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Abstract. Generalized Zero-Shot Learning (GZSL) is a challenging topic
that has promising prospects in many realistic scenarios. Using a gating
mechanism that discriminates the unseen samples from the seen samples
can decompose the GZSL problem to a conventional Zero-Shot Learning
(ZSL) problem and a supervised classification problem. However, train-
ing the gate is usually challenging due to the lack of data in the unseen
domain. To resolve this problem, in this paper, we propose a boundary
based Out-of-Distribution (OOD) classifier which classifies the unseen
and seen domains by only using seen samples for training. First, we learn
a shared latent space on a unit hyper-sphere where the latent distribu-
tions of visual features and semantic attributes are aligned class-wisely.
Then we find the boundary and the center of the manifold for each class.
By leveraging the class centers and boundaries, the unseen samples can
be separated from the seen samples. After that, we use two experts to
classify the seen and unseen samples separately. We extensively vali-
date our approach on five popular benchmark datasets including AWA1,
AWA2, CUB, FLO and SUN. The experimental results show that our
approach surpasses state-of-the-art approaches by a significant margin.

Keywords: Generalized Zero-Shot Learning, boundary based Out-of-
Distribution classifier.

1 Introduction

Zero-Shot Learning (ZSL) is an important topic in the computer vision com-
munity which has been widely adopted to solve challenges in real-world tasks.
In the conventional setting, ZSL aims at recognizing the instances drawn from
the unseen domain, for which the training data are lacked and only the semantic
auxiliary information is available. However, in real-world scenarios, the instances
are drawn from either unseen or seen domains, which is a more challenging task
called Generalized Zero-Shot Learning (GZSL).

Previous GZSL algorithms can be grouped into three lines: (1) Embed-
ding methods [2, 1, 3, 14, 25, 18, 28, 27, 5, 10, 33] which aim at learning embed-
dings that unify the visual features and semantic attributes for similarity mea-
surement. However, due to the bias problem [33], the projected feature anchors
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Fig. 1. The boundary based OOD classifier learns a bounded manifold for each seen
class on a unit hyper-sphere (latent space). By using the manifold boundaries (dotted
circles) and the centers (dark-colored dots), the unseen samples (black dots) can be
separated from the seen samples (colored dots).

of unseen classes may be distributed too near to that of seen classes in the em-
bedding space. Consequently, the unseen samples are easily classified into nearby
seen classes. (2) Generative methods [21, 6, 31, 9, 15, 26] which focus on generat-
ing synthetic features for unseen classes by using generative models such as GAN
[11] or VAE [13]. By leveraging the synthetic data, the GZSL problem can be con-
verted to a supervised problem. Although the generative methods substantially
improve the GZSL performance, they are still bothered by the feature confusion
problem [17]. Specifically, the synthetic unseen features may be tangled with
the seen features. As a result, a classifier will be confused by the features which
have strong similarities but different labels. An intuitive phenomenon is that
previous methods usually make trade-offs between the accuracy of seen classes
and unseen classes to get higher Harmonic Mean values. (3) Gating methods [4,
27] which usually incorporates a gating mechanism with two experts to handle
the unseen and seen domains separately. Ideally, if the binary classifier is reli-
able enough, the GZSL can be decomposed to a ZSL problem and a supervised
classification problem, which does not suffer from the feature confusion or bias
problem. Unfortunately, it is usually difficult to learn such a classifier because
unseen samples are not available during training.

To resolve the main challenge in the gating methods, we propose a boundary
based Out-of-Distribution (OOD) classifier for GZSL in this paper. As illustrated
in Fig. 1, the key idea of our approach is to learn a bounded manifold for each
seen class in the latent space. A datum that can be projected into the bounded
manifold will be regarded as a seen sample. Otherwise, we believe it is an unseen
sample. In this way, we can easily separate unseen classes from seen classes even
we do not use any unseen samples for training.

To learn a bounded manifold for each seen class, the proposed OOD clas-
sifier learns a shared latent space for both visual features and the semantic
attributes. In the latent space, the distributions of visual features and seman-
tic attributes are aligned class-wisely. Different from previous latent distribution
aligning approach [26], we build the latent space on a unit hyper-sphere by using
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Hyper-Spherical Variational Auto-Encoders (SVAE) [8]. Specifically, the approx-
imated posterior of each visual feature is encouraged to be aligned with a von
Mises-Fisher (vMF) distribution, where the mean direction and concentration
are associated with the corresponding semantic attribute. Therefore, each class
can be represented by a vMF distribution on the unit hyper-sphere, which is
easy to find the manifold boundary. In addition, the mean direction predicted
by semantic attribute can be regarded as the class center. By leveraging the
boundary and the class center, we can determine if a datum is projected into
the manifold. In this way, the unseen features can be separated from the seen fea-
tures. After that, we apply two experts to classify the seen features and unseen
features separately.

