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Abstract. Active learning, reducing the cost and workload of annota-
tions, attracts increasing attentions from the community. Current ac-
tive learning approaches commonly adopted uncertainty-based acquisi-
tion functions for the data selection due to their effectiveness. However,
data selection based on uncertainty suffers from the overlapping problem,
i.e., the top-K samples ranked by the uncertainty are similar. In this pa-
per, we investigate the overlapping problem of recent uncertainty-based
approaches and propose to alleviate the issue by taking representative-
ness into consideration. In particular, we propose a dual adversarial net-
work, namely DAAL, for this purpose. Different from previous hybrid
active learning methods requiring multi-stage data selections i.e., step-
by-step evaluating the uncertainty and representativeness using different
acquisition functions, our DAAL learns to select the most uncertain and
representative data points in one-stage. Extensive experiments conducted
on three publicly available datasets, i.e., CIFAR10/100 and Cityscapes,
demonstrate the effectiveness of our method—a new state-of-the-art ac-
curacy is achieved.

Keywords: Active learning; Generative adversarial network; Unsuper-
vised video summarization; Deep learning.

1 Introduction

Benefiting from large-scale annotated datasets, deep learning has shown its great
success in various computer vision tasks such as image classification, object de-
tection, and semantic segmentation. Yet, the annotation of large-scale datasets
is extremely laborious and costly to obtain, especially for the dense pixel-level
annotation and the one requiring experienced annotators to tackle (e.g., med-
ical images). For this reason, semi-supervised learning methods [30, 29, 25, 18,
3] and unsupervised learning methods [1, 6,44, 28] attract increasing attention.

* indicates intern at Tencent Jarvis Lab.® indicates corresponding authors.



2 S. Wang et al.

However, given a fixed amount of data, their performance is still bound to that
of fully-supervised learning.

Active learning (AL) that incrementally queries the most informative sam-
ples from the data pool to reduce the overall annotation effort has thus emerged
as a promising research avenue for the use of deep learning [9]. Among recent
AL-related works, pool-based AL methods [41, 36,32, 10], which iteratively se-
lect data points from a large unlabeled data pool for annotation according to
the acquisition function, are the most successful. Accurate estimation of data
informativeness is the core of pool-based AL. Many researches focused on ex-
ploring effective acquisition functions to achieve this goal, which can be classified
to two categories—uncertainty-based and representation-based. The AL using
uncertainty-based acquisition functions [41, 36] prefer to select samples confus-
ing the classifier (i.e., high uncertainty), while the representation-based ones [39,
45] select samples best representing the unlabeled pool. The estimation of data
informativeness is not comprehensive in either term of uncertainty or represen-
tativeness. Therefore, some studies [39, 45] proposed the hybrid strategies. How-
ever, their inferior performance compared to the uncertainty-based approaches
[41, 36] illustrates that the benefit of representativeness is not actually exploited.

Recent years witnessed the success of adversarial networks and several stud-
ies [11,36] tried to apply the adversarial learning for more accurate estimation
of data informativeness. For example, Sinha et al. [36] proposed the VAAL by
using a variational autoencoder (VAE) [20] and a discriminator, where the VAE
embedded the labeled and unlabeled images to a latent space and the discrimi-
nator was utilized as a binary classifier to measure the uncertainty of the input
samples. However, the selected samples may not be the most informative ones
for the task model performing the target task (e.g., image classification and
semantic segmentation) since the VAAL is fully task-agnostic.

In contrast, Yoo et al. [41] employed the loss of task model as the criterion
to estimate the contribution of data made to the target task—a loss prediction
module was proposed to estimate the loss of task model for the unlabeled data.
Since the loss prediction module directly utilizes features from the task model, it
gives more accurate estimation of the informativeness of current input to the task
model. However, this loss prediction module suffers from the overlapping problem
[32, 41]—the information contained in the top K selected samples is similar. The
solution [32,41] to this problem is performed in a two-stage manner—a random
subset with a certain size from the unlabeled pool is firstly created to ensure the
diversity of data, and then apply uncertainty-based acquisition function to that
subset for data point selection. Although this simple random subset selection
(RSS) strategy can alleviate the overlapping problem, its effectiveness to other
uncertainty-based AL methods [36] has not been explored. Current multi-stage
AL frameworks, i.e., step-by-step evaluating the uncertainty and representative-
ness using different methods, are another potential solutions to the overlapping
problem. However, they are time-consuming for data selection and difficult to
provide proper estimation of data informativeness due to the trade-off between



