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Abstract. Adversarial domain adaptation has made tremendous suc-
cess by learning domain-invariant feature representations. However, con-
ventional adversarial training pushes two domains together and brings
uncertainty to feature learning, which deteriorates the discriminability
in the target domain. In this paper, we tackle this problem by designing
a simple yet effective scheme, namely Asymmetric Adversarial Domain
Adaptation (AADA). We notice that source features preserve great fea-
ture discriminability due to full supervision, and therefore a novel asym-
metric training scheme is designed to keep the source features fixed and
encourage the target features approaching to the source features, which
best preserves the feature discriminability learned from source labeled
data. This is achieved by an autoencoder-based domain discriminator
that only embeds the source domain, while the feature extractor learns
to deceive the autoencoder by embedding the target domain. Theoret-
ical justifications corroborate that our method minimizes the domain
discrepancy and spectral analysis is employed to quantize the improved
feature discriminability. Extensive experiments on several benchmarks
validate that our method outperforms existing adversarial domain adap-
tation methods significantly and demonstrates robustness with respect
to hyper-parameter sensitivity.
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1 Introduction

Learning robust representations from large-scale labeled datasets, deep neural
networks have achieved huge success in kinds of applications, such as visual
recognition and neural language processing [16, 7]. Nevertheless, well-trained
deep models are sensitive to cross-domain distribution shift (domain shift) that
exists when applying them to a new domain, which usually requires tremendous
efforts on annotating new labels. To render data-hungry model strong representa-
tion ability like data-adequate model, domain adaptation is proposed to transfer
the knowledge from a label-rich domain (source domain) to a label-scarce or un-
labeled domain (target domain) [26]. It alleviates the negative effect of domain
shift in transfer learning and reduces the manual overhead for labeling.
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Prevailing domain adaptation [25] tackles the problem of domain shift by
enhancing the transferability of feature learning, i.e. aligning the marginal dis-
tributions across domains. For deep neural networks, aligning the deep features
mainly relies on two categories of approaches. One category reduces the dis-
tribution discrepancy by measuring the statistics [36, 33], which is simple to
implement and usually possesses stable convergence. Another category is ad-
versarial domain adaptation, inspired by the Generative Adversarial Network
(GAN) [12]. A binary domain discriminator is introduced to distinguish the do-
main labels while the feature extractor learns to fool the discriminator [9]. Ad-
versarial domain adaptation approaches have achieved prominent performance
on many challenging tasks including semantic segmentation [38], 3D estimation
[43], sentiment classification [18] and wireless sensing [44, 41].

Though adversarial domain adaptation methods yield superior performance,
they bring “uncertainty” to feature learning [5]. Such uncertainty is due to the
side effect of domain adversarial training (DAT). Specifically, any features that
can deceive the domain discriminator and perform well in the source domain
conform with the goal of DAT. The worst consequence could be overfitting to
the source domain and generating meaningless features in the target domain as
long as they can fool the domain discriminator. Therefore, this uncertainty in
adversarial training is severely detrimental to learning discriminative features in
the target domain. This explains why many subsequent works aim to preserve
semantic information [39] or adjust the boundary of classifier during DAT [29,
32]. These solutions ameliorate the traditional DAT yet by adding more learning
steps, which either increases the computational overhead or requires a sophisti-
cated hyper-parameter tuning process for multiple objectives.

