.586 0.121 0.052 0.811 0.954 0.987
DORN [10] X 0.509 0.115 0.051 0.828 0.965 0.992

Hu et al. [19] X 0.530 0.115 0.050 0.866 0.975 0.993

PlaneNet [29] X 0.514 0.142 0.060 0.827 0.963 0.990
PlaneReg [51] X 0.503 0.134 0.057 0.827 0.963 0.990

MovingIndoor [53] × 0.712 0.208 0.086 0.674 0.900 0.968
Monov2 [17] × 0.617 0.170 0.072 0.748 0.942 0.986

P2Net (3 frames) × 0.599 0.159 0.068 0.772 0.942 0.984

P2Net (5 frames) × 0.561 0.150 0.064 0.796 0.948 0.986
P2Net (5 frames PP) × 0.553 0.147 0.062 0.801 0.951 0.987

ResNet18 X 0.591 0.138 0.058 0.823 0.964 0.989

Table 1: Performance comparison on the NYUv2 dataset. We report results
of depth supervised approaches in the first block, plane supervised results in
the second block, unsupervised results in the third and fourth block, and the
supervised upper bound of our approach denoted as ResNet18 in the final block.
PP denotes the final result with left-right fliping augmentation in evaluation. Our
approach achieves state-of-the-art performance among the unsupervised ones. ↓
indicates the lower the better, ↑ indicates the higher the better.

384 pixels during training. Predicted depth are up-sampled back to the original
resolution during testing. Since unsupervised monocular depth estimation exists
scale ambiguity, we adopt the same median scaling strategy as that in [17, 55]
for evaluation. A larger baseline is also beneficial for training, and we use a 3-
frame (one target frame, 2 source frames) input in our ablation experiments and
report the final results with a 5-frame (one target frame, 4 source frames) input.
Besides the standard DSO keypoints, we also draw points randomly to have a
fixed number of 3K points from one image.

4.2 Datasets

We evaluate our P2Net on two publicly available datasets of indoor scenes, in-
cluding NYU Depth V2 [41] and ScanNet [4].

NYU Depth V2. NYU Depth V2 consists of a total 582 indoor scenes. We
adopt the same train split of 283 scenes following previous work on indoor depth
estimation [53] and provide our results on the official test set with the standard
depth evaluation criteria. We sample the training set at 10 frames interval as
our target views and use ±10, ±20 frames as our source views. This leaves us
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around 20K unique images, a number much less than the 180K images used in
the previous work of unsupervised indoor depth estimation [53]. We undistort
the input image as in [42] and crop 16 black pixels from the border region.

We compare with MovingIndoor [53], the pioneer work on unsupervised in-
door depth estimation and Monov2 [17], a state-of-the-art unsupervised depth
estimation method on outdoor datasets. Quantitative results are provided in
Table 1. Our method achieves the best result. We further provide some visual-
ization of our predicted depth in Fig. 4. GeoNet collapsed during training as we
inspected. Compared to MovingIndoor [53], our method preserves much more
details owing to the patch-based multi-view consistency module. A supervised
upper bound, denoted as ResNet18, is also provided here by replacing the back-
bone network in [19] with ours.

Results for surface normal estimation are provided in Tab. 2. We compare
with other methods that fits norm from the point clouds. Not only is our result
the best among the unsupervised ones, it is also close to supervised results
like DORN [10]. We visualize some results of our method for surface normal
estimation in Fig. 5.

ScanNet. ScanNet [4] contains around 2.5M images captured in 1513 scenes.
While there is no current official train/test split on ScanNet for depth estimation,
we randomly pick 533 testing images from diverse scenes. We directly evaluate
our models pretrained on NYUv2 under a transfer learning setting to test the
generalizability of our approach. We showcase some of the prediction results in
Fig. 4. We achiever better result as reported in Tab. 3.

Methods Supervised Mean ↓ 11.2◦ ↑ 22.5◦ ↑ 30◦ ↑
GeoNet [34] X 36.8 15.0 34.5 46.7
DORN [10] X 36.6 15.7 36.5 49.4

MovingIndoor [53] × 43.5 10.2 26.8 37.9
Monov2 [17] × 43.8 10.4 26.8 37.3

P2Net (3 frames) × 38.8 11.5 31.8 44.8
P2Net (5 frames) × 36.6 15.0 36.7 49.0

P2Net (5 frames pp) × 36.1 15.6 37.7 50.0

Table 2: Surface normal evaluation on NYUv2. PP denotes the final result with
left-right fliping augmentation in evaluation.

