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Abstract. Modeling imaging sensor noise is a fundamental problem for
image processing and computer vision applications. While most previ-
ous works adopt statistical noise models, real-world noise is far more
complicated and beyond what these models can describe. To tackle this
issue, we propose a data-driven approach, where a generative noise model
is learned from real-world noise. The proposed noise model is camera-
aware, that is, different noise characteristics of different camera sensors
can be learned simultaneously, and a single learned noise model can gen-
erate different noise for different camera sensors. Experimental results
show that our method quantitatively and qualitatively outperforms ex-
isting statistical noise models and learning-based methods. The source
code and more results are available at https://arcchang1236.github.

io/CA-NoiseGAN/.
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1 Introduction

Modeling imaging sensor noise is an important task for many image processing
and computer vision applications. Besides low-level applications such as image
denoising [4,9,25,26], many high-level applications, such as detection or recogni-
tion [10,17,20,21], can benefit from a better noise model.

Many existing works assume statistical noise models in their applications.
The most common and simplest one is signal-independent additive white Gaus-
sian noise (AWGN) [25]. A combination of Poisson and Gaussian noise, contain-
ing both signal-dependent and signal-independent noise, is shown to be a better
fit for most camera sensors [7,9].

However, the behavior of real-world noise is very complicated. Different noise
can be induced at different stages of an imaging pipeline. Real-world noise in-
cludes but is not limited to photon noise, read noise, fixed-pattern noise, dark
current noise, row/column noise, and quantization noise. Thus simple statistical
noise models can not well describe the behavior of real-world noise.

Recently, several learning-based noise models are proposed to better represent
the complexity of real-world noise in a data-driven manner [1,5,12]. In this paper,

https://arcchang1236.github.io/CA-NoiseGAN/
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we propose a learning-based generative model for signal-dependent synthetic
noise. The synthetic noise generated by our model is perceptually more realistic
than existing statistical models and other learning-based methods. When used
to train a denoising network, better denoising quality can also be achieved.

Moreover, the proposed method is camera-aware. Different noise characteris-
tics of different camera sensors can be learned simultaneously by a single genera-
tive noise model. Then this learned noise model can generate different synthetic
noise for different camera sensors respectively.

Our main contributions are summarized as follows:

– propose a learning-based generative model for camera sensor noise
– achieve camera awareness by leveraging camera-specific Poisson-Gaussian

noise and a camera characteristics encoding network
– design a novel feature matching loss for signal-dependent patterns, which

leads to significant improvement of visual quality
– outperform state-of-the-art noise modeling methods and improve image de-

noising performance

2 Related Work

Image denoising is one of the most important applications and benchmarks in
noise modeling. Similar to the recent success of deep learning in many vision
tasks, deep neural networks also dominate recent advances of image denoising.

DnCNN [25] shows that a residual neural network can perform blind de-
noising well and obtains better results than previous methods on additive white
Gaussian noise (AWGN). However, a recent denoising benchmark DND [19], con-
sisting of real photographs, found that the classic BM3D method [6] outperforms
DnCNN on real-world noise instead. The main reason is that real-world noise is
more complicated than AWGN, and DnCNN failed to generalize to real-world
noise because it was trained only with AWGN.

Instead of AWGN, CBDNet [9] and Brooks et al . [4] adopt Poisson-Gaussian
noise and demonstrate significant improvement on the DND benchmark. Actu-
ally, they adopt an approximated version of Poisson-Gaussian noise by a het-
eroscedastic Gaussian distribution:

n ∼ N (0, δshotI + δread) , (1)

where n is the noise sampling, I is the intensity of a noise-free image, and δshot
and δread denote the Poisson and Gaussian components, respectively. Moreover,
δshot and δread for a specific camera sensor can be obtained via a calibration
process [14]. The physical meaning of these two components corresponds to the
signal-dependent and signal-independent noise of a specific camera sensor.

Recently, several learning-based noise modeling approaches have been pro-
posed [1,5,12]. GCBD [5] is the first GAN-based noise modeling method. Its
generative noise model, however, takes only a random vector as input but does
not take the intensity of the clean image into account. That means the generated
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noise is not signal-dependent. Different characteristics between different camera
sensors are not considered either. The synthetic noise is learned and imposed on
sRGB images, rather than the raw images. These are the reasons why GCBD
didn’t deliver promising denoising performance on the DND benchmark [19].