In this paper, we address the uncertainty problem by proposing an Asymmet-
ric Adversarial Domain Adaptation (AADA). The key problem of DAT consists
in the symmetric objective which is to equally push two domains as close as
possible, which deteriorates feature learning and neglects the decision boundary.
Inspired by the fact that the source domain has great discriminability due to full
supervision, AADA aims to fix the source domain and only adapts the target
domain. To this end, we design an autoencoder serving as a domain discrimina-
tor to embed the source features, while a feature extractor is trained to deceive
it — to embed the target features. Such adversarial process can be realized by a
minimax game with a margin loss. As shown in Fig 1, DAT employs a binary do-
main discriminator to align two domains together, while we only force the target
domain to approach to the source domain that possesses good discriminability.
Furthermore, it is acknowledged that the autoencoder is an energy function that
learns to map the observed sample to the low-energy space [17]. Therefore, en-
ergy function can cluster similar data to form a high density manifold, which
helps to preserve more semantic information. We leverage the energy function to
fix the source domain by associating lower energies to it while pushing the target
domain to the low-energy space via adversarial training in an innovative manner.
The proposed method is a novel and new fundamental domain alignment tech-
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Fig. 1: Comparison between previous Domain Adversarial Training (DAT)
method and ours. Left: The discrepancy region is large before adaptation. Mid-
dle: DAT based on a domain classifier aligns two domains together and pushes
them as close as possible, which hurts the feature discriminability in the target
domain. Right: AADA fixes the source domain that is regarded as the low-
energy space, and pushes the target domain to approach the source one, which
makes use of the well-trained classifier in the labeled source domain.

nique which can be easily integrated with other domain adaptation approaches.
Our contribution in this paper is threefold:

– We propose a novel asymmetric adversarial scheme that replaces the con-
ventional domain classifier with an autoencoder, which incorporates only the
target domain into the adversarial feature training, circumventing the loss
of discriminability in traditional domain adversarial training.

– The autoencoder is an energy function that maps the two domains to the
low-energy space, which encourages the feature clusters to be tight and thus
further benefits the classification task in an unsupervised manner.

– AADA is a generic domain alignment approach that can be used as an ingre-
dient in existing domain adaptation approaches. The experiment validates
that AADA outperforms other domain alignment approaches significantly.
We further demonstrate the boosted discriminability by spectral analysis.

The paper is organized as follows. We firstly revisit adversarial domain adapta-
tion while highlighting its limitations in Section 2. Then the AADA method is
detailed in Section 3. Section 4 demonstrates the effectiveness and superiority of
AADA. Section 5 compares AADA with other relevant approaches and Section
6 concludes the paper.

2 Revisiting Transferability and Discriminability in
Symmetric Adversarial Domain Adaptation

We first revisit the learning theory of unsupervised domain adaptation (UDA)
[1] where we analyze how the target expected error εT (h) is connected to trans-
ferability and discriminability in representation learning. Then we highlight the
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problem of forfeiting discriminability due to symmetric adversarial training, and
excogitate the insights of our approach that conceals behind.

2.1 The Theory of Domain Adaptation

In unsupervised domain adaptation, we have access to Ns labeled examples from
a source domain DS = {xs

i , y
s
i |xs

i ∈ Xs, y
s
i ∈ Ys} and Nt unlabeled examples

from a target domain DT = {xti|xt
i ∈ Xt}, which are sampled from distinct

distributions P and Q, respectively. The objective of UDA is to learn a model
that performs well for the target domain. The learning theory of UDA was
proposed by Ben-David [1].

Theorem 1. Let H be the common hypothesis class for source and target. Let
εs and εt be the source and target generalization error functions, respectively.
The expected error for the target domain is upper bounded as

εt(h) ≤ εs(h) +
1

2
dH4H(DS ,DT ) + λ, ∀h ∈ H, (1)

where dH4H(DS ,DT ) = 2 suph1,h2∈H |Prx∼DS
[h1(x) 6= h2(x)]−Prx∼DT

[h1(x) 6=
h2(x)]| and λ = minh[εs(h

∗) + εt(h
∗)].

As source data is annotated, the source error εs(h) can be simply minimized via
supervised learning. To minimize εt(h), UDA focuses on reducing the domain dis-
crepancy term 1

2dH4H(DS ,DT ) and the ideal risk λ. In representation learning
for UDA, minimizing the domain discrepancy is able to improve transferabil-
ity of features. This can be achieved by domain adversarial training [9] or the
minimization of statistical measures of such discrepancy [36]. Another criterion
that plays a vital role in feature representations is discriminability. It refers
to the capacity of clustering in the feature manifold, and therefore controls the
easiness of separating categories. For UDA, we pursue good discriminability in
both source and target domains simultaneously. As we typically use a shared
feature extractor for two domains, enhancing discriminability is equivalent to
seeking for a better ideal joint hypothesis h∗ = minh[εs(h) + εt(h)] [5].