The proposed classifier can incorporate with any state-of-the-art ZSL method.
The core idea is very straightforward and easy to implement. We evaluate our
approach on five popular benchmark datasets, i.e. AWA1, AWA2, CUB, FLO
and SUN for generalized zero-shot learning. The experimental results show that
our approach surpasses the state-of-the-art approaches by a significant margin.

2 Related Work

Embedding Methods To solve GZSL, the embedding methods [1–3, 14, 25,
18, 28, 27, 5, 10, 33, 35, 19, 32, 34] usually learn a mapping to unify the visual fea-
tures and semantic attributes for similarity measurement. For example, Zhang
et al. [35] embed features and attributes into a common space where each point
denotes a mixture of seen class proportions. Other than introducing common
space, Kodirov et al. [14] propose a semantic auto-encoder which aims to embed
visual feature vector into the semantic space while constrain the projection must
be able to reconstruct the original visual feature. On the contrary, Long et al.
[19] learn embedding from semantic space into visual space. However, due to
the bias problem, previous embedding methods usually misclassify the unseen
classes into seen classes. To alleviate the bias problem, Zhang et al. [33] propose
a co-representation network which adopts a single-layer cooperation module with
parallel structure to learn a more uniform embedding space with better repre-
sentation.

Generative Methods The generative methods [21, 6, 31, 9, 15, 26] treat GZSL
as a case of missing data and try to generate synthetic samples of unseen classes
from semantic information. By leveraging the synthetic data, the GZSL prob-
lem can be converted to a supervised classification problem. Therefore, These
methods usually rely on generative models such as GAN [11] and VAE [13].
For example, Xian et al. [31] directly generate image features by pairing a con-
ditional WGAN with a classification loss. Mishara et al [21] utilize a VAE to
generate image features conditional on the class embedding vector. Felix et al.
[9] propose a multi-modal cycle-consistent GAN to improve the quality of the
synthetic features. Compared to the embedding methods, the generative meth-
ods significantly improve the GZSL performance. However, Li et al. [17] find
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that the generative methods are bothered by the feature confusion problem. To
alleviate this problem, they present a boundary loss which maximizes the deci-
sion boundary of seen categories and unseen ones while training the generative
model.

Gating Methods There are a few works using a gating based mechanism to
separate the unseen samples from the seen samples for GZSL. The gate usually
incorporates two experts to handle seen and unseen domains separately. For
example, Socher et al. [27] propose a hard gating model to assign test samples
to each expert. Only the selected expert is used for prediction, ignoring the other
expert. Recently, Atzmon et al. [4] propose a soft gating model which makes soft
decisions if a sample is from a seen class. The key to the soft gating is to pass
information between three classifiers to improve each one’s accuracy. Different
from the embedding methods and the generative methods, the gating methods
do not suffer from the bias problem or the feature confusion problem. However,
a key difficulty in gating methods is to train a binary classifier by only using
seen samples. In this work, we propose a boundary based OOD classifier by
only using seen samples for training. The proposed classifier is a hard gating
model. Compared to previous gating methods, it provides much more accurate
classification results.

3 Revisit Spherical Variational Auto-Encoders

The training objective of a general variational auto-encoder is to maximize
log
∫
pφ(x, z)dz, the log-likelihood of the observed data, where x is the training

data, z is the latent variable and pφ(x, z) is a parameterized model representing
the joint distribution of x and z. However, computing the marginal distribution
over the latent variable z is generally intractable. In practice, it is implemented
to maximize the Evidence Lower Bound (ELBO).

log

∫
pφ(x, z)dz ≥ Eq(z)) [log pφ(x|z)]−KL(q(z)||p(z)), (1)

where q(z) approximates the true posterior distribution and p(z) is the prior dis-
tribution. pφ(x|z) is to map a latent variable to a data point x which is parame-
terized by a decoder network. KL(q(z)||p(z)) is the Kullback-Leibler divergence
which encourages q(z) to match the prior distribution. The main difference for
various variational auto-encoders is in the adopted distributions.