GRDN [12] is another GAN-based noise modeling method. Their model was
trained with paired data of clean images and real noisy images of smartphone
cameras, provided by NTIRE 2019 Real Image Denoising Challenge [3], which is
a subset of the SIDD benchmark [2]. In addition to a random seed, the input of
the generative noise model also contained many conditioning signals: the noise-
free image, an identifier indicating the camera sensor, ISO level, and shutter
speed. Although GRDN can generate signal-dependent and camera-aware noise,
the denoising network trained with this generative noise model only improved
slightly. The potential reasons are two-fold: synthetic noise was learned and
imposed on sRGB images, not raw images; a plain camera identifier is too simple
to represent noise characteristics of different camera sensors.

Noise Flow [1] applied a flow-based generative model that maximizes the
likelihood of real noise on raw images, and then exactly evaluated the noise
modeling performance qualitatively and quantitatively. To do so, the authors
proposed using Kullback-Leibler divergence and negative log-likelihood as the
evaluation metrics. Both training and evaluation were conducted on SIDD [2]. To
our knowledge, Noise Flow is the first deep learning-based method that demon-
strates significant improvement in both noise modeling and image denoising
capabilities. However, they also fed only a camera identifier into a gain layer to
represent complex noise characteristics of different camera sensors.

3 Proposed Method

Different from most existing works, the proposed learning-based approach aims
to model noise characteristics for each camera sensor. Fig. 1 shows an overview
of our framework, which comprises two parts: the Noise-Generating Network and
the Camera-Encoding Network. The Noise-Generating Network, introduced in
Sec. 3.1, learns to generate synthetic noise according to the content of a clean
input image and the characteristics of a target camera. The target camera char-
acteristics are extracted via the Camera-Encoding Network from noisy images
captured by that target camera, which is illustrated in Sec. 3.2. Finally, Sec. 3.3
shows how to train these two networks in an end-to-end scheme.

3.1 Noise-Generating Network

As depicted in the upper part of Fig. 1, a clean image IC
s
i from the sth camera

and the initial synthetic noise ñinit are fed into a noise generator G and then
transformed into various feature representations through convolutional layers. At
the last layer, the network produces a residual image R(ñinit|ICs

i ) that approxi-
mates the difference between real noise n ∼ Pr and ñinit, where Pr indicates the



4 K.-C. Chang et al .

Noise-Generating Network

G

Camera-Encoding Network

D

E

D

E

E

𝑳𝐓𝐫𝐢𝐩𝐥𝐞𝐭

𝑳𝐀𝐝𝐯 𝑳𝐀𝐝𝐯

D

𝑳FM

+

Inference Phase

 : jth noisy image from sth camera

 : ith clean image from sth camera

 : ith real noise sample from sth camera

 : initial synthetic noise sampled from 

Poisson-Gaussian noise model

 : final synthetic noise

 : latent vector of camera characteristics

• : positive term in triplet loss

• : negative term in triplet loss

Fig. 1. An overview of our noise-modeling framework. The proposed archi-
tecture comprises two sub-networks: the Noise-Generating Network and the Camera-
Encoding Network. First, a clean image IC

s
i and the initial synthetic noise ñinit sampled

from Poisson-Gaussian noise model are fed into the generator G. In addition, a latent
vector v provided by the camera encoder E, which represents the camera characteris-
tics, is concatenated with the features of the middle layers of G. Eventually, the final
synthetic noise ñ is generated by G. To jointly train G and E, a discriminator D is
introduced for the adversarial loss LAdv and the feature matching loss LFM. Moreover,
a triplet loss LTriplet is proposed to let the latent space of v be more reliable

real noise distribution. Ideally, we can generate realistic synthetic noise ñ ≈ n
from the estimated residual image as

ñ = G(ñinit|ICs
i ) = ñinit +R(ñinit|ICs

i ) . (2)

To achieve this objective, we adopt adversarial learning for making the gener-
ated noise distribution Pg fit Pr as closely as possible. A discriminator D is used
to measure the distance between distributions by distinguishing real samples
from fake ones, such that G can minimize the distance through an adversarial
loss LAdv. Therefore, we need to collect pairs of clean images and real noise
(IC

s
i ,n

s
i ) as the real samples.