2.2 Limitations and Insights

From the analyses above, the feature learning of UDA should guarantee both
transferability and discriminability, which inspires us to investigate the exist-
ing domain alignment methods from these two perspectives. Adversarial domain
adaptation methods have shown prominent performance and become increas-
ingly popular. Ganin et al. [9] pioneered it by proposing Domain Adversarial
Neural Network (DANN) that learns domain-invariant features using the re-
verse gradients from a domain classifier. Typically, adversarial UDA approaches
consist of a shared feature extractor f = Gf (x), a label predictor y = Gy(x) and
a domain discriminator d = Gd(x). Apart from standard supervised learning on
the source domain, a minimax game between f and d is designed. The domain
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discriminator d is trained to distinguish the domain label between the source
domain and the target domain, while the feature extractor f learns to deceive the
domain classifier d. In this manner, the domain adversarial training enables the
model to learn transferable features across domains when the Nash Equilibrium
is achieved. The whole process can be formulated as

min
Gf ,Gy

Lc(Xs, Ys)− γLc(Xs,Xt), (2)

min
Gd

Lc(Xs,Xt), (3)

where Lc is the classification loss such as cross-entropy loss, and the hyper-
parameter γ decides the importance of transferability in feature learning.

Symmetric DAT does improve the transferability across domains but sac-
rifices the discriminability in the target domain. Let us analyze the objectives
of training feature extractor f that are two-folds: (1) good discriminability in
the source domain and (2) learning representations that are indistinguishable to
the domain discriminator. There is no constraint on the discriminability in the
target domain. As depicted in Fig 1, DAT is symmetric and makes two domains
as close as possible. Theoretically, the worst case is that the feature extractor
generates meaningless representations on the target domain, as long as they can
deceive the domain classifier. Hence, a good decision boundary on the source
domain cannot perform well on the target domain. Previous works quantified
the discriminability by spectral analysis and drew a similar conclusion [5, 20].

We believe that the decreasing discriminability is caused by symmetric adver-
sarial training that involves both source domain and target domain in adversarial
feature learning as shown in the second term of Eq(2). Specifically, to deceive
the binary domain discriminator, DAT aims to push two domains close. In this
process, DAT cannot control how the domains are aligned and cannot guarantee
whether the decision boundary separates the categorical clusters in the target
domain. This motivates us to fix the source domain and only render the target
domain to approach to the source, as depicted in Fig 1. In this fashion, the
feature discriminability is preserved and a good classifier is easily obtained. To
achieve symmetric adversarial training, we innovatively propose to leverage the
autoencoder as the domain classifier.

3 Asymmetric Adversarial Domain Adaptation

Maintaining the source manifolds during DAT is not a trivial task with the con-
sideration of the complexity of network architecture. This requires us to design
a simple yet effective asymmetric adversarial mechanism. In this section, Asym-
metric Adversarial Domain Adaptation (AADA) is detailed and we theoretically
justify how it reduces domain discrepancy.

3.1 The Learning Framework

As shown in Fig 2, our model consists of a shared feature extractor Gf param-
eterized by θf , a label predictor Gy parameterized by θy and an autoencoder
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Fig. 2: AADA model constitutes a shared feature extract Gf , a classifier Gy and
an autoencoder Ga. Except for supervised learning on the source domain, the
autoencoder plays a domain discriminator role that learns to embed the source
features and push the target features away, while the feature extractor learns
to generate target features that can deceive the autoencoder. Such process is
an asymmetric adversarial game that pushes the target domain to the source
domain in the feature space.

