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Abstract. We consider graph-based semi-supervised learning that lever-
ages a similarity graph across data points to better exploit data structure
exposed in unlabeled data. One challenge that arises in this problem con-
text is that conventional matrix completion which can serve to construct
a similarity graph entails heavy computational overhead, since it re-trains
the graph independently whenever model parameters of an interested
classifier are updated. In this paper, we propose a holistic approach that
employs a parameterized neural-net-based autoencoder for matrix com-
pletion, thereby enabling simultaneous training between models of the
classifier and matrix completion. We find that this approach not only
speeds up training time (around a three-fold improvement over a prior
approach), but also offers a higher prediction accuracy via a more accu-
rate graph estimate. We demonstrate that our algorithm obtains state-
of-the-art performances by respectful margins on benchmark datasets:
Achieving the error rates of 0.57% on MNIST with 100 labels; 3.48% on
SVHN with 1000 labels; and 6.87% on CIFAR-10 with 4000 labels.

Keywords: Semi-supervised Learning, Matrix Completion, Autoencoders

1 Introduction

While deep neural networks can achieve human-level performance on a widening
array of supervised learning problems, they come at a cost: Requiring a large
collection of labeled data and thus relying on a huge amount of human effort to
manually label examples. Semi-supervised learning (SSL) serves as a powerful
framework that leverages unlabeled data to address the lack of labeled data.

One popular SSL paradigm is to employ consistency loss which captures a
similarity between prediction results of the same data points yet with differ-
ent small perturbations. This methodology is inspired by the key smoothness
assumption that nearby data points are likely to have the same class, and a va-
riety of algorithms have been developed inspired by this assumption [18, 37, 27,
29]. However, it comes with one limitation: Taking into account only the same
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single data point (yet with perturbations) while not exploiting any relational
structure across distinct data points.

This has naturally motivated another prominent SSL framework, named
graph-based SSL [24, 43, 36]. The main idea is to employ a similarity graph, which
represents the relationship among a pair of data points, to form another loss
term, called feature matching loss, and then incorporate it as a regularization
term into a considered optimization. This way, one can expect that similar data
points would be embedded tighter in a low-dimensional space, thus yielding a
higher classification performance [5] (also see Figure 2 for visualization).

One important question that arises in graph-based SSL is: How to construct
such similarity graph? Most prior works rely on features in the input space [2, 43]
or given (and/or predicted) labels in the output space [24]. A recent approach is
to incorporate a matrix completion approach [36]. The approach exploits both
features and available labels to form an augmented matrix having fully-populated
features yet with very sparse labels. Leveraging the low-rank structure of such
augmented matrix, it resorts to a well-known algorithm (nuclear norm minimiza-
tion [8]), thereby estimating a similarity graph. However, we face one challenge in
this approach. The challenge is that the graph estimation is done independently
of the model parameter update of an interested classifier, which in turn incurs
a significant computational complexity. Notice that the graph update should be
done whenever changes are made on classifier model parameters.

Our main contribution lies in developing a novel integrated framework that
holistically combines the classifier parameter update with the matrix-completion-
based graph update. We introduce a parameterized neural-net-based autoen-
coder for matrix completion and define a new loss, which we name autoencoder
loss, to reflect the quality of the graph estimation. We then integrate the au-
toencoder loss with the original supervised loss (computed only via few available
labels) together with two additional losses: (i) consistency loss (guiding the same
data points with small perturbations to yield the same class); (ii) feature match-
ing loss (encouraging distinct yet similar data points, reflected in the estimated
graph, to have the same class). As an autoencoder, we develop a novel structure
inspired by the recent developments tailored for matrix completion [33, 10]; see
Remark 1 for details.

We emphasize two key aspects of our holistic approach. First, model param-
eters of the classifier (usually CNN) and the matrix completion block (autoen-
coder) are simultaneously trained, thus exhibiting a significant improvement in
computational complexity (around a three-fold gain in various real-data exper-
iments), relative to the prior approach [36] which performs the two procedures
separately in an alternate manner. Second, our approach exploits the smoothness
property of both same-yet-perturbed data points and distinct-yet-similar data
points. This together with an accurate graph estimate due to our autoencoder-
based matrix completion turns out to offer greater error rate performances on
various benchmark datasets (MNIST, SVHN and CIFAR-10) with respectful
margins over many other state of the arts [24, 36, 38, 32, 22, 18, 37]. The improve-
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ments are more significant when available labels are fewer. See Tables 1 and 2
in Section 5 for details.