For SVAE [8], both of the prior and posterior distributions are based on
von Mises-Fisher(vMF) distributions. A vMF distribution can be regarded as a
Normal distribution on a hyper-sphere, which is defined as:

q(z|µ, κ) = Cm(κ) exp(κµT z) (2)

Cm(κ) =
κm/2− 1

(2π)m/2Im/2−1(κ)
(3)
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Fig. 2. Our model consists of two SVAEs, one for visual features and another for
semantic attributes. By combining the objective functions of the two SVAEs with a
cross-reconstruction loss and a classification loss, we train our model to align the latent
distributions of visual features and semantic attributes class-wisely. In this way, each
class can be represented by a vMF distribution whose boundary is easy to find.

where µ ∈ Rm, ||µ||2 = 1 represents the direction on the sphere and κ ∈ R≥0
represents the concentration around µ. Cm(κ) is the normalizing constant, Iv is
the modified Bessel function of the first kind at order v.

Theoretically, q(z) should be optimized over all data points, which is not
tractable for large dataset. Therefore it uses qθ(z|x) = q(z|µ(x), κ(x)) which is
parameterized by an encoder network to do stochastic gradient descent over the
dataset. The final training objective is defined as:

LSVAE(θ, φ;x) = Eqθ(z|x) [log pφ(x|z)]−KL(qθ(z|x)||p(z)). (4)

4 Proposed Approach

4.1 Problem Formulation

We first introduce the definitions of OOD classification and GZSL. We are given
a set of training samples of seen classes S = {(x, y, a)|x ∈ X , y ∈ Ys, a ∈ As}
where x represents the feature of an image extracted by a CNN, y represents the
class label in Ys =

{
y1s , y

2
s , ..., y

N
s

}
consisting of N seen classes and a represents

corresponding class-level semantic attribute which is usually hand-annotated or
a Word2Vec feature [20]. We are also given a set U = {(y, a)|y ∈ Yu, a ∈ Au}
of unseen classes Yu =

{
y1u, y

2
u, ..., y

M
u

}
. The zero shot recognition states that

Ys ∩ Yu = ∅. Given S and U , the OOD classifier aims at learning a binary
classifier fOOD : X → {0, 1} that distinguishes if a datum belongs to S or U .
The task of GZSL aims at learning a classifier fgzsl : X → Ys ∪ Yu.

4.2 Boundary Based Out-of-Distribution Classifier

The proposed OOD classifier aims to classify the unseen and seen domains by
only using seen samples for training. The core idea of our approach is quite
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straightforward. First, we build a latent space for visual features and semantic
attributes. Then we learn a bounded manifold for each seen class. Next we find
the boundaries of the learned manifolds. By leveraging the boundaries, we can
determine if a test sample is projected into the manifolds. For the samples which
can be projected into the manifolds, we believe they belong to the seen domain
and assign them to a seen expert. Otherwise, we assign them to an unseen expert.

Build the Latent Space on a Unit Hyper-sphere Different from previous
works, we build the latent space on a unit hyper-sphere by using hyper-spherical
variational auto-encoders. In the latent space, each class is approximately rep-
resented by a vMF distribution of which the mean direction can be regarded as
the class center. Using the spherical representation has two advantages. First,
we can naturally use cosine similarity as the distance metric since all latent vari-
ables and class centers are located on the unit hyper-sphere. Second, for each
seen class, it is easy to find the manifold boundary. Specifically, we can find a
threshold based on the cosine similarities between the latent variables and the
class center. According to the class center and the corresponding boundary, we
can determine if a visual feature is projected into the manifold.

Learn A Bounded Manifold for Each Class To learn a bounded man-
ifold for each class, inspired by [26], we encourage the latent distributions of
visual features and the corresponding semantic attribute to be aligned with
each other in the latent space. As illustrated in Fig. 2, our model consists
of two SVAEs correspond to two data modalities, one for visual features and
another for semantic attributes, denoted as f-SVAE and a-SVAE, respectively.
Given an attribute a ∈ As, the encoder of a-SVAE predicts a vMF distribution
qθa(z|a) = q(z|µ(a), κ(a)). Meanwhile, given the corresponding visual feature x,
the encoder of f-SVAE predicts a vMF distribution qθf (z|x) = q(z|µ(x), κ(x)).
Each SVAE regards the distribution predicted by another SVAE as the prior
distribution. Therefore, we can align the two distributions by optimizing the
objective functions of f-SVAE and a-SVAE simultaneously. We further adopt a
cross-reconstruction loss and a classification loss to ensure the latent representa-
tions capture the modality invariant information while preserving discrimination.
Therefore, the training objective consists four parts.

