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A Appendix

A.1 Multitask Learning with Total Training Paths Fixed

To verify whether multitask learning helps only due to implicit data augmenta-
tion which increases the number of training paths for both the tasks, we con-
ducted an experiment by fixing the total number of training paths. We fix the
size of training dataset to be exactly 4, 742 paths (which is the same as the
number of paths in the NDH task’s training dataset) and replace a fraction of
the paths by the paths from the VLN task’s training dataset. The results in
Table 1 show that the agent’s performance on previously unseen environments
in NDH task improves significantly when trained jointly on NDH paths mixed
with a small fraction of VLN paths. Since the total training paths are fixed,
there is no benefit due to data augmentation which furthers the argument that
multitask learning on NDH and VLN tasks complements the agent’s learning.
As expected, the agent’s performance on NDH task degrades when trained on
datasets containing smaller fractions of NDH paths but larger fractions of VLN
paths.

Table 1: Comparison of agent’s performance on NDH task when trained on fixed
number of paths. The paths belong to either of the two tasks to support multitask
learning.

Fraction of VLN paths (%)

0 10 20 30 40 60 80

Progress (Val Seen) 6.49 6.21 5.69 5.72 5.82 5.74 3.66
Progress (Val Unseen) 2.64 3.13 3.09 3.31 2.80 2.86 2.48

? Equal contribution.
?? Work done at Google.
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A.2 Detailed Ablation on Parameter Sharing of Language Encoder

Table 2 presents a more detailed analysis from Table 4 (main paper) with access
to different parts of dialog history. The models with shared language encoder
consistently outperform those with separate encoders.

Table 2: Comparison of agent’s performance when language instructions are
encoded by separate vs. shared encoder for VLN and NDH tasks.

NDH Evaluation VLN Evaluation

Fold
Language
Encoder

Inputs for NDH Progress PL NE SR SPL CLS

t0 Ai Qi A1:i−1;Q1:i−1 ↑ ↓ ↑ ↑ ↑

Val
Seen

Shared

3 3.00 11.73 4.87 54.56 52.00 65.64
3 3 5.92 11.12 4.62 54.89 52.62 66.05
3 3 3 5.43 10.94 4.59 54.23 52.06 66.93
3 3 3 3 5.28 10.63 5.09 56.42 49.67 68.28

Separate

3 2.85 11.43 4.81 54.66 51.11 65.37
3 3 4.90 11.92 4.92 53.64 49.79 61.49
3 3 3 5.07 11.34 4.76 55.34 51.59 65.52
3 3 3 3 5.17 11.26 5.02 52.38 48.80 64.19

Val
Unseen

Shared

3 1.69 13.12 5.84 42.75 38.71 53.09
3 3 4.01 11.06 5.88 42.98 40.62 54.30
3 3 3 3.75 11.08 5.70 44.50 39.67 54.95
3 3 3 3 4.36 10.23 5.31 46.20 44.19 54.99

Separate

3 1.79 11.85 6.01 42.43 38.19 54.01
3 3 3.66 12.59 5.97 43.45 38.62 53.49
3 3 3 3.51 12.23 5.89 44.40 39.54 54.55
3 3 3 3 4.07 11.72 6.04 43.64 39.49 54.57

A.3 VLN Leaderboard Submission

Table 3 shows the performance of our MT-RCM + EnvAg agent on the test set of
the R2R dataset for the VLN task. Our MT-RCM + EnvAg agent outperforms
the comparable baseline RCM on the primary navigation metrics of SR and SPL
which proves the effectiveness of multitask and environment-agnostic learning.
It is worth noting that the baselines scoring high on the test set use additional
techniques like data augmentation and pre-training which were not explored in
this work but are complementary to our techniques of multitask learning and
environment-agnostic learning.
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Table 3: VLN Leaderboard results for R2R test dataset.

Model PL NE ↓ SR ↑ SPL ↑

Human 11.85 1.61 86 76
Random 9.93 9.77 13 12

Seq2Seq [1] 8.13 7.85 20 18
Look Before You Leap [10] 9.15 7.53 25 23
Speaker-Follower [2] 14.82 6.62 35 28
Self-Monitoring [6] 18.04 5.67 48 35
RCM [9] 11.97 6.12 43 38
The Regretful Agent [7] 13.69 5.69 48 40
ALTR [4] 10.27 5.49 48 45
Press [5] 10.77 5.49 49 45
EnvDrop [8] 11.66 5.23 51 47
PREVALENT [3] 10.51 5.30 54 51

MT-RCM + EnvAg (Ours) 13.35 6.03 45 40
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