2 Related work

2.1 Semi-supervised learning

There has been a proliferation of SSL algorithms. One major stream of the algo-
rithms is along the idea of adversarial training [13]. While the literature based on
such methodology is vast, we list a few recent advances with deep learning [35,
32, 22, 9]. Springenberg [35] has proposed a categorical GAN (CatGAN) that
learns a discriminative classifier so as to maximize mutual information between
inputs and predicted labels while being robust to bogus examples produced by
an adversarial generative model. Salimans et al. [32] propose a new loss, called
feature matching loss, in an effort to stabilize GAN training, also demonstrat-
ing the effectiveness of the technique for SSL tasks. Subsequently Li et al. [22]
introduce another third player on top of the two players in GANs to exploit
label information, thus improving SSL performances. Dai et al. [9] provide a
deeper understanding on the role of generator for SSL tasks, proposing another
framework. While the prior GAN approaches yield noticeable classification per-
formances, they face one common challenge: Suffering from training instability
as well as high computational complexity.

Another prominent stream is not based on the GAN framework, instead em-
ploying consistency loss that penalizes the distinction of prediction results for
the same data points having small perturbations [30, 18, 37, 27, 29]. Depending
on how to construct the consistency loss, there are a variety of algorithms includ-
ing: (i) ladder networks [30]; (ii) TempEns [18]; (iii) Mean Teacher (MT) [37];
(iv) Virtual Adversarial Training (VAT) [27]; (v) Virtual Adversarial Dropout
(VAdD) [29]. The recent advances include [44, 38, 4, 42, 1, 3, 46, 34]. In particu-
lar, [38, 4, 42, 3, 46, 34] propose an interesting idea of mixing (interpolating) data
points and/or predictions, to better exploit the consistency loss, thus achieving
promising results.

Most recently, it has been shown in [48] that consistency loss can be better
represented with the help of self-supervised learning, which can be interpreted as
a feature representation approach via pretext tasks (such as predicting context
or image rotation) [17].

2.2 Graph-based SSL

In an effort to capture the relational structure across distinct data points which
are not reflected by the prior approaches, a more advanced technique has been
introduced: graph-based SSL. The key idea is to exploit such relational structure
via a similarity graph that represents the closeness between data points. The
similarity graph is desired to be constructed so as to well propagate information
w.r.t. few labeled data into the unlabeled counterpart. Numerous algorithms
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have been developed depending on how to construct the similarity graph [2,
12, 6, 50, 15, 41, 43, 24, 36, 45, 51, 40]. Recent developments include [51, 40] that
exploit graph convolutional networks (GCNs) to optimize the similarity graph
and a classifier.

Among them, two most related works are: (i) Smooth Neighbors on Teach
Graphs (SNTG) [24]; (ii) GSCNN [36]. While the SNTG [24] designs the graph
based solely on labels (given and/or predicted) in the output space, the GSCNN [36]
incorporates also features in the input space to better estimate the similar-
ity graph with the aid of the matrix completion idea. However, the employed
matrix completion takes a conventional approach based on nuclear norm min-
imization [8], which operates independently of a classifier’s parameter update
and therefore requires two separate updates. This is where our contribution lies
in. We employ a neural-net-based matrix completion so that it can be trained
simultaneously with the interested classifier, thereby addressing the computa-
tional complexity issue.

2.3 Matrix completion

Most traditional algorithms are based on rank minimization. Although the rank
minimization is NP-hard, Candes and Recht [8] proved that for some enough
number of observed matrix entries, one can perfectly recover an unknown ma-
trix via nuclear norm minimization (NNM). This NNM algorithm formed the
basis of the GSCNN [36]. Instead we employ a deep learning based approach for
matrix completion. Our approach employs a parameterized neural-net-based au-
toencoder [33, 23, 10] and therefore the model update can be gracefully merged
with that of the classifier. The parameterization that leads to simultaneous train-
ing is the key to speeding up training time.