f-SVAE : For the f-SVAE, we expect to maximize the log-likelihood and mini-
mize the discrepancy between the approximated posterior qθf (z|x) and the prior
distribution qθa(z|a). Therefore, the training objective is defined as:

Lf−SV AE = Ep(x,a)[Eqθf (z|x)[log pφf (x|z)]− λfDz(qθf (z|x) ‖ qθa(z|a))], (5)

where Eqθf (z|x)[log pφf (x|z)] represents the expectation of log-likelihood over la-

tent variable z. In practice, we use the negative reconstruction error of visual
feature x instead. pφf (x|z) is the decoder network of f-SVAE. Dz(qθf (z|x) ‖
qθa(z|a)) represents the discrepancy between the two vMF distributions. λf
is a hyper-parameter to weight the discrepancy term. It worth noting that
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Dz(qθf (z|x) ‖ qθa(z|a)) is the Earth Mover’s Distance (EMD) between the two
distributions which is defined as:

Dz(qθf (z|x) ‖ qθa(z|a)) = inf
Ω∈

∏
(qθf ,qθa )

E(z1,z2)∼Ω [‖ z1 − z2 ‖]. (6)

The reason we use EMD instead of the KL-divergence is that the KL-divergence
may fail when the support regions of the two distributions qθf (z|x) and qθa(z|a)
do not completely coincide. To calculate the EMD, we utilize the Sinkhorn iter-
ation algorithm in [7].

a-SVAE : Similarly, for the a-SVAE, qθf (z|x) is regarded as the prior distri-
bution. The objective function is defined as:

La−SV AE = Ep(x,a)[Eqθa (z|a)[log pφa(a|z)]− λaDz(qθa(z|a) ‖ qθf (z|x))], (7)

where Eqθa (z|a)[log pφa(a|z)] represents the negative reconstruction error of se-
mantic attribute a. Dz(qθa(z|a) ‖ qθf (z|x)) is the discrepancy between the two
vMF distributions. As EMD is symmetrical, Dz(qθa(z|a) ‖ qθf (z|x)) equals to
Dz(qθf (z|x) ‖ qθa(z|a)), weighted by hyper-parameter λa.

Cross-reconstruction Loss: Since we learn a shared latent space for the two
different modalities, the latent representations should capture the modality in-
variant information. For this purpose, we also adopt a cross-reconstruction reg-
ularizer:

Lcr = Ep(x,a)[Eqθa (z|a)[log pφf (x|z)] + Eqθf (z|x)[log pφa(a|z)]], (8)

where Eqθa (z|a)[log pφf (x|z)] and Eqθf (z|x)[log pφa(a|z)] also represent negative

reconstruction errors.
Classification Loss: To make the latent variables more discriminate, we in-

troduce the following classification loss:

Lcls = Ep(x,y,a)[Eqθa (z|a)[log pφcls(y|z)] + Eqθf (z|x)[log pφcls(y|z)]], (9)

where φcls represents the parameters of a linear softmax classifier. Although the
classification loss may hurt the inter-class association between seen and unseen
classes, it also reduces the risk for unseen features being projected into the
manifolds of seen classes, which benefits to the binary classification. The reason
is that our OOD classifier only cares about separating unseen features from the
seen features, but not cares about which class the unseen features belong to.

Overall Objective: Finally, we train our model by maximizing the following
objective:

Loverall = Lf−SV AE + La−SV AE + αLcr + βLcls, (10)

where α, β are the hyper-parameters used to weight the two terms.

Find the Boundaries for OOD Classification When the proposed model
is trained to convergence, the visual features and the semantic attributes are
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aligned class-wisely in the latent space. Each class is represented by a vMF dis-
tribution. Therefore, the manifold of each class can be approximately represented
by a circle on the unit hyper-sphere. By leveraging the center and the boundary,
we can determine whether a latent variable locates in the manifold.

For class yi ∈ Ys, the class center can be found by using its semantic at-
tribute. Given ai ∈ As, a-SVAE predicts a vMF distribution q(z|µ(ai), κ(ai)) of
which µ(ai) is regarded as the class center.

There could be many ways to find the boundaries. In this paper, we present
a simple yet effective one. We first encode all training samples of seen classes to
latent variables. After that we calculate the cosine similarity S(zi, µ(ai)) between
each latent variable zi and the corresponding class center µ(ai). Then we search
a threshold η which is smaller than γ ∈ (0, 100%) and larger than 1 − γ of the
cosine similarities. We adopt η for all seen classes to represent the boundaries.
Here, γ can be viewed as the OOD classification accuracy on training samples.
Given a γ, we can find the corresponding threshold η.