Ga parameterized by θa. The feature extractor Gf , typically composed of mul-
tiple convolutional layers, embeds an input sample to a feature embedding z,
and then the label predictor Gy that usually consists of several fully connected
layers maps the feature embedding to the predicted label ŷ. The autoencoder
Ga reconstructs an embedding z to ẑ.

In the learning phase, the first objective of the model is to learn feature
discriminability in the source domain. As we have access to the labeled source
data (Xs, Ys), it is simply achieved by minimizing the cross-entropy loss via
back-propagation:

min
Gf ,Gy

LCE(Xs, Ys) =

− E(xs,ys)∼(Xs,Ys)

Ns∑
n=1

[I[l=ys] logGy(Gf (xs))].
(4)

With robust feature learning in the source domain, the next objective is to
learn transferable representations using the unlabeled data (Xt) in the target
domain. To this end, we propose an asymmetric adversarial training scheme
that involves an autoencoder Ga with a margin Mean Squared Error (MSE)
loss. The autoencoder Ga, which plays a domain discriminator role, only learns
to embed features from the source domain, but not to embed features from the
target domain. The objective of the autoencoder-based domain discriminator is
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formulated as:
min
Ga

LAE(Xs) + max(0,m− LAE(Xt)), (5)

where m is the margin between two domains in the feature space. Here, the MSE
loss of the autoencoder is defined as:

LAE(xi) = ||Ga(Gf (x; θf ); θa)− xi||22, (6)

where || · ||22 denotes the squared L2-norm. Such unsupervised loss introduces a
cycle-consistent constraint that improves feature discriminability.

To play the adversarial game, the feature extractor Gf learns to fool the
autoencoder Ga by generating source-like features for the samples in the target
domain. When the feature extractor succeeds, the representations of the target
domain can inherit good discriminability from the source domain, and the la-
bel predictor Gy trained in the source domain applies equally. The adversarial
training of the feature extractor Gf is formulated by:

min
Gf

LAE(Xt). (7)

The overall optimization of the proposed AADA model is formally defined by:

min
Gf ,Gy

LCE(Xs, Ys) + γLAE(Xt),

min
Ga

LAE(Xs) + max(0,m− LAE(Xt)),
(8)

where γ is a hyper-parameter that controls the importance of transferability. In
this fashion, our approach only incorporates the LAE(Xt) term into the training
of Gf , which pushes the target domain to the source domain. Oppositely, the
objective of Ga serves as a domain discriminator that pushes two domains away
from a margin m.

3.2 Discussions and Theories

The autoencoder used in our approach is an energy function, which associates
lower energies (i.e. MSE) to the observed samples in a binary classification prob-
lem [17]. For UDA, the autoencoder in our model associates low energies to the
source features, and AADA compels the target features to approach to low-
energy space. The design of such adversarial scheme is inspired by the Energy-
based GAN which theoretically proves that using an energy function in GAN,
the true distribution can be simulated by the generator at Nash Equilibrium [42].
Similarly, in AADA, the feature extractor Gf can mimic the source distribution
for the samples in the target domain when the model achieves convergence.

As theoretically justified in [9], domain adversarial training using a domain
classifier effectively reduces the domain discrepancy term dH4H(DS ,DT ) in
Theorem 1. In our approach, we notice that the autoencoder can be treated as
a form of a domain classifier with a margin. The MSE loss of the autoencoder
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in our framework, i.e. LAE(·), works as the same way of the domain classifier.
The training objective of LAE(·) is LAE(Xs) = 0 and LAE(Xt) = m, which
is equivalent to the functionality of the standard domain classifier. Therefore,
following the theorem proved in [9], the proposed autoencoder can maximize the
domain divergence while the adversarial feature learning minimizes the diver-
gence by deceiving the autoencoder. Moreover, as the autoencoder memorizes
more domain information than a binary classifier, it transfers more knowledge
during asymmetric adversarial training.