3 Problem formulation

Let L = {(xi, yi)}
m

i=1 and U = {xi}
n
i=m+1 be labeled and unlabeled datasets

respectively, wherein xi ∈ X indicates the ith data (observation) and yi ∈ Y =
{1, 2, . . . , c} denotes the corresponding label. Here c is the number of classes.
Usually available labels are limited, i.e., m ≪ n. The task of SSL is to design a
classifier f (parameterized with θ) so that it can well predict labels for unseen
examples. With regard to a loss function, we employ one conventional approach
that takes into account the two major terms: (i) supervised loss (quantifying
prediction accuracy w.r.t. labeled data); (ii) regularization terms (reflecting the
data structure exposed in unlabeled data).
Supervised loss. We consider:

Ls(θ) =
m∑

i=1

ℓs(f(xi; θ), yi) (1)

where ℓs(·, ·) denotes cross entropy loss and f(xi; θ) is the classifier softmax out-
put that aims to represent the ground-truth conditional distribution p(yi|xi; θ).
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Fig. 1: A graph-based SSL architecture with a CNN classifier (parameterized
with θ) and an autoencoder for matrix completion (parameterized with φ).

As regularization terms, we employ two unsupervised losses: (i) consistency
loss (that captures the distinction of prediction results of the same data points
with different yet small perturbations); (ii) feature matching loss (that quantifies
the difference between distinct data points via a similarity graph together with
some features). Below are detailed formulas that we would take.
Consistency loss. We use one conventional formula as in [18, 37, 27, 29, 24]:

Lc(θ) =

n∑

i=1

ℓc(f(xi; θ, ξ), f̃(xi; θ
′, ξ′)) (2)

where f(xi; θ, ξ) denotes the prediction of one model, say student model, with
parameter θ and random perturbation ξ (imposed to the input xi); f̃(xi; θ

′, ξ′)
indicates that of another model, say teacher model, with parameter θ′ and differ-
ent perturbation ξ′ yet w.r.t. the same input xi; and ℓc(·, ·) is a distance measure
between the outputs of the two models (for instance, the Euclidean distance or
KL divergence). Here we exploit both labeled and unlabeled datasets. Notice
that this loss penalizes the difference between the predictions of the same data
point xi yet with different perturbations, reflected in ξ and ξ′. We consider a
simple setting where θ′ = θ, although these can be different in general [18, 37,
27, 29].
Feature matching loss. Another unsupervised loss that we will use to exploit
the relational structure of different data points is feature matching loss:

Lg(θ,W) =
∑

xi,xj∈L∪U

ℓg(h(xi; θ), h(xj ; θ),Wij) (3)
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where h : X → R
p is a mapping from the input space to a low dimensional feature

space; Wij denotes the (i, j) entry of a similarity graph matrix W (taking 1 if
xi and xj are of the same class, 0 otherwise); and ℓg(·, ·) is another distance
measure between the ith and jth features which varies depending on Wij . Here
the function ℓg is subject to our design choice [24, 36], and we use the contrastive
Siamese networks [7] as in [24]:

ℓg =

{

‖h(xi)− h(xj)‖
2 if Wij = 1

max(0,margin− ‖h(xi)− h(xj)‖)
2 if Wij = 0

(4)

where margin denotes a pre-defined positive value which serves as a threshold
in feature difference for declaring distinct classes, and ‖ · ‖2 is the Euclidean
distance.

Various methods have been developed for construction of W. One recent
work is the SNTG [24] which uses the predictions of the teacher model for the
construction. Another recent work [36] takes amatrix completion approach which
additionally exploits features on top of given labels. Here the predicted labels
due to matrix completion serve to construct the graph.
SSL Framework. Here is the unified loss function of our consideration:

Ls(θ) + λcLc(θ) + λgLg(θ,W) (5)

where λc and λg are regularization factors that serve to balance across three
different loss terms.

In (5), we face one challenge when employing a recent advance [36] that relies
on conventional matrix completion for W. The GSCNN [36] solves nuclear norm
minimization [8] for matrix completion via a soft impute algorithm [26]. Here an
issue arises: The algorithm [26] has to retrain the graph W for every iteration
whenever features of the classifier, affected by θ, are updated. In other words,
matrix completion is done in an alternate manner with the classifier update. For
each iteration, say t, the graph is estimate to output, say W(t), from the current
classifier parameter, say θ(t), and this updated W(t) yields the next parameter
estimate θ(t+1) as per (5), and this process is repeated. Here the challenge is
that this alternating update incurs significant computational complexity.

