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Supplementary Contents

This supplement is organized as follows:

– Section 1 elaborates on the physics used to calculate the priors described in
the main paper.

– Section 2.1 discusses runtime details (cross-referenced to Section 1 of the
main paper).

– Section 3.1 expands on texture copy (cross-referenced to Section 5.3 of the
main paper).

– Section 3.2 includes further comparisons for lighting invariance (cross-referenced
to Section 5.2 of the main paper).

– Section 3.3 includes additional results that did not fit in the main paper
(cross-referenced to Section 5.6 of the main paper).

1 Physics Priors

In section 3.1 of the main paper, we present the image formation model, which
relates the measured intensity of polarized light at a given pixel to two constants
describing polarization: the degree of polarization (DoP), ρ, and the polarization
phase angle, φ. These constants are in turn related to the azimuth and zenith
angle of the surface normal. While this relationship depends on the reflection
type (i.e., diffuse dominant or specular dominant) and contains inherent am-
biguities, we show in the paper that giving our network the possible normal
estimates as physics priors guides it toward more geometrically realistic solu-
tions. Below we present in detail the physics behind our method for obtaining
the priors. Ultimately we feed our network three normals at each pixel (concate-
nated channel-wise): two solutions to the specular model, N spec1 and N spec2,
and one solution to the diffuse model, Ndiff .

? Equal contribution.
?? Corresponding authors.
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1.1 Solving for DoP and phase angle

Recall from the main paper that for a given pixel

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2(φpol − φ)), (1)

where φpol is the angle of the polarizer, and Imax and Imin are the upper and
lower bounds on I(φpol) respectively. We also introduced ρ as

ρ =
Imax − Imin
Imax + Imin

. (2)

We define the unpolarized intensity of the pixel as the average of the upper and
lower bounds,

Iun =
Imax + Imin

2
. (3)

Using the trigonometric identity cos(A − B) = cos(A)cos(B) + sin(A)sin(B),
the cosine term can be expanded, and equation 1 can be rewritten as

I(φpol) = Iun + Iunρ cos(2φpol) cos(2φ) + Iunρ sin(2φpol) sin(2φ). (4)

Applying a change of variables as done in [6], we can create a per-pixel system
of equations linear in ρ and φ,1 cos(2φpol,1) sin(2φpol,1)

...
1 cos(2φpol,m) sin(2φpol,m)


Iuna
b

 =

 Iφpol,1

...
Iφpol,m

 , (5)

where a = Iun·ρcos(2φ) and b = Iun·ρsin(2φ), and, without loss of generality, the
number of polarizer angles m is set to 4, with φpol,i ∈ {0◦, 45◦, 90◦, 135◦, }. These
four polarization angles can be captured in a single shot by our polarization
camera [4].

This system of equations can be solved with least squares. We utilize Mat-
Lab’s built in mldivide function to find the least squares solution for Iun, a,
and b.

‘
Finally we estimate

ρ =

√
a2 + b2

Iun
φ =

1

2
atan2(b, a). (6)

Note the ambiguity problem here: both φ and φ + π satisfy equation 1. We
find that using the three solutions for both of the possible phase angles (e.g., six
total solutions per pixel) provides minimal improvement. We therefore use only
the solutions corresponding to one resolution of the ambiguity. We also try to
emphasise high frequency detail in the priors by adding a scale factor of two to
the φ estimates. Both estimates yield similar performance, and we keep the scale
factor of 2 in the main paper and supplement.
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1.2 Specular Solution

Consider the case where the pixel is dominated by specular reflections (i.e., light
from a single external refraction with the surface).

Azimuth angle Let the “incidence plane” be defined as that containing both
the light source and the camera, such that the azimuth angle of the surface
normal will be equal to the angle of the incidence plane.

The Fresnel reflectance coefficients give the fraction of incident power re-
flected for light polarized parallel to the incidence plane (F‖) and perpendicular
to the incidence plane (F⊥). For purely specular reflection, the authors of [3]
show that Imax and Imin can be written in terms of the Fresnel coefficients as

Imax =
F⊥

F‖ + F⊥
I Imin =

F‖

F‖ + F⊥
I, (7)

where I is the measured intensity of specular reflection. By these equations,
the minimum intensity occurs parallel to the plane of incidence, i.e. when the
polarization angle, φpol, matches the azimuth angle of the surface normal, ϕ.
But by equation 1, intensity is minimized when φpol and the phase angle, φ, are
90◦ apart. Therefore, in the specular case

ϕ = φ+
π

2
. (8)

Note, as mentioned in the previous section, φ− π
2 would also satisfy the equiv-

alence, but we only include one set of solutions as our priors.