Given a test sample x which may come from a seen class or an unseen class,
we first encode it to latent variable z. Then we compute the cosine similarities
between it to all seen class centers and find the maximum. By leveraging the
threshold η, we determine the test sample belongs to unseen class or seen class
using Eq.(11),

yOOD =

{
0, if max{S(z, µ(ai))|∀ai ∈ As} < η
1, if max{S(z, µ(ai))|∀ai ∈ As} ≥ η

(11)

where 0 stands for unseen class and 1 for seen class.

Generalized Zero-Shot Classification For the GZSL task, we incorporate
the proposed OOD classifier with two domain experts. Given a test sample, the
OOD classifier determines if it comes from a seen class. Then, according to the
predicted label, the test sample is assigned to a seen expert or an unseen expert
for classification.

4.3 Implementation Details

OOD Classifier For the f-SVAE, we use two 2-layer Fully Connected (FC)
network for the encoder and decoder networks. The first FC layer in the encoder
has 512 neurons with ReLU followed. The output is then fed to two FC layers to
produce the mean direction and the concentration for the reparameterize trick.
The mean direction layer has 64 neurons and the concentration layer only has 1
neuron. The output of mean direction layer is normalized by its norm such that
it lies on the unit hyper-sphere. The concentration layer is followed by a Softplus
activation to ensure its output larger than 0. The decoder consists of two FC
layers. The first layer has 512 neurons with ReLU followed. Then second layer
has 2048 neurons.

The structure of a-SVAE is similar to f-SVAE except for the input dimen-
sion and the neuron number of the last FC layer equal to the dimension of the
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semantic attributes. We use a Linear Softmax classifier which takes the latent
variables as input for calculating the classification loss. The structure is same as
in [31].

We train our model by the Adam optimizer with learning rate 0.001. The
batch size is set to 128. The hyper-parameter λf , λa, α, β are set to 0.1, 0.1, 1.0
and 1.0, respectively.

Unseen and Seen Experts For the unseen samples, we use the f-CLSWGAN
[31] with the code provided by the authors. For the seen samples, we directly
combine the encoder of f-SVAE and the linear softmax classifier for classification.

5 Experiments

The proposed approach is evaluated on five benchmark datasets, where plenty
of recent state-of-the-art methods are compared. Moreover, the features and
settings used in experiments follow the paper [30] for fair comparison.

5.1 Datasets, Evaluation and Baselines

Datasets The five benchmark datasets include Animals With Attributes 1
(AWA1)[16], Animal With Attributes 2 (AWA2) [30], Caltech-UCSD-Birds (CUB)
[29], FLOWER (FLO) [22] and SUN attributes (SUN) [23]. Specifically, AWA1
contains 30,475 images and 85 kinds of properties, where 40 out of 50 classes
are obtained for training. In AWA2, 37,322 images in the same classes are re-
collected because original images in AWA1 are not publicly available. CUB has
11,788 images from 200 different types of birds annotated with 312 properties,
where 150 classes are seen and the others are unseen during training. FLO con-
sists of 8,189 images which come from 102 flower categories, where 82/20 classes
are used for training and testing. For this dataset, we use the same semantic
descriptions provided by [24]. SUN has 14,340 images of 717 scenes annotated
with 102 attributes, where 645 classes are regarded as seen classes and the rest
are unseen classes.

Evaluation For OOD classification, the in-distribution samples are regarded
as the seen samples and the out-of-distribution samples are regarded as unseen
samples. The True-Positive-Rate (TPR) indicates the classification accuracy
of seen classes and the False-Positive-Rate (FPR) indicates the accuracy of
unseen classes. We also measure the Area-Under-Curve (AUC) by sweeping
over classification threshold.

For GZSL, the average of per-class precision (AP) is measured. The “ts” and
“tr” denote the Average Precision (AP) of images from unseen and seen classes,
respectively. “H” is the harmonic mean which is defined as: H = 2∗ tr ∗ ts/(tr+
ts). The harmonic mean reflects the ability of method that recognizes seen and
unseen images simultaneously.
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Table 1. Comparison with various gating models on validation set. AUC denotes Area-
Under-Curve when sweeping over detection threshold. FPR denotes False-Positive-
Rate on the threshold that yields 95% True Positive Rate for detecting in-distribution
samples. The best results are highlighted with bold numbers.