4 Our approach

To address such challenge w.r.t. computational complexity, we invoke a param-
eterization trick. The idea is to parameterize a matrix completion block with a
neural network, and to simultaneously train both parameters, one for classifier
and the other for matrix completion. Specifically we employ an autoencoder -type
neural network with parameter, say φ, for matrix completion; introduce another
loss that we call autoencoder loss, which captures the quality of matrix com-
pletion and therefore the graph estimate; integrate the new loss with the other
three loss terms in (5); and then simultaneously update both θ (classifier) and φ

(autoencoder) guided by the integrated loss. We will detail the idea in the next
sections.
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4.1 Learning the graph with autoencoder

For a classifier, we employ a CNN model. Let h(x1 ), . . . , h(xn) ∈ R
d be the

feature vectors w.r.t. n examples prior to the softmax layer. We first construct a
feature matrix that stacks all of the vectors: X = [h(x1 ), . . . , h(xn)] ∈ R

d×n. Let
u(y1 ), . . . , u(ym) ∈ R

c be the one-hot-coded label vectors. We then construct a
label matrix stacking all of them: Y = [u(y1 ), . . . , u(ym), 0c, . . . ,0c

︸ ︷︷ ︸

(n−m) vectors

] ∈ R
c×n

where 0c is the all-zero vector of size c. Notice that X is fully populated while
Y is very sparse due to many missing labels. Let ΩY be the set of indices for
the observed entries in Y: (i, j) ∈ ΩY when yj is an observed label. Now we
construct an augmented matrix that stacks X and Y in the row wise:

Z =

[
Y
X

]

. (6)

This is an interested matrix for completion. Notice that completing Z enables
predicting all the missing labels, thus leading to a graph estimate.

For matrix completion, we employ an autoencoder-type neural network which
outputs a completed matrix fed by Z. We also adopt the idea of input dropout [39]:
Probabilistically replacing some of the label-presence column vectors with zero

vector 0c. For instance, when the jth column vector zj =

[
u(yj)
h(xj)

]

is dropped

out, the output reads: z̄j =

[
0c

h(xj)

]

. With the input dropout, we get:

Z̄ =

[
Ȳ
X

]

. (7)

For training our autoencoder function g parameterized by φ, we employ the
following loss (autoencoder loss) that reflects the reconstruction quality of the
interested matrix:

LAE(θ, φ) =
∑

(i,j)∈ΩY

(Yij − Ŷij)
2 + µ(t)‖X− X̂‖2F (8)

where (Ŷ, X̂) indicates the output of the φ-parameterized autoencoder gφ(Z̄);
‖ · ‖F denotes the Frobenius norm; and µ(t) is a hyperparameter that balances
the reconstruction loss of observed labels (reflected in the first term) against that
of the features (reflected in the second term). Since the quality of the feature
matrix estimation improves with the learning progress (relative to the fixed label
counterpart), we use a monotonically increasing ramp-up function µ(t) [18].

Let ũ(yi) be the predicted label vector for the ith example, obtained by the
autoencoder gφ(Z̄). Let ỹi = argmaxk [ũ(yi)]k where [·]k is the kth component
of the vector (the estimated probability that the ith example belongs to class
k). This then enables us to construct a similarity graph:

Wij =

{

1 if ỹi = ỹj ;

0 if ỹi 6= ỹj .
(9)
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We consider a simple binary case where Wij ∈ {0, 1} as in [24]. One may use a
weighted graph with soft-decision values. The constructed graph is then applied
to the feature matching loss (3) to train the classifier model (CNN).

Remark 1. (Our choice for autoencoder structure): The autoencoder that we
design is of a special structure: A nonlinear (multi-layered) encoder followed by
a linear (single-layer) decoder. We name this the basis learning autoencoder [21,
20]. Note that the structure helps learning the basis via a linear decoder, as it is
guided to linearly combine the vectors generated by a non-linear encoder. The
rationale behind this choice is that any matrix can be represented as a linear
combination of the basis vectors of its row or column space, and the basis vectors
serve as the most efficient features of a matrix. The number of nodes in the last
layer of the encoder can serve as an effective rank of the matrix (the number
of basis vectors extracted from the encoder). We observe through experiments
that matrix completion performs well when the effective rank is greater than or
equal to the number of classes. Also we have empirically verified that the bases
of the data are indeed learned by the autoencoder which has a linear decoder.
We leave the detailed empirical analysis in the supplementary. �

4.2 Simultaneous training

We aim to update autoencoder parameter φ simultaneously with classifier pa-
rameter θ, unlike the prior approach [36] that takes an alternating update. To
this end, we integrate the autoencoder loss (8) with the prior three loss terms (5):

Ls(θ) + w(t) · (Lc(θ) + λ · Lg(θ,W)) + LAE(θ, φ) (10)

where Ls(θ), Lc(θ), Lg(θ,W) and LAE(θ, φ) indicate supervised loss (1), consis-
tency loss (2), feature matching loss (3), and autoencoder loss (8), respectively.
Here we employ three hyperparameters: λ controls the ratio between Lc(θ) and
Lg(θ,W); w(t) is a ramp-up function that increases with epoch; and µ(t) is
another ramp-up function placed inside LAE(θ, φ) (see (8)). We use the same
ramp-up function as in [18, 24], since features are not reliable in the initial phase
of the training. For simplicity, we apply the same weight between LAE(θ, φ) and
Ls(θ).

Our proposed algorithm is summarized in Algorithm 1. In Step 4, labeled
and unlabeled data are randomly sampled while maintaining the constant ratio
between them for every mini-batch. Steps 6-8 indicate the feed-forward process of
student model, teacher model, and autoencoder, respectively. Step 10 constructs
a similarity graph by comparing pairs of the labels predicted by autoencoder.
We then update all parameters (θ, φ) simultaneously as per the single integrated
loss function that we design in (10). This process is repeated until the maximum
epoch is reached.

Tables 1 and 2 show performance comparisons with several other SSLs.
Among consistency-loss-based approaches, we consider Π-model [18], Mean-
Teacher [37] and ICT [38]. The performance results reported for baselines come
from corresponding papers.
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Algorithm 1 Autoencoder-based Graph Construction

1: Input: Labeled dataset L = {(xi, yi)}
m
i=1 and unlabeled dataset U = {xi}

n
i=m+1,

hyperparameters λ, µ(t), w(t) and the number of training epochs T
2: Initialize: fθ(x) (student model), f̃θ(x) (teacher model), and gφ(x) (φ-

parameterized autoencoder)
3: for t = 1 to T do
4: Randomly sample mini-batches from L and U
5: for each mini-batch B do
6: (zi, hi)← fθ(xi∈B) obtain outputs & features
7: (z̃i, h̃i)← f̃θ(xi∈B) (for teacher model)
8: ŷ ← gφ([h̃i, yi∈B]) predict labels via AE
9: for (ŷi, ŷj) do
10: Compute Wij from ŷ as per (9)
11: end for
12: update θ and φ by minimizing (10)
13: end for
14: end for

5 Experiments

We conduct real-data experiments on three benchmark datasets: MNIST, SVHN,
and CIFAR-10. In all of the datasets, only a small fraction of the training data
is used as labeled data, while the remaining being considered as unlabeled data.
The MNIST consists of 70,000 images of size 28 × 28 with 60,000 for training
and 10,000 for testing. The SVHN (an image of size 32×32 representing a close-
up house number) consists of 73,257 color images for training, and 26,032 for
testing. The CIFAR-10 contains 50,000 color images (each of size 32 × 32) for
training and 10,000 for testing.

We adopt the same preprocessing technique as in [24, 37, 18, 38]: Whiten-
ing with zero mean and unit variance for MNIST and SVHN; and Zero-phase
Component Analysis (ZCA) whitening for CIFAR-10. We apply the transla-
tion augmentation to SVHN, and the mirror and translation augmentation to
CIFAR-10. For a classifier model, we employ CNN-13, the standard benchmark
architecture used in the prior works [18, 37, 27, 29, 24, 38]. We leave the detailed
network architecture in the supplementary. We mostly follow hyperparameter
search from [37, 24, 38]. See the supplementary for details. As for the choice of
labeled data, we follow the common practice in [30, 32, 24]: Randomly sampling
100, 1000, 4000 labels for MNIST, SVHN and CIFAR-10, respectively. We also
include experiments in which fewer labels are available. The results (to be re-
ported) are the ones averaged over 10 trials with different random seeds for data
splitting.