Zenith angle Using Snell’s law and the Fresnel equations, it is shown in [3] that
the Fresnel coefficients can be written in terms of the surface normal’s zenith
angle, θ, and the refractive index of the surface, n, as

F‖ =
1 + n2 − (n

2+1
n2 )sin2θ − 2cosθ

√
n2 − sin2θ

1 + n2 − (n
2+1
n2 )sin2θ + 2cosθ

√
n2 − sin2θ

(9)

and

F⊥ =
1 + n2 − 2sin2θ − 2cosθ

√
n2 − sin2θ

1 + n2 − 2sin2θ + 2cosθ
√
n2 − sin2θ

. (10)

Combining equations 2, 7, 9, and 10, [3] show that

ρ =
2 sin2 θ cos θ

√
n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
. (11)

For our dataset, n is unknown, but according to [1], the dependency of ρ on n
is weak and generally falls between 1.3 and 1.6 for most dielectric materials. We
use n = 1.5, as stated in the main paper.
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Equation 11 cannot be inverted analytically, and solving for the zenith angle
using numerical interpolation produces two solutions, θspec,1 and θspec,2. With
the azimuth and zenith angles determined, the two normal solutions, N spec,1

and N spec,2, are acquired by converting from spherical to Cartesian coordinates
with

Nspec,1 =

cos(ϕ)sin(θspec,1)
sin(ϕ)sin(θspec,1)

cos(θspec,1)

 (12)

and

Nspec,2 =

cos(ϕ)sin(θspec,2)
sin(ϕ)sin(θspec,2)

cos(θspec,2)

 (13)

1.3 Diffuse Solution

Consider the case where the pixel is dominated by diffuse reflections, arising from
light waves which undergo multiple internal refractions beneath the material
surface before refracting out.

Azimuth angle Whereas for the specular case the phase angle, φ, and azimuth
angle, ϕ, are 90◦ apart, in the diffuse case

ϕ = φ. (14)

The authors explain in [7] that this 90◦ phase difference between specular and
diffuse reflections arises from the fact that they come from complementary pro-
cesses (reflection and transmission, respectively). While for specular reflection
F⊥ ≥ F‖ causes the maximum transmitted radiance orthogonal to the incidence
plane, for specular reflection (1−F⊥) ≤ (1−F‖) implies the maximum transmit-
ted radiance will be parallel to the incidence plane. The azimuth ambiguity also
exists in the diffuse case, but we choose a single azimuth solution for calculating
the normals.

Zenith angle Due to the complementary nature mentioned above, it is shown
in [7] that for the diffuse case

Imax =
1− F‖

2− F‖ − F⊥
I Imin =

1− F⊥
2− F‖ + F⊥

I. (15)

Using equations 2, 15, along with Snell’s law and the Fresnel equations, in [1]
they show that in the diffuse case, ρ can also be written in terms of n and θ as

ρ =
(n− 1

n )2 sin2 θ

2 + 2n2 − (n+ 1
n )2 sin2 θ + 4 cos θ

√
n2 − sin2 θ

. (16)

Equation 16 can be rearranged to obtain a close-form estimation of the zenith
angle, θ.

Finally, we find the normal solution, Ndiff , by converting from spherical to
Cartesian coordinates as done in equations 12 and 13.
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2 Operational Details

Below we present details of our exact method for estimating surface normals
during test-time, as well as a high level analysis of the runtime of our full pipeline.
We recognize realtime performance as a direction for future study, and consider
some possibilities for optimization in our current method.

2.1 Runtime Analysis

The process of surface normal reconstruction consists of two main steps: solving
for the physics priors, followed by the use of our network for final inference.
During inference, we split each image into 256× 256 patches and rejoin the es-
timated normal patches from our network output. The final prediction is the
average of 32 cropped predictions with shifted input to preserve the accuracy
at patch boundaries. The process used for calculating the priors is described in
detail in section 1. The runtime (averaged across all the objects in our test set)
is 17.9 seconds for prior calculation and 8.43 seconds for inference. Prior Cal-
culation times are measured using Matlab’s timeit function. Network Inference
times are measured using the profiler built into PyTorch’s autograd package.