AWA1 CUB SUN
Method H AUC FPR H AUC FPR H AUC FPR

MAX-SOFTMAX-3 [12] 53.1 88.6 56.8 43.6 73.4 79.6 38.4 61.0 92.3
CB-GATING-3[4] 56.8 92.5 45.5 44.8 82.0 72.0 40.1 77.7 77.5

Ours 70.1 95.0 12.5 67.7 99.4 2.5 71.0 99.5 1.6

Table 2. OOD classification results of our approach by selecting different thresholds
using γ.

AWA1 AWA2 CUB FLO SUN
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

γ = 0.85 85.0 5.3 85.2 6.8 84.2 0.7 85.3 0.4 85.4 0.2
γ = 0.90 90.1 6.3 89.8 8.2 89.5 0.9 88.2 0.6 90.6 0.2
γ = 0.95 95.4 7.9 95.2 10.6 94.9 1.1 94.4 0.8 95.1 0.4

GZSL Baselines We compare our approach with three lines of previous works
in the experiments. (1) Embedding methods which focus on learning embeddings
that unify the visual features and semantic attributes for similarity measurement.
We include the recent competitive baselines: SJE [2], ALE [1], PSR [3], SAE
[14], EZSL [25], LESAE [18], ReViSE [28], CMT [27], SYNC [5], DeViSE [10]
and CRnet [33]. (2) Generative methods which focus on generating synthetic
features or images for unseen classes using GAN or VAE. We also compare our
approach with the recent state-of-the-arts such as CVAE [21], SP-AEN [6], f-
CLSWGAN [31], CADA-VAE [26], cycle-(U)WGAN [9], SE [15] and AFC-GAN
[17]. (3) Gating methods which aim at learning a classifier to distinguish the
unseen features from the seen features. We compare our approach with the recent
state-of-the-art COSMO [4].

5.2 Out-of-Distribution Classification

In this experiment, We conduct OOD classification experiments on the five
benchmark datasets.

We first compare the boundary based OOD classifier with two state-of-the-
art gating-based methods: (1) MAX-SOFTMAX-3 is a basline gating model of
[12]. (2)CB-GATING-3 is the best confidence-based gating model in [4]. For
a fair comparison, we use the same dataset splitting as in [4]. Table 1 shows
the classification results of the proposed OOD classifier compared to the two
baseline methods. It worth noting that the FPR scores are reported on the
threshold that yields 95% TPR for detecting in-distribution samples. It can be
seen that the two baseline methods have much higher FPR values. For example,
the FPR of CB-GATING-3 is 45.5% on AWA1, 72.0% on CUB and 77.5% on
SUN. It indicates that most of the unseen samples are misclassified to the seen
samples. However, the FPR of our approach is reduced to 12.5% on AWA1,
2.5% on CUB and 1.6% on SUN, which significantly outperforms the baselines
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Fig. 3. The ROC curves on the five benchmark datasets.

Table 3. Generalized Zero-Shot Learning results on AWA1, AWA2, CUB, FLO and
SUN. We measure the AP of Top-1 accuracy in %. The best results are highlighted
with bold numbers.

AWA1 AWA2 CUB FLO SUN
Method ts tr H ts tr H ts tr H ts tr H ts tr H
SJE [2] 11.3 74.6 19.6 8.0 73.9 14.4 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8
ALE [1] 16.8 76.1 27.5 14.0 81.8 23.9 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3
PSR [3] - - - 20.7 73.8 32.3 24.6 54.3 33.9 - - - 20.8 37.2 26.7
SAE [14] 16.7 82.5 27.8 8.0 73.9 14.4 18.8 58.5 29.0 - - - 8.8 18.0 11.8

ESZSL [25] 6.6 75.6 12.1 5.9 77.8 11.0 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8
LESAE [18] 19.1 70.2 30.0 21.8 70.6 33.3 24.3 53.0 33.3 - - - 21.9 34.7 26.9
ReViSE [28] 46.1 37.1 41.1 46.4 39.7 42.8 37.6 28.3 32.3 - - - 24.3 20.1 22.0
CMT [27] 0.9 87.6 1.8 0.5 90.0 1.0 7.2 49.8 12.6 - - - 8.1 21.8 11.8
SYNC [5] 8.9 87.3 16.2 10.0 90.5 18.0 11.5 70.9 19.8 - - - 7.9 43.3 13.4