A real noise sample ns
i can be acquired by subtracting IC

s
i from the corre-

sponding noisy image IN
s
i , i.e., ns

i = IN
s
i − IC

s
i . Note that a clean image could

have many corresponding noisy images because noisy images can be captured
at different ISOs to cover a wide range of noise levels. For simplicity, we let i
denote not only the scene but also the shooting settings of a noisy image.

In addition to measuring the distance in adversarial learning, the discrim-
inator D also plays another role in our framework. It is observed that some
signal-dependent patterns like spots or stripes are common in real noise; hence
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we propose a feature matching loss LFM and treat D as a feature extractor.
The feature matching loss forces the generated noise ñ and the clean image IC

s
i

to share similar high-level features because we assume these signal-dependent
patterns should be the most salient traits in clean images.

It is worthwhile to mention that a noise model should be capable of generating
a variety of reasonable noise samples for the same input image and noise level.
GANs usually take a random vector sampled from Gaussian distribution as the
input of the generator to ensure this stochastic property. In most cases, this
random vector is not directly relevant to the main task. However, our goal is
exactly to generate random noise, which implies that this random vector could
be treated as the initial synthetic noise. Moreover, Gaussian distribution can be
replaced with a more representative statistical noise model. For this reason, we
apply Poisson-Gaussian noise model to the initial synthetic noise ñinit as in (1):

ñinit ∼ N (0, δshot
s
i IC

s
i + δread

s
i ) , (3)

where δshot
s
i and δread

s
i are the Poisson and the Gaussian component for IN

s
i ,

respectively. Note that these two parameters not only describe the preliminary
noise model for the sth camera but also control the noise level of ñinit and ñ.

3.2 Camera-Encoding Network

FUNIT [16] has shown that encoding the class information is helpful to specify
the class domain for an input image. Inspired by their work, we would like to
encode the camera characteristics in an effective representation. Since δshot

s
i and

δread
s
i are related to the sth camera in (3), the generator G is actually aware of

the camera characteristics from ñinit. However, this awareness is limited to the
assumption of the Poisson-Gaussian noise model. We, therefore, propose a novel
Camera-Encoding Network to overcome this problem.

As depicted in the lower part of Fig. 1, a noisy image IN
s
j is fed into a camera

encoder E and then transformed into a latent vector v = E(IN
s
j). After that,

the latent vector v is concatenated with the middle layers of G. Thus, the final
synthetic noise is rewritten as

ñ = G(ñinit|ICs
i , v) = ñinit +R(ñinit|ICs

i , v) . (4)

We consider v as a representation for the characteristics of the sth camera and
expect G can generate more realistic noise with this latent vector.

Aiming at this goal, the camera encoder E must have the ability to extract
the core information for each camera, regardless of the content of input images.
Therefore, a subtle but important detail here is that we feed the jth noisy image
rather than the ith noisy image into E, whereas G takes the ith clean image as
its input. Specifically, the jth noisy image is randomly selected from the data of
the sth camera. Consequently, E has to provide latent vectors beneficial to the
generated noise but ignoring the content of input images.

Additionally, some regularization should be imposed on v to make the latent
space more reliable. FUNIT calculates the mean over a set of class images to
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provide a representative class code. Nevertheless, this approach assumes that
the latent space consists of hypersphere manifolds. Apart from FUNIT, we use
a triplet loss LTriplet as the regularization. The triplet loss is used to minimize
the intra-camera distances while maximizing the inter-camera distances, which
allows the latent space to be more robust to image content. The detailed formu-
lation will be shown in the next section.

One more thing worth clarifying is why the latent vector v is extracted from
the noisy image IN

s
j rather than the real noise sample ns

j . The reason is out of
consideration for making data preparation easier in the inference phase, which is
shown as the violet block in Fig. 1. Collecting paired data (IC

s
j , IN

s
j) to acquire

ns
j is cumbersome and time-consuming in real world. With directly using noisy

images to extract latent vectors, there is no need to prepare a large number of
paired data during the inference phase.