4 Experiments

We evaluate the proposed AADA on three UDA benchmarks and compare our
model with the prevailing approaches. Then we validate the improved feature
discriminability by spectral analysis. In the discussions, we verify our motivations
by quantitatively analyzing the transferability and discriminability.

4.1 Experimental Setup

Digits [10]. We use five digits datasets MNIST, MNIST-M, USPS, SVHN and
Synthetic Digits (SYN-DIGIT )), all of which consist of 32×32 images. We assess
five types of adaptation scenarios with distinct levels of domain shift. We follow
the experimental settings of DANN [9] that uses the official training splits in
two domains for training and evaluates the model on the testing split.

Image-CLEF4 is a domain adaptation dataset for ImageCLEF Challenge.
It constitutes three domains: Caltech-256 (C), ImageNet ILSVRC 2012 (I) and
Pascal VOC 2012 (P), which form six transfer tasks.

Office-Home [37] consists of 65 categories in office and home settings, and
has more than 15500 images. It is a very challenging dataset with four extremely
distinct domains: Artistic images (Ar), Clip Art (Cl), Product images (Pr) and
Real-World images (Rw), which forms 12 transfer tasks. For Image-CLEF and
Office-Home, we employ the full training protocol in [22] that employs all images
from the source domain and the target domain for training.

Baselines. We compare our AADA with the state-of-the-art UDA meth-
ods: MMD [36], Deep Adaptation Network (DAN) [22], Deep CORAL [33],
DANN [9], Self-ensembling SE [8], Deep Reconstruction Classification Network
(DRCN) [11], Domain Separate Network (DSN) [3], ADDA [35], CoGAN
[21], CyCADA [14], Maximum Classifier Discrepancy (MCD) [29], Conditional
Domain Adversarial Network (CDAN) [23], Batch Spectral Penalization (BSP)
[5], CCN [15], GTA [31] and MCS [19]. To further prove that our method can
be integrated with other UDA methods to achieve better adaptation, we in-
tegrate it with the Constrained Clustering Network (CCN) [15] that employs
self-training to improve feature transferability.

Implementation Details. For the task with 32 × 32 images, we use the
same network architecture as DANN, while for Image-CLEF and Office-Home,

4 http://imageclef.org/2014/adaptation
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Table 1: Accuracy (%) of domain adaptation tasks on Digit.

Source MNIST USPS SVHN SYN-DIGIT MNIST
Target USPS MNIST MNIST SVHN MNIST-M

Source-only 78.2 63.4 54.9 86.7 56.3

Domain Alignment Methods

MMD [36] 81.1 - 71.1 88.0 76.9
CORAL [33] 80.7 - 63.1 85.2 57.7

Adversarial Training based Methods

DANN [9] 85.1 73.0 74.7 90.3 76.8
CoGAN [21] 91.2 89.1 - - 62.0
ADDA [35] 89.4 90.1 76.0 - -
CDAN [23] 93.9 96.9 88.5 - -
GTA [31] 95.3 90.8 92.4 - -
CyCADA [14] 95.6 96.5 90.4 - -

Other State-of-the-Art Methods

DRCN [11] 91.8 73.7 82.0 87.5 68.3
DSN [3] 91.3 - 82.7 91.2 83.2
MCD [29] 96.5 94.1 96.2 - -
BSP+DANN [5] 94.5 97.7 89.4 - -
BSP+CDAN [5] 95.0 98.1 92.1 - -
MCS+GTA [19] 97.8 98.2 91.7 - -

AADAopt 95.6±0.3 92.7±0.5 74.8±0.8 88.8±0.2 47.1±1.2
AADA (Ours) 98.4±0.3 98.6±0.3 98.1±0.5 92.2±0.4 95.5±0.2

we use ResNet-50 with pretrained parameters on ImageNet [6]. In AADA, we
use an autoencoder with only fully connected layers, and the detailed network
architectures are in the appendix. We use Adam optimizer with the constant
learning rate µ = 5e−4 for digit adaptation, and SGD with the decaying learning
rate in DANN for object recognition. For hyperparameter m and γ, we set m =
0.5, γ = 1e−2 for 32 × 32 images, and m = 1, γ = 1e−1 for object recognition
datasets, which are empirically obtained by cross-validation on MNIST→USPS.
The whole experiment is implemented by PyTorch framework.