Dual Adversarial Network for Deep Active Learning 3

two evaluation methods. Therefore, a one-stage AL method without suffering
from the overlapping problem is worthwhile to develop.
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Fig. 1. Overview: (a) Our goal is to simultaneously select the most uncertain and rep-
resentative images for the task model from the unlabeled pool. The image selector is
required to select the samples maximizing the distance to labeled images (uncertainty),
while minimizing the distance to unlabeled ones (representativeness). (b) The gener-
ative adversarial framework is proposed to assist image selector to properly measure
the distances between deep features.

To this end, we propose a one-stage dual adversarial network for active learn-
ing, namely DAAL, to accurately select the most informative data points from
the unlabeled pool for the task model by simultaneously considering the uncer-
tainty and representativeness. Inspired by the unsupervised video summariza-
tion [26,15] in which a frame selector was proposed to learn a representative
summary® of the original video, we propose to use an image selector as the ac-
quisition function to find a sparse and representative subset from the unlabeled
pool, which is simultaneously with high uncertainty for the task model.

The overview of our approach is illustrated in Fig. 1 (a). The image selector
is required to find samples with larger feature distance to the labeled samples
(i.e., high uncertainty to the classifier) and smaller distance to the unlabeled
data (i.e., good representativeness to the unlabeled data). However, specifying a
suitable distance of deep features is difficult [23]. Therefore, we use a generative
adversarial (GAN) [13] framework to assist the image selector in the distance
measurement between deep feature representations. As shown in Fig. 1 (b), sam-
ples selected by the image selector are sent to a VAE, which embeds the features
of selected samples into the same latent space and then reconstructs them. The
reconstructed features are fed to two discriminators, which encourage the image
selector to simultaneously take uncertainty (labeled/unlabeled) and representa-
tiveness (original/summary) into consideration during data selection. The infor-
mativeness rater (consisting of image selector and VAE) and discriminators are

3 Summary is a sparse subset of video frames which optimally represent the input
video.
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framed as a multi-player competition, similar to GAN [13]. The informativeness
rater is trained to trick the discriminators. The performances of informativeness
rater and discriminators are improved by iteratively optimization.

In summary, our contributions are manifold. First, we propose a one-stage
dual adversarial network for active learning, namely DAAL, which can simulta-
neously learn to select the most uncertain and representative data points from
the unlabeled pool. Second, our designed DAAL is more effective to alleviate
the overlapping problem, compared to the approaches using random subset se-
lection and other hybrid methods. Last but not least, extensive experiments
conducted on three publicly available datasets (CIFAR10/100 and Cityscapes)
show that our approach outperforms the benchmarking methods and achieves a
new state-of-the-art.

2 Related Work

Active learning. The methods in the area of active learning can be roughly
classified to two categories—uncertainty-based and representation-based meth-
ods.

Uncertainty-based methods. The core idea is to find the samples, which are diffi-
cult for the classifier to correctly classify (i.e., with high uncertainty to the clas-
sifier). These methods can be further categorized to Bayesian and non-Bayesian
frameworks. For Bayesian active learning methods, probabilistic models such as
Bayesian neural networks [7] and Gaussian processes [19] are used to estimate
the uncertainty of samples. Houlsby et al. [16] proposed a Bayesian active learn-
ing, which used the mutual information of the training examples as a proxy
uncertainty measurement for sample selection. For non-Bayesian active learning
methods, the sample uncertainty can be measured in various ways such as the
distance between samples and the decision boundary [4], information entropy
[17] and risk expectation [38]. In more recent works, Gal et al. [9] proposed to
utilize dropout layers to estimate the uncertainty of the prediction yielded by
a neural network for sample query. Yoo et al. [41] proposed to use an auxiliary
loss prediction module to learn the target loss of inputs jointly with the training
phase and samples with high predicted losses are selected. Sinha et al. [36] pro-
posed a framework (namely VAAL) for active learning, consisting of a variational
autoencoder (VAE) and generative adversarial network (GAN). The probability
of discriminator is seen as the uncertainty estimation for sample selection.