DeViSE [10] 13.4 68.7 22.4 17.1 74.7 27.8 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9
CRnet [33] 58.1 74.7 65.4 52.6 78.8 63.1 45.5 56.8 50.5 - - - 34.1 36.5 35.3
CVAE [21] - - 47.2 - - 51.2 - - 34.5 - - - - - 26.7
SP-AEN [6] - - - 23.3 90.9 37.1 34.7 70.6 46.6 - - - 24.9 38.6 30.3

f-CLSWGAN [31] 57.9 61.4 59.6 52.1 68.9 59.4 43.7 57.7 49.7 59.0 73.8 65.6 42.6 36.6 39.4
cycle-(U)WGAN [9] 59.6 63.4 59.8 - - - 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4

SE [15] 56.3 67.8 61.5 58.3 68.1 62.8 41.5 53.3 46.7 - - - 40.9 30.5 34.9
CADA-VAE [26] 57.3 72.8 64.1 55.8 75.0 63.9 51.6 53.5 52.4 - - - 47.2 35.7 40.6
AFC-GAN [17] - - - 58.2 66.8 62.2 53.5 59.7 56.4 60.2 80.0 68.7 49.1 36.1 41.6

COSMO+fCLSWGAN [4] 64.8 51.7 57.5 - - - 41.0 60.5 48.9 59.6 81.4 68.8 35.3 40.2 37.6
COSMO+LAGO [4] 52.8 80.0 63.6 - - - 44.4 57.8 50.2 - - - 44.9 37.7 41.0

Ours(γ = 0.95) 59.0 94.3 72.6 55.9 94.9 70.3 53.8 94.6 68.6 61.9 91.7 73.9 57.8 95.1 71.9

methods. Therefore, we achieve the best harmonic mean and AUC scores. Our
approach can be categorized as a hard-gating approach. Compared to the soft-
gating method in [4], our approach is more straightforward and more effective.

We also present the OOD classification results on the test sets of the five
benchmark datasets in Table 2. It can be seen that the proposed OOD classifier
shows stable performance when we sweep the threshold. The ROC curves are
shown in Fig. 3, where the AUC is 96.8% on AWA1, 95.7% on AWA2, 99.6% on
CUB, 99.8% on FLO and 99.9% on SUN.

5.3 Comparison with State-of-the-Arts

We further evaluate our approach on the five benchmark datasets under the
GZSL setting. We report the top-1 accuracy and harmonic mean of each method
in Table 3 where “-” indicates that the result is not reported.
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We see that most of the embedding methods suffer from the bias problem.
For example, the ts values of baseline methods [2, 1, 3, 14, 25, 18, 28, 27, 5, 10] are
much lower than the tr values, which leads to poor harmonic results. Com-
pared to the embedding methods, the generative methods [21, 6, 31, 9, 15, 26]
show much higher harmonic mean results. However, due to the feature confusion
problem, these methods have to make trade-offs between ts and tr values to get
higher harmonic mean results. For example, the ts values of f-CLSWGAN, cycle-
(U)WGAN, SE, CADA-VAE and AFC-GAN are higher than the tr values on
the SUN dataset, which means the accuracy of seen classes are even worse than
the unseen classes. The gating based method [4] is not good enough to classify
the unseen and seen domains. Therefore the performance does not show obvious
improvement compared to generative methods.

It can be seen that our approach achieves superior performance compared
to the previous methods on all datasets, e.g. we achieve 72.6% harmonic mean
on AWA1, 70.3% on AWA2, 68.6% on CUB, 73.9% on FLO and 71.9% on SUN,
which significantly outperforms the baseline methods. In our experiments, we
incorporate the proposed OOD classifier with the ZSL classifier of f-CLSWGAN.
By using the proposed classifier, the ts values are improved compared to the
original approach. Moreover, in our approach the ts values are significant higher.
Compared to the gating based method COSMO+fCLSWGAN which also uses
the ZSL classifier of f-CLSWGAN, our approach also has much higher harmonic
mean results. It indicates that the proposed OOD classifier is more reliable.

Obviously, the GZSL performance of our approach mainly depends on the
OOD classifier and the ZSL classifier. As our OOD classifier is reliable enough to
separate the unseen features from the seen features, the GZSL problem can be
substantially simplified. Therefore, our approach does not suffer the bias problem
or feature confusion problem. In practice, we can replace the ZSL classifier by
any state-of-the-art models. Consequently, the Harmonic mean of our approach
could be further improved by using more powerful ZSL models.

5.4 Model Analysis

In this section, to give a deep insight into our approach, we analyze our model
under different settings.