4.2 Overall Results

We first compare our methods with MMD, CORAL, DANN, DAN and JAN
that are only based on domain alignment. In Table 1, our approach shows signif-
icant improvement against the standard DAT (DANN), even outperforming the
state-of-the-art methods that require much higher computation overhead such
as CyCADA and GTA due to the training of cyclic or generative networks. For
pixel-level domain shift in MNIST→MNIST-M, the traditional domain align-
ment methods such as MMD and DANN cannot effectively deal with them, but
AADA achieves 95.5% accuracy. Moreover, for SVHN→MNIST with larger do-
main shift, AADA surpasses DANN by 23.4% and BSP+DANN by 8.7%. For
more challenging tasks in Table 2 and 3, the proposed AADA surpasses all the
methods that are purely based on domain alignment. AADA outperforms DANN
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Table 2: Classification accuracy (%) on Image-CLEF (ResNet-50).
Method I→P P→I I→C C→I C→P P→C Avg

ResNet-50 [13] 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN [22] 74.5 82.2 92.8 86.3 69.2 89.8 82.5
DANN [9] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
CCN [15] 77.1 87.5 94.0 86.0 74.5 91.7 85.1

CDAN [23] 76.7 90.6 97.0 90.5 74.5 93.5 87.1

AADA 78.0 90.3 94.0 87.8 75.2 93.5 86.5
AADA+CCN 79.2 92.5 96.2 91.4 76.1 94.7 88.4

Table 3: Classification accuracy (%) on Office-Home (ResNet-50).
Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet-50 [13] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [22] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [9] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
CCN [15] 47.3 65.2 70.1 51.3 60.5 60.9 48.1 45.5 71.3 65.1 53.5 77.0 59.7

SE [8] 48.8 61.8 72.8 54.1 63.2 65.1 50.6 49.2 72.3 66.1 55.9 78.7 61.5
CDAN [23] 49.0 69.3 74.5 54.4 66.0 68.4 55.6 48.3 75.9 68.4 55.4 80.5 63.8

BSP+DANN [5] 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9

AADA 52.3 69.5 76.3 59.7 68.2 70.2 58.2 48.9 75.9 69.1 54.3 80.5 65.3
AADA+CCN 54.0 71.3 77.5 60.8 70.8 71.2 59.1 51.8 76.9 71.0 57.4 81.8 67.0

by 1.5% on Image-CLEF and 7.7% on OfficeHome. Since the domain shift is small
in Image-CLEF, the improvement margin is not large.

AADA is a generic domain alignment approach that can be integrated to
other novel UDA frameworks, achieving better performance. We integrate AADA
with CCN [15] and evaluate it on challenging tasks. As shown in Table 2 and 3,
the proposed AADA+CCN achieves the state-of-the-art accuracies, outperform-
ing CDAN and BSP that also aim to improve discriminability. We can see that
AADA improves CCN by 2.9% on Image-CLEF and 7.3% on Office-Home, which
implies that AADA can bring much improvement to existing UDA methods by
preserving more discriminability in domain alignment.

4.3 Spectral Analysis using SVD

The intuition and the theoretical analysis validate that the proposed model
achieves a good trade-off between transferability and discriminability. Here we
employ the quantitative method to further demonstrate it. The prior research
proposes to apply Singular Value Decomposition (SVD) to the representation z,
and then infer transferability and discriminability by the Singular Values (SV)
and the Corresponding Angles (CA) of eigenvectors, respectively [5]. Motivated
by this, we conducted an experiment on a digit adaptation task SVHN→MNIST.
Using the feature extractor Gf , we obtained the target feature matrix Ft =
[f1t . . . f

b
t ] where b is the batch size. Then we apply SVD to the target feature

matrix as follows:

Ft = UtΣtV
T
t , (9)

where Σt denotes the eigenvalue, Ut denotes the eigenvector and Vt is an unitary
matrix. SVD is also applied to the source feature matrix to obtain Σs and Us. In
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Fig. 3: Measures of discriminability and transferability.