Representation-based methods. This kind of approaches aims to constitute a
set of diverse samples, which are the most representative of the entire dataset.
Sener et al. [31] proposed a core-set selection method, which selected the samples
minimizing the Euclidean distance between the selected data and the unlabeled
data pool in the feature space. There are also some hybrid methods [8, 40] taking
both uncertainty and diversity into account.
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Active learning for semantic segmentation. Semantic segmentation is one
of the most prevailing tasks for active learning due to its expensive annota-
tion, which has been broadly investigated in recent studies [39, 24, 36, 34]. Yang
et al. [39] proposed a hybrid framework, namely suggestive annotation (SA),
combining the measurements of uncertainty and representativeness. This frame-
work estimated the uncertainty of data points using an ensemble of models and
measured the representativeness using the core-set approach [31].

Variational autoencoder. Autoencoders are commonly used to effectively
learn a feature representation for various tasks [2]. Variational autoencoder is a
variant of autoencoder, which defines a posterior distribution over the observed
data, given an unobserved latent variable. A VAE is used to embed the labeled
and unlabeled images into the same latent space by VAAL [36]. Given e ~ p,(e)
as a priori over the unobserved latent variable, we can formulate the objective
function of VAE with observed data x as:

Lyap = —log % — log(p(ele)) + Drrla(el)lple) (1)

Lrecon Lprior

where Dy, is the Kullback-Leibler divergence; g(e|x) is the probability of ob-
serving e given x; pe(e) is the standard normal distribution; and p(z|e) is the
conditional generative distribution for z.

Generative adversarial network. The typical generative adversarial network
(GAN) [13] consists of a generator network and a discriminator. The generator
generates data simulating an unknown distribution and the discriminator net-
work aims to distinguish the generated/fake samples from the real ones. The
generator and the discriminator are alternately trained to force the generator
fitting the real data distribution while maximizing the probability of the dis-
criminator making a mistake. Given x as the true data, e ~ p.(e) as the prior
input noise, and & = G(e) as the generated sample, the objective function of a
typical GAN can be formulated as:

mén max [E,[log D(z)] + Ec[log(1 — D(2))]] (2)

where the discriminator D is trained to maximize the probability of real/fake

classification and the generator G is trained to minimize log(1l — D(%)).

3 Method

In this section, we introduce the proposed DAAL in details. Specific descriptions
of network architecture are introduced in Section 3.1. In Section 3.2, the detailed
training procedure of the DAAL is illustrated.
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Fig. 2. Major components of our approach. The informativeness rater consists of a
ScoreNet (image selector) and a VAE (encoder-decoder architecture). Given the fea-
tures encoded by the task model for labeled (z;) and unlabeled images (z.), the
ScoreNet assigns importance score s, to x,. The encoder encodes the sample with
a pair of features (é, €), which are fed to the decoder for reconstruction (£, Z.). The
reconstructed features are sent to the dual discriminators, respectively. The uDis is
required to classify whether the &, belongs to labeled pool or not. The rDis aims to
identify the reconstructed feature Z, from the original one z,. The decoder/generator
and dual discriminators are adversarially trained until the uDis cannot discriminate
between labeled and unlabeled data points and the rDis is not able to distinguish
between the summary and original datasets.

3.1 Dual adversarial network for deep active learning

The detailed information of our DAAL including the information flow is illus-
trated in Fig. 2. The ScoreNet and VAE form an independent function unit,
namely informativeness rater, which cooperates with two different discrimina-
tors to construct the dual adversarial network. To accurately measure the in-
formativeness of input samples for the task model, the features of labeled and
unlabeled images encoded by the task model are adopted as input of our DAAL.

