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Supplementary Material

A Model architecture

We elaborate on the network structure of CNN-13 [18] that we employ for a
classifier, as well as of the basis learning autoencoder that we use for graph
construction (also see Remark 1).

Layers Hyperparameters

Conv1a 128 filters, 3× 3 same padding
Conv1b 128 filters, 3× 3 same padding
Conv1c 128 filters, 3× 3 same padding
Pooling Max pooling 2× 2 kernel
Dropout p = 0.5
Conv2a 256 filters, 3× 3 same padding
Conv2b 256 filters, 3× 3 same padding
Conv2c 256 filters, 3× 3 same padding
Pooling Max pooling 2× 2 kernel
Dropout p = 0.5
Conv3a 512 filters, 3× 3 valid padding
Conv3b 256 filters, 3× 3 same padding
Conv3c 128 filters, 3× 3 same padding
Pooling Global average pooling
Softmax Fully-connected 128→ 10

Table 7: The network structure of CNN-13 [18] that we employ for a classifier.
Batch normalization and leaky ReLU activation are applied for all hidden layers,
although the description of such operations is omitted here for simple illustration.

Table 7 shows all the details of the layer type and hyperparameters that
we adopt under CNN-13. As for perturbations that we apply to the student and
teacher models, we consider the identical yet independent Gaussian distribution:
ξ ∼ N(0, 0.15) and ξ′ ∼ N(0, 0.15). For each hidden layer, we apply mean-
only batch normalization [31] followed by leaky ReLU activation with parameter
α = 0.1. Our autoencoder is illustrated in Table 8. For MNIST, we combine the
last conv layer feature of the teacher model (of size 128) with one-hot-coded label
(of size 10) to construct an input vector of size 138. For CIFAR-10 and SVHN,
we employ such features both from teacher and student models to construct a
266-dimensional input vector. As mentioned in Remark 1, we employ a special
structure taking a non-linear (multi-layered) encoder followed by a linear (single-
layer) decoder. We use leaky ReLU (α = 0.1) for each hidden layer while taking
tanh activation in the output layer. Notice that we do not apply any activation
function for decoder for the purpose of encouraging it to linearly combine encoder
vectors.
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MNIST

Layers Hyperparameters

Input 138× 1 vector

Encoder

Layer1: Fully-connected, 138→ 300
leaky ReLU (α = 0.1)
Layer2: Fully-connected, 300→ 300
leaky ReLU (α = 0.1)
Layer3: Fully-connected, 300→ 15
tanh

Decoder Fully-connected, 15→ 138

SVHN, CIFAR-10

Layers Hyperparameters

Input 266× 1 vector

Encoder

Layer 1: Fully-connected, 266→ 500
leaky ReLU (α = 0.1)
Layer 2: Fully-connected, 500→ 100
tanh

Decoder Fully-connected, 100→ 266

Table 8: The network structure of the basis learning autoencoder that we use
for graph construction.

B Basis learning via autoencoders with a linear decoder

While a mathematical analysis on our basis learning is not done yet, we have
empirically shown that the bases of the data are indeed learned by the autoen-
coder which has a linear decoder. In what follows, we justify this observation via
simulation utilizing synthetic data. To this end, we generate n1 × n2 matrix X,
which has rank r by multiplying n1 × r matrix and n2 × r matrix consisting of
Gaussian random variables. Basis learning can be confirmed by showing that

col(X) = col(H), (11)

where H is the encoder’s output, and col(X) denotes the column space of X.
(11) can be proved by showing that

col(X) ⊆ col(H), and col(X) ⊇ col(H). (12)

The subspace relations in (12) can be proved by showing that

‖PX(hi)‖/‖hi‖ = 1, and ‖PH(xi)‖/‖xi‖ = 1 (13)

for all i, where xi is the i-th column of X, and PH(x) denotes the orthogonal
projection of a vector x onto the space spanned by columns of H. We identified
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Fig. 3: Experimental results on synthetic data to show (13).

that (13) holds for all i on synthetic data in Figure 3. Furthermore, this type of
structure is robust to the sparse inputs such as semi-supervised learning rather
than a standard autoencoder.

C Experiment settings

We employ He initialization [14] and Xavier initialization [11] for the CNN clas-
sifier (θ) and autoencoder model (φ), respectively. We use Adam optimizer [16]
with the following maximum learning rate: 0.0001 for MNIST; and 0.003 for
SVHN and CIFAR-10. The number of epochs is 300. We apply the same ramp-
up function w(t) as in [24, 18, 37] (see (10)):

w(t) =







e−5(1− t
80

)2 t ≤ 80

1 80 < t ≤ 250

e−12.5(1− 300−t

50
)2 250 < t ≤ 300.

(14)

For the hyperparameter µ(t) that arises in the autoencoder loss LAE(θ, φ) in (8),
we use the same functional with w(t) except for the range of t > 80: µ(t) = 1 in
the range. As for input dropout that we apply to the autoencoder, we take the
replacement probability of 0.9 (for MNIST) and 1 (for SVHN and CIFAR-10).
The hyperparameter λ in (10) is searched over {0.2, 0.4, 0.6, 0.8, 1}. The margin

in Lg(θ,W) is chosen from {0.5, 1}. Labeled and unlabeled data are randomly
sampled while maintaining the constant ratio between them for every mini-batch;
see below for details.
MNIST. Let the mini-batch size be 100 + β where β ∈ {20, 50, 100} denotes
the number of labeled data. The other 100 samples are randomly chosen from
the entire dataset. Π model [18] is used for consistency loss.
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Epochs 1 100 200 300

Proposed AE 19.51 98.78 99.08 99.38

Teacher model [24] 9.23 98.69 99.06 99.18

Table 9: Estimated Graph accuracy (%) on MNIST training data with 100 labels.

SVHN. We sample 50 labeled and 50 unlabeled examples to form a mini-batch.
MT [37] is used for consistency loss.
CIFAR-10. Mini-batch size is 200. Each mini-batch consists of 100 labeled and
100 unlabeled samples. ICT [38] is used for consistency loss.
Programming. Our code is based on Python and TensorFlow. Our code and
model are available at https://github.com/minkang23/BAE-GC.

D Additional experiment

Tables 9 shows the estimated graph accuracy on training data with the increase
of epochs to address proposed method more convincing. Empirically, graph ac-
curacy of basis learning autoencoder is indeed better than that of the teacher
classifier [24]. We find that the matrix completion-based approach yields a more
accurate graph. We expect this is because matrix completion simultaneously
considers all the feature vectors when predicting labels, while a generic classifier
makes an individual-sample-wise prediction. In particular, we see a large accu-
racy gap in the early epoch stage. We believe this was the key that leads our
AE-based approach to yield a better performance. This suggests that it is more
effective to predict labels with low-dimensional basis vectors, which are encoder
outputs of basis learning autoencoder, than with weakly trained features in early
epoch.