3.3 Learning

To jointly train the aforementioned networks, we have briefly introduced three
loss functions: 1) the adversarial loss LAdv, 2) the feature matching loss LFM,
and 3) the triplet loss LTriplet. In this section, we describe the formulations for
these loss functions in detail.

Adversarial Loss. GANs are well-known for reducing the divergence between
the generated data distribution and real data distribution in the high-dimensional
image space. However, there are several GAN frameworks for achieving this goal.
Among these frameworks, we choose WGAN-GP [8] to calculate the adversarial
loss LAdv, which minimizes Wasserstein distance for stabilizing the training. The
LAdv is thus defined as

LAdv = − E
ñ∼Pg

[D(ñ|IC)] , (5)

where D scores the realness of the generated noise. In more depth, scores are
given at the scale of patches rather than whole images because we apply a
PatchGAN [11] architecture to D. The advantage of using this architecture is
that it prefers to capture high-frequency information, which is associated with
the characteristics of noise.

On the other hand, the discriminator D is trained by

LD = E
ñ∼Pg

[D(ñ|IC)]− E
n∼Pr

[D(n|IC)] + λgp E
n̂∼Pn̂

[(‖∇n̂D(n̂|IC)‖2 − 1)2] , (6)

where λgp is the weight of gradient penalty, and Pn̂ is the distribution sampling
uniformly along straight lines between paired points sampled from Pg and Pr.

Feature Matching Loss. In order to regularize the training for GANs, some
works [16,23] apply the feature matching loss and extract features through the
discriminator networks. Following these works, we propose a feature matching
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loss LFM to encourage G to generate signal-dependent patterns in synthetic
noise. The LFM is then calculated as

LFM = E
ñ∼Pg

[‖Df (ñ|IC)−Df (IC |IC)‖1] , (7)

where Df denotes the feature extractor constructed by removing the last layer
from D. Note that Df is not optimized by LFM.

Triplet Loss. The triplet loss was first proposed to illustrate the triplet relation
in embedding space by [22]. We use the triplet loss to let the latent vector
v = E(IN

s
j) be more robust to the content of noisy image. Here we define the

positive term v+ as the latent vector also extracted from the sth camera, and the
negative term v− is from a different camera on the contrary. In particular, v+

and v− are obtained by encoding the randomly selected noisy images IN
s
k and

IN
t
l , respectively. Note that IN

s
k is not restricted to any shooting setting, which

means the images captured with different shooting settings of the same camera
are treated as positive samples. The objective is to minimize the intra-camera
distances while maximizing the inter-camera distances. The triplet loss LTriplet

is thus given by

LTriplet = E
v,v+,v−∼Pe

[
max(0,

∥∥v− v+
∥∥
2
−
∥∥v− v−

∥∥
2

+ α)
]
, (8)

where Pe is the latent space distribution and α is the margin between positive
and negative pairs.

Full Loss. The full objective of the generator G is combined as

LG = LAdv + λFMLFM + λTripletLTriplet , (9)

where λFM and λTriplet control the relative importance for each loss term.

4 Experimental Results

In this section, we first describe our experiment settings and the implementation
details. Then, Sec. 4.1 shows the quantitative and qualitative results. Sec. 4.2
presents extensive ablation studies to justify our design choices. The effectiveness
and robustness of the Camera-Encoding Network are evaluated in Sec. 4.3.

Dataset. We train and evaluate our method on Smartphone Image Denoising
Dataset (SIDD) [2], which consists of approximately 24,000 pairs of real noisy-
clean images. The images are captured by five different smartphone cameras:
Google Pixel, iPhone 7, Samsung Galaxy S6 Edge, Motorola Nexus 6, and LG
G4. These images are taken in ten different scenes and under a variety of lighting
conditions and ISOs. SIDD is currently the most abundant dataset available for
real noisy and clean image pairs.
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Table 1. Quantitative evaluation of different noise models. Our proposed noise
model yields the best Kullback-Leibler divergence (DKL). Relative improvements of
our method over other baselines are shown in parentheses