Fig 3(a), we plot the top-20 normalized singular values Σt w.r.t three models in-
cluding the source-only model, DANN and our AADA model. It is observed that
the largest singular value of the DANN target feature matrix is greater than the
other values, which impairs the semantic information included in other smaller
singular values. In comparison, the distribution of singular values for AADA is
similar to that for the source-only model that preserves more discriminability
in feature learning. In Fig 3(b), we show the normalized corresponding angles
of singular values. The corresponding angle depicts the commonality between
the source eigenvectors Us and the target eigenvectors Ut, which indicates the
transferability of the features. For DANN, the sharp distribution of the angles
indicates that DANN only utilizes several peak transferable features. This dete-
riorates the informative representation in the target domain. Whereas, AADA
obtains more transferable features that also show better discriminability, which
has good repercussion for learning a common decision boundary.

4.4 Analytics and Discussions

Opposite Direction of AADA. The proposed AADA fixes the source domain
and then learns to force the target domain to approach to it, which utilizes the
good classifier of the source domain. What if we fix the target domain and force
the source domain to approach to it? We denote this situation as the opposite
form of AADA, namely AADAopt. The optimization procedure of AADAopt is
written as:

min
Gf ,Gy

LCE(Xs, Ys) + γLAE(Xs),

min
Ga

LAE(Xt) + max(0,m− LAE(Xs)).
(10)

Intuitively, as the decision boundary of the target domain keeps changing during
training, this may weaken the discriminability in domain adversarial training,
which is similar to DANN. The result in Table 1 proves our analysis. AADAopt
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Fig. 4: The training procedures w.r.t. the hyper-parameters m and γ.
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Fig. 5: Accuracy by varying m (left) and γ (right).

only produces similar results as DANN, which implies that it is infeasible to
align two domains and the boundaries of classifier simultaneously.

Sensitivity Study. To demonstrate that AADA is not sensitive to the hyperpa-
rameters, we conduct the experiments on SVHN→MNIST across multiple m and
γ. Fig 5 illustrates the sensitivity results in terms of the margin m. As the margin
increases, the accuracy increases until 0.5, which conforms with our intuition.
When the margin is small, the degree of transferability is limited. If the margin is
greater than 0.1, we observe that the results are very stable in Fig 4(b). As to γ,
we compare our approach with Domain Adversarial Training (DAT) that is the
reproduced DANN where γ is the weight of the adversarial loss in Eq 2. In Fig
5 and Fig 4(c), the results of AADA are robust given large γ but DANN cannot
converge with large γ. In Fig 4(a), we can observe that the target accuracies of
DAT fluctuate a lot during training while AADA provides more stable training
procedure. The sensitivity study is consistent with the insights provided earlier,
and moreover the results show more robustness w.r.t training procedure, which
makes it easier to apply our method in an unsupervised manner.

Ideal Joint Hypothesis. We estimate the ideal joint hypothesis λ in Theorem
1 to show the discriminability of feature embeddings. To this end, we train
an MLP classifier on all source and target data with labels. As shown in Fig
3(c), AADA has the lowest λ in the feature space on task SVHN→MNIST.
This demonstrates that AADA preserves more feature discriminability in two
domains by asymmetric and cycle-consistent objectives. It helps learn a good
decision boundary that separates the data from two domains.
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(a) Source-only (b) DANN (c) AADA

Fig. 6: The t-SNE visualization of the embeddings z on task SVHN→MNIST.
The top figures are visualization with domain labels ( blue: source, red: target).
The bottom figures are visualization with category labels (10 classes).

