Supplementary Materials for ‘“FusionNet”

1. Details of the Architecture and Layers
1.1. Input

Point Feature: For the Semantic KITTI dataset, we use the 4-channel feature for input which consists of (px, py, p-,r) where
Px, Py and p; are the locations of the point p which are divided/normalized by the maximum absolute values (70,70,20)
respectively. r is the reflection intensity of the point p which is also normalized into the range of [0, 1].

For the 3DSIS and ScanNet datasets, we directly use the RGB as the 3-channel input features. The RGB values are
normalized by the mean and standard deviation of the dataset by subtracting the mean and dividing the deviation.

Voxel Feature: For the voxel feature, we directly use the mean of the point features as input which is calculated by averaging
the points in each voxel.

1.2. Fusion Module

As presented in Table [, each fusionnet layer is implemented by i) neighborhood voxel feature aggregation of “step (1)”;
i) neighborhood point feature aggregation of “step 1”’; and iii) inner-voxel fine-grain aggregation of “step (2)~(4), 2~5".

1.3. Architecture Parameters

For the FusionNet architecture (illustrated in Fig. [l and presented in Table B), we use a total of 11 fusion models and 10
down- or up-sampling layers. Finally, the point-wise feature is refined by a point-wise fully-connected layer (linear layer) for
point-wise classification.

2. More Results

More visualized results are presented in Fig. B. Our FusionNet has many advantages for the large-scale LiDAR point
cloud segmentation. Compared to state-of-the-art voxel-based networks [0], FusionNet can predict point-wise labels and
avoid those ambiguous/wrong predictions at object boundaries when a voxel has points from different classes. It can give
more accurate predictions for many small objects (e.g. cyclist, pedestrian and bicycles). When compared to state-of-the-art
point-wise convolutions (e.g. [8]), our FusionNet gets much better segmentation accuracy in the large-scale LiDAR dataset.
This is because our FusionNet is realized with more effective feature aggregation operations (including the effective voxel-
level neighborhood aggregations and the fine-grain inner-voxel point-level aggregations).

Table 1: ScanNet 3D Segmentation Benchmark Results

Method mIoU‘bath bed bksf cab chair cntr curt desk door floor othr pic ref show sink sofa tab toil wall wind
ScanNet [2] 30.6 [20.3 36.6 50.1 31.1 524 21.1 02 342 189 78.6 14.5 102 245 152 31.8 34.8 30.0 46.0 43.7 18.2
PointNet++ [B] 33.9 | 584 47.8 458 25.6 36.0 25.0 24.7 27.8 26.1 67.7 183 11.7 212 145 364 34.6 232 548 523 252
TangetConv [4] 438 |43.7 64.6 474 369 645 353 258 282 279 91.8 29.8 14.7 283 29.4 487 562 427 619 633 352
PointConv [B] 66.6 |78.1 759 699 644 822 475 719 564 504 953 428 203 58.6 754 66.1 753 58.8 90.2 81.3 64.2
PointASNL [B] 66.6 |70.3 78.1 75.1 65.5 83.0 47.1 769 474 537 95.1 47.5 279 63.5 69.8 67.5 75.1 553 81.6 80.6 70.3

MinNet42 (5cm) [I] 679 |81.1 73.4 739 64.1 80.4 413 759 69.6 545 93.8 51.8 14.1 623 757 68.0 72.3 684 89.6 82.1 65.1
Our FusionNet (5cm) 68.8 |70.4 74.1 754 65.6 829 50.1 74.1 60.9 54.8 95.0 52.2 37.1 633 756 715 77.1 623 86.1 814 65.8




(a) FusionNet Architecture (b) Fusion Module

Figure 1: Illustration of the FusionNet architecture and the fusion layer/module. For top-row layers, each voxel consists of a “mini-
PointNet” to learn the point representation, while the bottom row learns the voxel representation. (a) FusionNet architecture with 3D UNet
as the backbone, in which the fusion modules replace all the original convolutional layers. (b) Illustration of one fusion layer/module.
Blank squares represent empty/invalid voxels. One fusion module consists of three efficient feature aggregation steps: 1) regular voxel-
based convolutional aggregation (blue arrows), 2) neighborhood-voxel aggregation of point features (red arrows), and 3) inner-voxel
point-level circulated aggregation (black arrows).

Table 2: Parameters of One Fusion Module in Our FusionNet

Step | Point Feature Layer Output Shape || Step | Voxel Feature Layer Output Shape
input Point feature as input NxC input Voxel feature as input HxWxC
1 3x3x3 Voxel-MLP NxC (1) 3x3x3 sparse conv, BN, ReLU HxWxDxC
2 concat: layer 1 and point locations Nx(C+3) (2) from layer 3, Point Avg-pooling HxWxDxC
3 Point-wise FC layer, BN, ReLU NxC 3) concat: (1) and (2) HxWxDx2C
4 from layer (3), expand/repeat NxC “4) 3x3x3 sparse conv, BN, ReLU HxWxDxC
5 concat: 3 and 4, FC layer, BN, ReLU NxC - -
Table 3: Parameters of the FusionNet architecture
No. \ Layer Description \ Output Feature Shapes
input N points as input Nx3 or Nx 4 HxWxDx3 or4
1 3x3x3 Fusion Module Nx32 HxWxDx32
2 down-sampling: 2x2x2 conv stride 2, point sample: 1/4 1/ANx32 1hHx12W x1/-Dx32
3 3x3x3 Fusion Module 1/aNx48 12Hx12Wx1/2Dx48
4-5 repeat layer 2-3 1/16N x 64 UaHx 1 /aW x 1 /4aD x 64
6-7 repeat layer 2-3 1/64N'x 96 1/8Hx1/sW x1/8Dx96
8-9 repeat layer 2-3 1/256Nx 128 1/16Hx1/16W x1/16D x 128
10-11 repeat layer 2-3, stride 2, point sample: 1/2 1/512N %256 1/32Hx1/32W x1/32D %256
12 up-sampling: 2x2x2 deconv stride 2, point upsample: x2 1/256N < 128 1/16Hx 1/16W x1/16D x 128
13 concat: 12 and 9, 3x3x3 Fusion Module 1/256N % 128 1/16Hx1/16W x1/16D x 128
14-15 repeat 12-13 (concat: 14 and 7, point upsample: x4) 1/64N'x 96 1/8HxX1/sW x 18D x96
16-17 repeat 12-13 (concat: 16 and 5) /16N x 64 1/aHx1/4W x1/2Dx 64
18-19 repeat 12-13 (concat: 18 and 3) 1/aNx48 1/Hx12Wx1/2Dx48
20-21 repeat 12-13 (concat: 20 and 1) Nx32 HxWxDx32
output from point feature, point FC-layer (no BN or ReLU) Nxnum of classes
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Figure 2: Visualization of the segmentation results of LIDAR point clouds. Points are projected to cylindrical images. (a) State-of-the-art
point-wise convolutions [8], (b) state-of-the-art sparse convolutions [I], (c) our FusionNet, (d) ground truths. The improvements are as
illustrated by the white arrows.