Gaussian Poisson-Gaussian Noise Flow Ours

DKL 0.54707 (99.5%) 0.01006 (74.7%) 0.00912 (72.0%) 0.001590.001590.00159

Implementation details. We apply Bayer preserving augmentation [15] to
all SIDD images, including random cropping and horizontal flipping. At both
training and testing phases, the images are cropped into 64×64 patches. Totally
650,000 pairs of noisy-clean patches are generated. Then we randomly select
500,000 pairs as the training set and 150,000 pairs as the test set. The scenes
in the training set and test set are mutually exclusive to prevent overfitting.
Specifically, the scene indices of the test set are 001, 002 and 008, and the
remaining indices are used for the training set.

To synthesize the initial synthetic noise ñinit, we set the Poisson component
δshot

s
i and Gaussian component δread

s
i in (3) to the values provided by SIDD,

which are estimated using the method proposed by [14]. The weight of gradient
penalty of LD in (6) is set to λgp = 10, and the margin of LTriplet in (8) is set
to α = 0.2. The loss weights of LG in (9) are set to λFM = 1 and λTriplet = 0.5.

We use the Adam optimizer [13] in all of our experiments, with an initial
learning rate of 0.0002, β1 = 0.5, and β2 = 0.999. Each training batch contains
64 pairs of noisy-clean patches. The generator G, discriminator D, and camera
encoder E are jointly trained to convergence with 300 epochs. It takes about 3
days on a single GeForce GTX 1080 Ti GPU.

All of our experiments are conducted on linear raw images. Previous works
have shown that many image processing methods perform better in Bayer RAW
domain than in sRGB domain [19]. For noise modeling or image denoising, avoid-
ing non-linear transforms (such as gamma correction) or spatial operations (such
as demosaicking) is beneficial because we can prevent noise characteristics from
being dramatically changed by these operations.

Methods in comparison. We compare our method with two mostly-used
statistical models: Gaussian noise model and Poisson-Gaussian noise model, and
one state-of-the-art learning-based method: Noise Flow [1].

4.1 Quantitative and qualitative results

To perform the quantitative comparison, we adopt the Kullback-Leibler di-
vergence (DKL) as suggested in [1]. Table 1 shows the average DKL between
real noise and synthetic noise generated by different noise models. Our method
achieves the smallest average Kullback-Leibler divergence, which means that our
method can synthesize more realistic noise than existing methods.
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Table 2. Ablation study of our model. Ladv: the adversarial loss, LFM: the fea-
ture matching loss, E: the Camera-Encoding Network, LTriplet: the triplet loss. The
Kullback-Leibler divergence DKL is measured in different settings

LAdv
√ √ √ √

LFM
√ √ √

E
√ √

LTriplet
√

DKL 0.01445 0.01374 0.01412 0.001590.001590.00159

Fig. 2 shows the synthetic noise generated in linear RAW domain by all
noise models and then processed by the camera pipeline toolbox provided by
SIDD [2]. Each two consecutive rows represent an image sample for different ISOs
(indicated by a number) and different lighting conditions (L and N denote low
and normal lighting conditions respectively). Our method can indeed generate
synthetic noise that is more realistic and perceptually closer to the real noise.

4.2 Ablation Studies

In this section, we perform ablation studies to investigate how each component
contributes to our method, including the feature matching loss LFM, the Camera-
Encoding Network E, the triplet loss LTriplet, and the initial synthetic noise ñinit.
The results are shown in Table 2 and 3.

Feature matching loss LFM. Fig. 3 shows that the feature matching loss
is effective in synthesizing signal-dependent noise patterns and achieving better
visual quality. With the feature matching loss LFM, the network is more capable
of capturing low-frequency signal-dependent patterns. As shown in Table 2, the
Kullback-Leibler divergence can also be improved from 0.01445 to 0.01374.

Camera-Encoding Network and triplet loss. The Camera-Encoding Net-
work is designed to represent the noise characteristics of different camera sensors.
However, simply adding a Camera-Encoding Network alone provides no advan-
tage (0.01374 → 0.01412), as shown in Table 2. The triplet loss is essential
to learn effective camera-specific latent vectors, and the KL divergence can be
significantly reduced from 0.01412 to 0.00159.