Informativeness rater. Given the deep features of images from the unlabeled
pool (Xy = {xy : u = 1,..., N}) generated by the task model, the ScoreNet
assigns a relative importance score (s = {sy : s, € [0,1],u = 1,..., N}) to each
of them. Original input features x, are weighted using these scores. Note that we
use 1—s, and s, as the weights for uncertainty and representativeness branches,
respectively, to ensure the optimization of these two terms in the same direction.
These weighted deep features are sent to a VAE which consists of an encoder and
a decoder/generator. The encoder maps the inputs to the features (e = {¢, €}) in
the same latent space, while the decoder/generator reconstructs the embedded
features (Zrecon = {#u, v }). The ScoreNet adopts a simple architecture, consist-
ing of a 5-layer multi-layer perceptron (MLP) with Xavier initialization [12], to
map the input feature to a 1 x 1 score vector. Both the encoder and decoder are
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neural networks with 7-layer MLP. A dropout layer [37] with the dropout ratio
of 0.4 is added to the end of each MLP layer to avoid overfitting.

Dual discriminators. The dual discriminators are utilized to measure the
distance between the input features and their reconstructions given by the gen-
erator. The deep features, i.e., x;, &, and x,,, T, are fed to the dual discrimina-
tors, respectively, for different purposes. Specifically, uncertainty discriminator
(uDis) takes x; and &, as input, and aims to distinguish which pool (i.e., ‘la-
beled’ or ‘unlabeled’) the features belong to. Representativeness discriminator
(rDis) tasks x, and &, as input, and aims to classify them into two distinct
classes (i.e., original or summary). The dual discriminators in the GAN adopt
the same architecture to ScoreNet without dropout layers. The class ‘summary’
represents the reconstruction of weighted deep features of the input batch. If the
discriminator cannot distinguish the summary batch from the original one, the
images with high scores are seen to have good representativeness to the small
unlabeled pool.

Training strategy: multi-player competition. Our DAAL involves two ad-
versarial games between the VAE and dual discriminators, which iteratively
optimize the ScoreNet for accurate data selection. Due to the score s € [0, 1],
the features with scores closed to 1 are easier for decoder/generator to recon-
struct. For the uDis, if a well-reconstructed Z, fools it, the lower score (1 — s,
as the weights for #,) should be maintained. The VAE and uDis optimize the
ScoreNet via adversarial training. Simultaneously, as aforementioned, the adver-
sarial learning between VAE and rDis encourage the ScoreNet to assign larger
scores to the samples representative to the unlabeled pool. Therefore, the impor-
tance scores yielded by our ScoreNet can simultaneously evaluate the uncertainty
and representativeness of data points—a higher score intrinsically represents the
image with both larger uncertainty and representativeness. During the sample
selection of active learning, samples with top k largest scores ranked by the
ScoreNet are selected from the unlabeled pool for annotation.

3.2 Training procedure of DAAL

Denote the network weights of ScoreNet, encoder and decoder of VAE and the
dual discriminator (uDis and rDis) as {ws; we, wg; Wy, w,}. The training proce-
dure of DAAL is summarized in Alg. 1. The proposed DAAL is supervised by
four loss functions, which are 1) prior loss L,,ior (as defined in Eq. 1) for the
encoder of VAE, 2) reconstruction loss L;ccon for VAE, 3) GAN loss Lgan, and
4) sparsity loss Leparsity for the ScoreNet.

Reconstruction loss Lyecon. Instead of using the standard reconstruction
loss for autoencoder networks, i.e., ||z — Z||2 where z and Z are the input and
corresponding reconstruction, respectively, we follow the practice in [23] to use
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Algorithm 1 Training dual adversarial network

1: Input: Features (X1 and Xy ) encoded by the task model for labeled and unla-
beled images, respectively.

2: Output: Learned parameters {ws, We, Wa, Way, Wy }.

3: Function:

4: f(z;w): forward the input x through neural network (w).

5: update(.): backward to update the neural network weights.