Very recently, graph-based SSL [51] has been proposed that employs a GCN-
based classifier. Since the framework enforces the input of graph learning layer
to be always fixed (such as pixel values or features from a CNN descriptor),
the performance is limited by the quality of the input feature. Hence, no direct
comparison has been made in our paper.
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Models
MNIST

100 labels 50 labels 20 labels

ImprovedGAN [32] 0.98 ± 0.065 2.21 ± 1.36 16.77 ± 4.52
TripleGAN [22] 0.91 ± 0.58 1.56 ± 0.72 4.81 ± 4.95
Π-model [18] 0.89 ± 0.15 1.02 ± 0.37 6.32 ± 6.90
TempEns[18] 1.55 ± 0.49∗ 3.33 ± 1.42∗ 17.52 ± 6.56∗

MT [37] 1.00 ± 0.54∗ 1.36 ± 0.59∗ 6.08 ± 5.19∗

VAT [27] 0.88 ± 0.38∗ 1.34 ± 0.60∗ 5.15 ± 4.77∗

SNTG [24] 0.66 ± 0.07 0.94 ± 0.42 1.36 ± 0.78
ICT [38] 0.95 ± 0.29∗ 1.29 ± 0.34 3.83 ± 2.67

Our model
0.57 ± 0.06 0.64 ± 0.14 0.85 ± 0.21

(13.6%) (31.9%) (37.6%)

Table 1: Error rates (%) on MNIST, averaged over 10 trials. The boldface, un-
derline and the number in parenthesis indicate the best results, the best among
baselines, and performance gain over the best baseline, respectively. The results
that we reproduced are marked as *.

Models
SVHN

1000 labels 500 labels 250 labels

Supervised-only 12.83 ± 0.47 22.93 ± 0.67 40.62 ± 0.95
Π-model [18] 4.82 ± 0.17 6.65 ± 0.53 9.93 ± 1.15
TempEns[18] 4.42 ± 0.16 5.12 ± 0.13 12.62 ± 2.91
MT [37] 3.95 ± 0.19 4.18 ± 0.27 4.35 ± 0.50
VAT [27] 3.94 ± 0.12∗ 4.71 ± 0.29∗ 5.49 ± 0.34∗

SNTG [24] 3.82 ± 0.25 3.99 ± 0.24 4.29 ± 0.23
ICT [38] 3.89 ± 0.04 4.23 ± 0.15 4.78 ± 0.68

Our model
3.48 ± 0.13 3.64 ± 0.15 3.97 ± 0.20

(8.90%) (9.02%) (7.46%)

Table 2: Error rates (%) on SVHN, averaged over 10 trials. The boldface in-
dicates the best results and the underline indicates the best among baselines.
The number in parenthesis is the performance gain over the best baseline. The
results that we reproduced are marked as *.

5.1 Performance evaluations

Tables 1, 2, and 3 demonstrate the error rates respectively on: MNIST with
100/50/20 labels; SVHN with 1000/500/250 labels; and CIFAR-10 with 4000/
2000/1000 labels. The underlines indicate the state of the arts among baselines,
e.g., SNTG [24] in MNIST and SVHN; and ICT [38] in CIFAR-10. The number
in parenthesis denotes the relative performance gain over the best baseline. We
see noticeable performance improvements especially on MNIST dataset with
100 labels. It could seems that the absolute performance gain is not dramatic.
In [24], however, this minor-looking absolute gain is considered to be significant,
and it is well reflected in relative performance gain, which is 13.6% over the best
baseline. Observe more significant improvements with a decrease in the number
of available labels. We expect this is because our well-constructed graph plays a
more crucial role in challenging scenarios with fewer labels.
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Models
CIFAR-10

4000 labels 2000 labels 1000 labels

Supervised-only 20.26 ± 0.38 31.16 ± 0.66 39.95 ± 0.75
Π-model [18] 12.36 ± 0.31 31.65 ± 1.20 17.57 ± 0.44
TempEns[18] 12.16 ± 0.24 15.64 ± 0.39 23.31 ± 1.01
MT [37] 12.31 ± 0.28 15.73 ± 0.31 21.55 ± 1.48
VAT [27] 11.23 ± 0.21∗ 14.07 ± 0.38∗ 19.21 ± 0.76∗

SNTG [24] 9.89 ± 0.34 13.64 ± 0.32 18.41 ± 0.52
GSCNN [36] 15.49 ± 0.64 18.98 ± 0.62 16.82 ± 0.47
ICT [38] 7.29 ± 0.02 9.26 ± 0.09 15.48 ± 0.78

Our model
6.87 ± 0.19 8.13 ± 0.22 12.50 ± 0.58

(5.76%) (12.20%) (19.25%)

Table 3: Error rates (%) on CIFAR-10, averaged over 10 trials. The boldface
indicates the best results and the underline indicates the best among baselines.
The number in parenthesis is the performance gain over the best baseline. The
results that we reproduced are marked as *.