Latent Space Visualization To demonstrate the learned latent space, we
visualize the latent variables of seen features and unseen features to the 2D-
plane by using t-SNE. The visualization results of five datasets are shown in
Fig. 4 where the blue dots represent the seen variables and the orange dots
represent the unseen variables. It can be seen that the features in each seen class
are clustered together in the latent space so that they can be easily classified.
The unseen features are encoded to the latent variables chaotically scattered
across the latent space. We see that most of the unseen variables locate out of
the manifolds of seen classes. Although the inter-class association between seen
and unseen classes is broken, the unseen variables can be easily separated from
the seen variables.
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AWA1 AWA2 CUB FLO SUN

Fig. 4. The t-SNE visualization results for the learned latent space on the test sets of
AWA1, AWA2, CUB, FLO and SUN. The blue dots represent the variables encoded
from seen classes. The orange dots represent the variables encoded from unseen classes.

Table 4. Binary classification results of different training objective functions. We re-
port the AUC and the FPR corresponding to γ = 0.95.

AWA1 CUB
Objective Function AUC FPR AUC FPR

Lf−SVAE + La−SVAE 62.5 93.3 56.1 88.5
Lf−SVAE + La−SVAE + Lcr 89.3 44.2 60.6 86.7
Lf−SVAE + La−SVAE + Lcls 94.9 15.7 98.2 9.2

Loverall 96.8 7.9 99.6 1.1

Ablation Study As defined in Eq.(10), the overall objective of our model
consists of Lf−SV AE , La−SV AE , Lcr and Lcls. In this experiment, we analyze
the impact of each term on AWA1 and CUB datasets. We report the AUC and
the FPR scores on the threshold corresponding to γ = 0.95 for four objective
functions in Table 4, where “+” stands for the combination of different terms.
When there lacks of Lcr and Lcls, we observe that the first objective function
only achieves 62.5% AUC score on AWA1, and 56.1% on CUB. The FPR score
are 93.3% and 88.5%, respectively. It can be seen that the unseen samples can
hardly be separated from the seem samples. When we further add Lcr, the AUC
score increases to 89.3% and the FPR decreases to 44.2% on AWA1. However,
the results only have small improvements on CUB dataset. We find that learning
the modality invariant information helps to improve the OOD classification. But
the improvement is influenced by the number of classes. When we add Lcls to
the first objective function, the AUC score is improved to 94.9% on AWA1 and
98.2% on CUB. It can be seen that the classification loss heavily affects the
binary classification. When we combine both Lcr and Lcls, the overall objective
achieves the best OOD classification results.

Parameters Sensitivity The hyper-parameters in our approach are tuned
by cross-validation. Fixing λf and λa to 0.1, we mainly tune α and β for our
approach. Fig. 5 shows the AUC scores influenced by each hyper-parameter
on AWA1 and CUB datasets, where each hyper-parameter is varied with the
others are fixed. It can be seen that our method can work stably with different
parameters.
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(a) (b)

Fig. 5. Parameter sensitivity on AWA1 and CUB datasets.

Table 5. The influence of latent space dimension on the AUC score for AWA1 and
CUB datasets.

Dimension 16 32 64 128 256

AWA1 95.2 95.7 96.8 90.5 86.2
CUB 95.8 96.5 99.6 97.7 95.1

Dimension of Latent Space In this analysis, we explore the robustness of
our OOD classifier to the dimension of latent space. We report the AUC score
in Table 5 with respect to different dimensions on AWA1 and CUB, ranging
from 16, 32, 64, 128, and 256. We observe that the AUC score increases while
we increase the latent space dimension and reaches the peak for both datasets
at 64. When we continue to increase the dimension, the AUC score begins to
decline, which indicates that increasing the dimension also may increase the
risk of overfitting. For general consideration, we set the dimension to 64 for all
datasets.

6 Conclusions

In this paper, we present an Out-of-Distribution classifier for the Generalized
Zero-Shot learning problem. The proposed classifier is based on multi-modal
hyper-spherical variational auto-encoders which learns a bounded manifold for
each seen class in the latent space. By using the boundaries, we can separate
the unseen samples from the seen samples. After that, we use two experts to
classify the unseen samples and the seen samples separately. In this way, the
GZSL problem is simplified to a ZSL problem and a conventional supervised
classification problem. We extensively evaluate our approach on five benchmark
datasets. The experimental results show that our approach surpasses state-of-
the-art approaches by a significant margin.
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