The camera-specific latent vectors can also be visualized in the t-SNE space [18].
As shown in Fig. 4, the Camera-Encoding Network can effectively extract camera-
specific latent vectors from a single noisy image with the triplet loss.

Initial synthetic noise ñinit. Table 3 shows the average KL divergence when
using Gaussian or Poisson-Gaussian noise as the initial noise ñinit.
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Table 3. Ablation study of the initial synthetic noise ñinit Using Poisson-
Gaussian as initial synthetic noise model performs better than using Gaussian

ñinit Gaussian Poisson-Gaussian

DKL 0.06265 0.001590.001590.00159

Table 4. Analysis of noisy images from different cameras. The comparison
of Kullback-Leibler divergence for different cameras of the noisy image, where ñA =
G(ñinit|ICs

i , E(IN
s
j)) and ñB = G(ñinit|ICs

i , E(IN
t
k))

(ñA‖ns
i ) (ñA‖ns

j) (ñB‖ns
i )

DKL 0.00159 0.17921 0.01324

The KL divergence severely degrades from 0.00159 to 0.06265 if we use Gaus-
sian noise instead of Poisson-Gaussian noise. This result shows that using a
better synthetic noise as initial and predicting a residual to refine it can yield
better-synthesized noise.

4.3 Robustness Analysis of the Camera-Encoding Network

To further verify the behavior and justify the robustness of the Camera-Encoding
Network, we design several experiments with different input conditions.

Comparing noise for different imaging conditions or different cameras.
Given a clean image IC

s
i and a noisy image IN

s
j also from the sth camera, our

noise model should generate noise ñA = G(ñinit|ICs
i , E(IN

s
j)). The Kullback-

Leibler divergence DKL(ñA‖ns
i ) between the generated noise and the corre-

sponding real noise should be very small (0.00159 in Table 4). On the other
hand, DKL(ñA‖ns

j) between the generated noise and a non-corresponding real
noise should be quite large (0.17921 in Table 4), owing to the different imaging
conditions, even though the real noise ns

j is from the same sth camera.

If the latent vector is extracted by a noisy image of the tth camera instead of
the sth camera, the generated noise becomes ñB = G(ñinit|ICs

i , E(IN
t
k)). Because

the latent vector is from a different camera, we expect that DKL(ñA‖ns
i ) <

DKL(ñB‖ns
i ). Table 4 also verifies these results.

Analysis of different noisy images from the same camera. Another
important property of the Camera-Encoding Network is that it must capture
camera-specific characteristics from a noisy image, and the extracted latent vec-
tor should be irrelevant to the image content of the input noisy image. To verify
this, we randomly select five different noisy images from the same camera. These
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Table 5. Analysis of different noisy images from the same camera. The
Kullback-Leibler divergence results from five randomly selected noisy images but fixed
inputs for the generator

Noisy image sets 1st 2nd 3rd 4th 5th

DKL 0.00159 0.00180 0.00183 0.00163 0.00176

different noisy images are fed into the Camera-Encoding Network, while other
inputs for the Noise Generating Network are kept fixed. Because these noisy
images are from the same camera, the generated noise should be robust and
consistent. Table 5 shows that the DKL between the generated noise and real
noise remains low for different noisy images.

5 Application to Real Image Denoising

5.1 Real-world image denoising

We conduct real-world denoising experiments to further compare different noise
models. For all noise models, we follow Noise Flow [1] to use the same 9-layer
DnCNN network [25] as the baseline denoiser. Learning-based noise models
(Noise Flow and ours) are trained with SIDD dataset. We then train a denoiser
network with synthetic training pairs generated by each noise model separately.

Table 6 shows the average PSNR and SSIM [24] on the test set. The denoisers
trained with statistical noise models (Gaussian and Poisson-Gaussian) are worse
than those trained with learning-based noise models (Noise Flow and Ours),
which also outperform the denoiser trained with real data only (the last row
of Table 6). This is because the amount of synthetic data generated by noise
models is unlimited, while the amount of real data is fixed.