5.2 Comparison to graph-based SSL [18, 24, 36]

We put a particular emphasis on performance comparisons with the most related
graph-based approaches [18, 24, 36], both in view of error rate and computational
complexity. The training time is measured w.r.t. MNIST with 100 labels and
without data augmentation. Our implementation is done via TensorFlow on
Xeon E5-2650 v4 CPU and TITAN V GPU.

Table 4 shows both error rate and training (running) time. Notice that our
matrix completion yields a higher accuracy than SNTG [24] which only exploits
the softmax values in the output space. This implies that using both features and
predictions is more effective in better estimating a similarity graph, although it
requires slightly increased model parameters and therefore slows down running
time yet by a small margin.

In comparison to another matrix completion approach (GSCNN [36]1), our
framework offers much faster training time (around 3.1 times faster) in addition

1 For GSCNN, we use the same CNN structure as in this paper, and incorporate a
consistency loss for a fair comparison.

Models Error rate (%)
Running

# of parameters
Time (s)

Π-model [18] 0.89± 0.15 18, 343.81 3, 119, 508
SNTG [24] 0.66± 0.07 19, 009, 74 3, 119, 508
GSCNN [36]1 0.60± 0.13 62, 240.97 3, 119, 508

Our model 0.57± 0.06 20, 108.16 3, 255, 898,

Table 4: Comparison to the other graph-based SSLs on MNIST with 100 labels
without augmentation.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2: Embeddings of CIFAR-10 test data with 10,000 images. These features
are projected onto a two-dimensional space using t-SNE [25] (a–e) and PCA (f–
j). (a) Supervised-only. (b) Supervised + Consistency. (c) Supervised + Feature
matching. (d) Supervised + Consistency + Feature matching. (e) Supervised +
Consistency + Feature matching with our Autoencoder.

to the performance improvement in error rate. This is because our integrated
approach enables simultaneous training between the models of the classifier and
matrix completion. While our algorithm introduces a parameterized autoencoder
and thus requires more model parameters, this addition is negligible relative to
the complexity of the CNN classifier model employed.

Under graph-based approaches, even a slightly inaccurate graph may yield
non-negligible performance degradation, as the error can be propagated through
iterations. An inaccurate graph is likely to appear in the initial phase of training.
To overcome this, we adjusted the reliability of the estimated graph using w(t)
monotonically increasing function in feature matching loss as in [24]. [24] already
showed stable convergence when obtaining a graph from the teacher model clas-
sifier. Empirically, the graph accuracy obtained from our autoencoder is always
higher than that of [24]. We leave the empirical result in the supplementary. As
a result, we did not observe any divergence in all our experiments.

5.3 Ablation study

In an effort to quantify the impact of every individual component employed in our
framework, we also conduct an ablation study. This is done for CIFAR-10 with
4000 labels. We use supervised loss by default. We sequentially incorporate con-
sistency loss, feature matching loss and graph construction via our autoencoder,
as illustrated in Table 5. We also consider three representative methods (Π-
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Error rate (%)

Supervised loss 20.26 ± 0.38
Supervised + Feature matching 13.99 ± 0.20

Supervised + Feature matching with AE
13.37 ± 0.17
(+4.43%)

Π-model

Supervised + Consistency 12.36 ± 0.31
Supervised + Consistency + Feature matching 11.00 ± 0.13

Supervised + Consistency + Feature matching with AE
10.81 ± 0.13
(+1.72%)

MT

Supervised + Consistency 12.31 ± 0.28
Supervised + Consistency + Feature matching 12.12 ± 0.14

Supervised + Consistency + Feature matching with AE
11.54 ± 0.34
(+3.35%)

ICT

Supervised + Consistency 7.25 ± 0.202

Supervised + Consistency + Feature matching 7.18 ± 0.13

Supervised + Consistency + Feature matching with AE
6.87 ± 0.19
(+3.94%)

Table 5: Ablation study on CIFAR-10 with 4000 labels. The number in paren-
thesis is the performance gain that we can obtain via the similarity graph due
to our autoencoder.

model [18], Mean-Teacher [37], and ICT [38]) to see the effects of our method
under various consistency losses.