Tests were conducted on a Linux (Ubuntu 18.04 LTS) machine with an Intel
i5-8400 CPU (6 cores, 2.80 GHz), 16GB of RAM, and NVIDIA GeForce RTX
2070 GPU (8 GB of GPU RAM). Prior calculation was performed solely on the
CPU, while the network inference step was executed on the GPU. Timing results
are averaged over our entire testing set.

Making our approach real time is an interesting avenue for future work.
We currently do little optimization of the prior calculation process. Exploiting
parallelism, sparse solvers, and GPU computation offer opportunities for vast
improvement in execution time.

3 Additional Results

In the following section we present various additional results to further reinforce
the claims we make in the main paper. Specifically we address the following
points:

• robustness to texture copy ;

• invariance to changes in lighting conditions; and

• overall qualitative improvement over previous purely physics-based methods.

3.1 Suppression of Texture Copy

In Figure 1, we provide a more comprehensive set of examples demonstrating
the ability of priors to encourage more geometrically realistic reconstructions.
Specifically we show four more examples with significant specular highlights (the
Father Christmas object and the vase under outdoor overcast lighting, and
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Exploring Texture Copy in More Detail

Fig. 1. Additional examples of texture copy suppression. The orientation of the
object and lighting conditions are listed next to the name of the object. The number on
the top left corner of the whole reconstructions is the MAE. This is further proof that by
incorporating the geometry-based information from the physics priors, the proposed
method is able to suppress texture copy artifacts related to specular highlights and
material variance.
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the horse under indoor lighting from two different directions), as well as two
examples on the Dragon object, which exhibits sharp material variation. In each
example, we focus on a particularly problematic facet, and see that incorporating
priors suppresses the copy of image texture (due to either highlights or non-
uniform material) in the estimated geometry. Indeed, this improvement is not a
one-off phenomena specific to the example provided in the main paper, but is
observed throughout our testing set.

The robustness of our model with physics priors to texture copy is still not
perfect, and for several cases texture artifacts remain faintly visible. We still
consider our model to be strong in this category for the following reasons. Firstly,
in the occasional cases when copies are not perfectly erased, they are obviously
suppressed, as is apparent in Figure 1 below. Second, our performance in tricky
regions is qualitatively better than that of all previous physics-based methods.

3.2 Qualitative Lighting Invariance

In the main paper, we provided quantitative evidence of our method’s consis-
tency across different lighting conditions over the test set. In Figure 2 we provide
qualitative evidence that reinforces why we consider our method strongly light-
ing invariant. Furthermore, these qualitative observations expose the variation
of other methods under different lightings, which may have been less apparent
solely from the mean angular error (MAE) values.

We show two objects in the test set, one simple (Christmas), and one com-
plex (Dragon). For these objects, we see that the three physics-based meth-
ods [2,3,5] show variations qualitatively in their reconstructions across different
lightings. Note, our method requires no known or estimated lighting to achieve
this invariance.

3.3 More Qualitative Comparisons with Previous Methods

As described in section 4.1 of the main paper, for each object in our dataset, we
capture 12 separate configurations: 4 object orientations under each of 3 light-
ing conditions. As further evidence of the superior performance of our method
relative to previous, purely physics-based approaches, we present another set of
results from our test set under various different orientations and lighting.

Figure 3 is organized similarly to Figure 7 in the main paper. The RGB
images in (row a) are not used as input, but are shown in the top row of the
figure for context about material properties. The input to all the methods shown
is four polarization images, shown in (row b) of Figure 7. The ground truth shape
is shown in (row c), and corresponding shape reconstructions for the proposed
method are shown in (row d). Comparison methods are shown in (row e) through
(row g).
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Fig. 2. Qualitative results on lighting invariance show that the proposed
method’s performance is better. The number shown on the top left corner of the
objects is the MAE. We see that for both the Christmas object and Dragon objects,
the proposed method shows less variations between reconstructions under differing
lighting conditions.
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Fig. 3. Proposed method shows qualitative and quantitative improvements
for additional lightings and orientations. The corresponding MAE is shown on the
top left corner of each reconstruction. The lowest MAE for each object is highlighted
in green. Our method (row d) achieves the best performance across all objects both
quantitatively and qualitatively.
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