Our noise model outperforms Noise Flow in terms of both PSNR and SSIM
while using more training data for training noise models leads to better denoising
performance. Table 6 also shows that using both real data and our noise model
results in further improved PSNR and SSIM.

5.2 Camera-specific denoising networks

To verify the camera-aware ability of our method, we train denoiser networks
with our generative noise models, which are trained with and without the Camera-
Encoding Network (and with and without the triplet loss) respectively.

For our noise model without the Camera-Encoding Network, we train a single
generic denoiser network for all cameras. For our noise models with the Camera-
Encoding Network, we train camera-specific denoiser networks with and without
the triplet loss for each camera. The denoising performance is shown in Table 7.

The results show that the Camera-Encoding Network with the triplet loss
can successfully capture camera-specific noise characteristics and thus enhance
the performance of camera-specific denoiser networks.
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Table 6. Real-world image denoising. The denoising networks using our noise
model outperform those using existing statistical noise models and learning-based mod-
els. RedRedRed indicates the best and blue indicates the second best performance (While
training using both synthetic and real data, Ours + Real, synthetic and real data are
sampled by a ratio of 5 : 1 in each mini-batch)

# of training data # of real training
Noise model for noise model data for denoiser PSNR SSIM

Gaussian - - 43.63 0.968

Poisson-Gaussian - - 44.99 0.982

Noise Flow [1]
100k - 47.49 0.991
500k - 48.52 0.992

Ours
100k - 47.97 0.992
500k - 48.71 0.993

Ours + Real
100k 100k 47.93 0.9940.9940.994
500k 500k 48.7248.7248.72 0.9940.9940.994

Real only
- 100k 47.08 0.989
- 500k 48.30 0.9940.9940.994

Table 7. Real-world image denoising using camera-aware noise model. Group-
ing the proposed Camera-Encoding Network and triplet loss LTriplet can extract
camera-specific latent vectors and thus improve camera-specific denoiser networks

PSNR on test cameras
Model IP GP S6 N6 G4

w/o (E + LTriplet) 57.4672 44.5180 40.0183 44.7954 51.8048
with E, w/o LTriplet 49.8788 45.7755 40.4976 41.8447 51.8139
with (E + LTriplet) 58.607358.607358.6073 45.962445.962445.9624 41.888141.888141.8881 46.472646.472646.4726 53.261053.261053.2610

6 Conclusions

We have presented a novel learning-based generative method for real-world noise.
The proposed noise model outperforms existing statistical models and learning-
based methods quantitatively and qualitatively. Moreover, the proposed method
can capture different characteristics of different camera sensors in a single noise
model. We have also demonstrated that the real-world image denoising task can
benefit from our noise model. As for future work, modeling real-world noise with
few-shot or one-shot learning could be a possible direction. This could reduce
the burden of collecting real data for training a learning-based noise model.
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Fig. 2. Visualization of noise models. The synthetic noise samples of several noise
modeling methods on different clean images with different ISO/lighting conditions are
illustrated Quantitatively, the proposed method outperforms others in terms of DKL

measurement with real noise distribution. Furthermore, ours have many clear structures
that fit the texture of clean images and real noise. Note that the noise value is scaled
up for better visualization purpose
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w/o LFM with LFM Real Noise Clean

Fig. 3. Visualization of synthetic noise with and without feature matching
loss. With the feature matching loss LFM, the generated noise is highly correlated to
the image content. Hence, they have more distinct structures resembling the texture
of clean images. Besides, the DKL measurements are slightly improved

w/o LTriplet with LTriplet
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Fig. 4. Ablation study on the distributions of latent vectors from a camera
encoder trained with or without LTriplet. We project the encoded latent vectors v
of noisy images from five different cameras with t-SNE. The Camera-Encoding Network
trained with LTriplet can effectively group the characteristics of different cameras

Real Noisy Poisson-Gauss. Real Only Noise Flow Ours Ours + Real Ground Truth

Fig. 5. Results of denoisers trained on different noise models. We compare the
denoised results trained on different settings, 1) only real pairs, 2) synthetic pairs with
Noise Flow or the proposed method, and 3) the mixture of synthetic pairs from ours
and real pairs
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