Table 5 shows the results on CIFAR-10 with 4000 labels. Note that ICT [38]
offers the most powerful consistency loss relative to Π-model [18] and MT [37].
Feature matching loss indeed plays a role and the effect is more significant with
our autoencoder approach. This suggests that the precise graph due to our au-
toencoder maximizes the benefit of feature matching.

Moreover, we visualize 2D embeddings on CIFAR-10 test data using Embed-
ding projector in Tensorflow. The feature vectors h(xi) ∈ R

128, extracted from
the CNN, are projected onto a two-dimensional space using t-SNE [25]. We set
perplexity to 25 and the learning rate to 10 as hyperparameters for t-SNE. In
Figure 2, we see the impact of each loss term upon clustering structures in an
embedding domain. Here ICT is employed for consistency loss. From Figure 2(c),
we can see a clearer clustering structure (relative to (b)), suggesting that feature
matching loss helps embedded data to move away from the decision boundary.
Taking both losses (Figures (d) and (e)), we observe tighter clusters particularly
with our autoencoder approach.

5.4 Wide ResNet results

Recent works [4, 28] employ a 28-layer Wide ResNet [47] architecture, instead of
the standard CNN-13 that we have used for the above experiments. In an effort

2 In Table 5, the original paper reported 7.29 ± 0.02 as the average and standard
deviation for 3 runs. We replaced them with those with 10 runs.
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Models
CIFAR-10

250 labels 500 labels 1000 labels 2000 labels 4000 labels

Π-model [18] 53.02 ± 2.05 41.82 ± 1.52 31.53 ± 0.98 23.07 ± 0.66 17.41 ± 0.37

PseudoLabel [19] 49.98 ± 1.17 40.55 ± 1.70 30.91 ± 1.73 21.96 ± 0.42 16.21 ± 0.11

Mixup [49] 47.43 ± 0.92 36.17 ± 1.36 25.72 ± 0.66 18.14 ± 1.06 13.15 ± 0.20

VAT [27] 36.03 ± 2.82 26.11 ± 1.52 18.68 ± 0.40 14.40 ± 0.15 11.05 ± 0.31

MT [37] 47.32 ± 4.71 42.01 ± 5.86 17.32 ± 4.00 12.17 ± 0.22 10.36 ± 0.25

MixMatch [4] 11.08 ± 0.87 9.65 ± 0.94 7.75 ± 0.32 7.03 ± 0.15 6.24 ± 0.06

Our model 10.87 ± 0.40 9.53 ± 0.85 7.69 ± 0.17 7.08 ± 0.14 6.24 ± 0.06

Table 6: Error rate (%) with a 28-layer Wide ResNet on CIFAR-10, averaged
over 5 trials.

to investigate whether our framework can be gracefully merged with another,
we also consider this architecture to conduct more experiments. We followed the
simulation settings given in [4]. Table 6 demonstrates the error rates on CIFAR-
10 with 4000/2000/1000/500/250 labels. The results show that our model is
well merged with the Wide ResNet architecture, while offering slightly better
performance relative to the state-of-the-art algorithm [4]. We do expect other
techniques [3, 34, 46] can be gracefully merged with our approach (that addi-
tionally employs feature matching loss), yielding further improvements, as also
demonstrated in Table 6 w.r.t. other technique [4].

6 Conclusion

We proposed a holistic training approach to graph-based SSL that is computa-
tionally efficient and offers the state-of-the-art error rate performances on bench-
mark datasets. The key idea is to employ an autoencoder-based matrix comple-
tion for similarity graph which enables simultaneous training between model
parameters of an interested classifier and matrix completion. Experiments on
three benchmark datasets demonstrate that our model outperforms the previ-
ous state of the arts. In particular, the performance gain is more distinct with a
decrease in the number of available labels. Ablation study emphasizes the role
of our key distinctive component: Autoencoder for graph construction. Future
works of interest include: (a) a graceful merge with the state-of-the-art consis-
tency loss-based approach [48, 3, 34, 46]; and (b) evaluations of our model on
various large-scale datasets such as CIFAR-100 and ImageNet.
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