4.3 Ablation Experiments

Patch-match and Plane-regularization. For our baseline, we first calculate
the variance within a local region for each pixel. This servers as our texture/non-
texture region map. Photometric loss is directly multiplied by the map. This
represents the most straightforward case when only point-based supervision is
provided. We report the numbers in the first row of Tab. 4. Then we add our
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Fig. 4: Depth visualization on NYUv2 (first 6 rows) and ScanNet (last 2 rows).
We trained our model on NYUv2 and directly transfer the weights to ScanNet
without fine-tunning. From left right: input image, results of MovingIndoor [53],
our results and ground truth depth. GeoNet would collapse on indoor datasets
due to the large non-texture regions. Compared to MovingIndoor [53], our meth-
ods preserve more details.
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Fig. 5: Visualization of fitted surface norm from 3D point clouds on the NYUv2
dataset. From left to right: input image, results of MovingIndoor [53], ours and
ground truth normal. Our method produces more smooth results in planar re-
gions.

proposed Patch-match module and report the results in the second line, the
Plane-regularization module in the fourth line. Experiments demonstrate the
effectiveness of our proposed modules.

Different keypoint types. Here, we demonstrate that our method is not
limited to some specific type of keypoint detectors. We replace DSO with a blob
region detector SURF [1]. We achieve similar results as reported in line two and
three in Tab. 4.

Camera pose. Following previous work [42] on predicting depth from videos,
we provide our camera pose estimation results on the ScanNet dataset, consisting
a total of 2000 pairs of images from diverse scenes. Note that since our method is
monocular, there exists scale ambiguity in our predictions. Hence, we follow [42]
and rescale our translation during evaluation. Results are reported in Tab. 5.
Our method performs better than MovingIndoor [53].

Results on outdoor scenes. Here we also provide our results on the KITTI
benchmark in Tab. 6. We trained and evaluated our results on the same subset as
in [17]. Our method outperforms another unsupervised indoor depth estimation
approach MovingIndoor. Different from indoor scenes, the main challenge in
outdoor scenes are moving objects (like cars) and occlusions, which seldom occur
in indoor scenes. Our method does not take such priors into consideration. On
the contrast, Monov2 is specially designed to handle these cases.
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Methods rms ↓ rel ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
MovingIndoor [53] 0.483 0.212 0.088 0.650 0.905 0.976

Monov2 [17] 0.458 0.200 0.083 0.672 0.922 0.981
P2Net 0.420 0.175 0.074 0.740 0.932 0.982

Table 3: Performance comparison on transfer learning. Results are evaluated
directly with NYUv2 pretrained models on ScanNet. Our model still achieves
the best result.

Keypoint
Patch
Match

Plane
Regularization

rms ↓ rel ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

- 0.786 0.240 0.628 0.884 0.962
DSO X 0.612 0.166 0.758 0.945 0.985

SURF X 0.622 0.169 0.750 0.941 0.986
DSO X X 0.599 0.159 0.772 0.942 0.984

Table 4: Ablation study of our proposed module on the NYUv2 dataset.

Method rot(deg) tr(deg) tr(cm)

Moving [53] 1.96 39.17 1.40
Monov2 [17] 2.03 41.12 0.83

P2Net 1.86 35.11 0.89

Table 5: Results on camera pose.

Method rel↓ rms ↓ δ < 1.25 ↑
Moving [53] 0.130 5.294 -

P2Net 0.126 5.140 0.862
Monov2 [17] 0.115 4.863 0.877

Table 6: Results on KITTI.

5 Conclusion

This paper propose P2Net that leverages patches and superpixels for unsuper-
vised depth estimation task in indoor scenes. Extensive experiments validate
the effectiveness of our P2Net. Here for simplicity we adopt the fronto-parallel
assumption. One possible solution could be to first pretrain the network and
calculate normal from depth. Then we can combine normal into the training
process.
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