Distribution Discrepancy. As proposed in the theory of domain adaptation
[1], the A-distance is a measure of domain discrepancy that quantifies the trans-
ferability of feature embeddings. It is defined as dA = 2(1− 2ε) where ε is the
error of a domain classifier. We train an MLP classifier to discriminate source
and target domains on task SVHN→MNIST. Results are shown in Fig 3(d), and
it is observed that AADA has better transferability than DANN.

Visualization Representation. We visualize learned features on the Digit
task SVHN→MNIST via t-SNE [24] and present it in Fig 6. The visualization
validates the insights of AADA. DANN aligns the features of two domains, but
we can see that due to the lack of discriminability, some categories of data are
confused. Hence many approaches proposed to adjust the boundary for DANN
features [29]. In comparison, the AADA features are domain-invariant and pre-
serve the good decision boundary of the source domain simultaneously. This
further proves that AADA learns better discriminability in domain alignment.

5 Related Work

Domain adaptation tackles the problem of domain shift in statistical learning
[26]. Massive works on UDA were developed recently, and here we discuss and
compare the related domain adaptation progress.

Adversarial Domain Adaptation. Inspired by GAN [12], adversarial do-
main adaptation (ADA) methods yield remarkable results by learning represen-
tations that cannot be distinguished by a domain discriminator [9, 34, 35, 32].
ADA can act on both feature-level and pixel-level alignment [2, 14]. Adversar-
ial training can also maximize classifier discrepancy to learn adapted classifier
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[29]. ADA is generalized to new scenarios including partial adversarial domain
adaptation [4] and open set domain adaptation [30]. As such, ADA becomes a
necessary ingredient for many subsequent UDA approaches.

Enhancing Discriminability in UDA. Though ADA methods contribute
to learning domain-invariant features, adversarial learning hinders the feature
discriminability in the target domain [5]. Conditional adversarial domain adap-
tation captures the cross-covariance between features and predictions to improve
the discriminability [23]. More methods propose to learn semantic features by
clustering and self-training [39]. BSP penalizes the largest singular values of
features [5], and Xu et al. [40] propose that larger feature norm boosts the dis-
criminability. These methods effectively increase the discriminability by adding
extra regularization terms or building self-training algorithms, which can lead
to much complexity or more difficult hyper-parameter tuning process.

Asymmetric Training. Asymmetric training means an unequal training
process for multiple networks or parts of networks. Satio et al. pioneered an
asymmetric tri-training for domain adaptation, which leverages two networks for
generating pseudo labels and one network to learn target representations [28].
Asymmetric training between two feature extractors is developed in ADDA with
untied sharing weights [35, 45]. Our approach proposes an asymmetric training
between the two players of adversarial game.

Autoencoder in Domain Adaptation. Autoencoder can learn represen-
tations in an unsupervised manner, and it has been directly utilized for learning
target domain in DRCN [11] and DSN [3]. It also enables cyclic methods such as
CyCADA [14]. All these methods use auto-encoder to learn target domain fea-
tures in a straightforward way. In AADA, we employ autoencoder as a domain
classifier which empowers asymmetric adversarial training and hence improve the
discriminability. From the perspective of energy-based model [17], autoencoder
is an energy function [27, 42] that maps the correct variables to low energies.
In this paper, it is designed to assign low energies to the source domain, and
encourage the target domain to approach to the low-energy space.

6 Conclusion

In this paper, we propose a novel asymmetric adversarial regime for unsupervised
domain adaptation. As the conventional adversarial UDA methods affect the dis-
criminability while improving the transferability of feature representations, our
method aims to preserve the discriminability by encouraging the target domain
to approach to the source domain in the feature space, which is achieved by an
autoencoder with an asymmetric adversarial training scheme. Spectral analysis
is utilized to justify the improved discriminability and transferability. The ex-
perimental results demonstrate its robustness and superiority on several public
UDA datasets.
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