6

7

8

: L(.): loss function.
: Procedure:
: Initialize all parameters {ws, We, Wd, Wy, Wr }
9: for batch (z;,z,) from X1 and Xy do
10: Su < f(zu;ws) // select images
11: (é,€) « f((xu, su);we) // encoding
12: (Zu, Zu) < f((é,€);wy) // reconstruction
13: // Updates using stochastic gradient:
14: {ws, we }<—update(Lrecon (Tu, €,€) + Lprior (Tu, €, €) + Lsparsity (Tu, Su))
15: {wa}+update(Lrccon (Tu, €, €) + LaaN(Tu, Tt, Tu, Tu))
16: {wu, wr }+update(Loan (Tu, Tiy Fu, Tu)) // mazimization update
17: end for

the last output layer of the discriminators for the calculation of Liecon. Denote
the output of the last hidden layer of uDis and rDis as ¢(z,) and ¢(z,), for
input x,, respectively. Given embedded features é and € of input x,, Liecon can
be formulated as:

Lrecon = E[—log p(¢(z)[€)] + E[—log p(e(zu) €)] 3)

where expectation E is approximated as the empirical mean of the training
samples.

GAN loss Lgan. The adversarial learning between generator and dual dis-
criminators is supervised by the GAN loss, which can be formulated as:

Laan =log(uDis(z;)) + log(1 — uDis(&,,))
+ log(rDis(zy)) + log(1 — rDis(Zy,,)).

where uDis(.) and rDis(.) represent the model functions of uncertainty discrim-
inator and representativeness discriminator, respectively.

(4)

Sparsity loss. The sparsity loss is a regularization term for the ScoreNet to
prevent it from assigning equal importance to all data points. The sparsity loss
consists of a length regularizer loss £, r and a determinantal point process (DPP)
loss Lppp [22]. The L, g limits the number of elements selected by the ScoreNet,
while the £ppp ensures the diversity of selected data points. The overall sparsity
loss [35] can be defined as:

Esparsity = ACLR + ACDPP (5)
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where

, Lppp = —log(P(s.)) (6)
2

Lir =

n
1
O'**E St
n

t=1

where o represents the percentage of images for subset selection; s,/ is the im-
portance scores for a subset 2/ C Xy. The probability function P in Lppp can
be written as:

_ |D<Sa:’)|
EvES] ™

where D € R™ "™ with D; ; = s;s;zl z; and D(s,) € R7"*°™ (i.e., a submatrix
of D given s,); |.| denotes determinant and I is the identity matrix.

P(Sm/ ) D)

4 Experiments

In this section, we evaluate the effectiveness of our DAAL on three publicly avail-
able datasets. The evaluation results are presented in Sections 4.3 and 4.4. Fur-
thermore, we conduct an in-depth investigation on the drawback of uncertainty-
only AL approaches. The related results can be found in Section 4.5. Finally, we
analyze the importance of each component in the DAAL network in Section 4.6.

4.1 Datasets

CIFARI10 [21] and CIFAR100 [21]. We evaluate the proposed DAAL on CI-
FAR10 and CIFAR100 datasets for image classification. Both datasets contain
60,000 images with a uniform size of 32 x 32 pixels. CIFAR10 and CIFAR100
have 10 and 100 categories, respectively. The training set and test set consist of
50,000 images and 10,000 images, respectively. The average classification accu-
racy is adopted as the metric for performance evaluation in this task.

Cityscapes [5]. Our DAAL is further evaluated on the Cityscapes dataset for
semantic segmentation. Cityscapes is a large scale driving video dataset which
contains 3,475 frames with instance segmentation annotations of 19 classes. The
images have a uniform size of 2048 x 1024 pixels. The Cityscapes dataset is
separated to the public training set and test set. For fair comparison, we adopt
the public dataset partition in our experiments. The mean IoU is utilized to
evaluate the performance of semantic segmentation.

4.2 Experimental settings

Consistent to the existing approaches [41, 36], we randomly select 10% samples
from the training set for labeling and use them as the initial labeled pool at the
beginning of the experiments. The rest of the training data set is treated as the
unlabeled pool. In each iteration of active learning, we augment the labeled pool
with 5% of the whole training set by selecting samples from the unlabeled pool
for oracles to annotate using the acquisition function.
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Baseline methods. We involve various previous AL approaches as baselines for
comparison, including common AL approaches for both image classification and
semantic segmentation, e.g., Entropy [33], Learning Loss (LL) [41], Core-set [32],
and VAAL [36], and task-specific ones for semantic segmentation only, e.g., MC
Dropout [14] and Suggestive Annotation [32]. The results using random sampling
is also reported for comparison. We notice that the idea of SA is closed to our
DAAL, which both considers the uncertainty and representativeness for data
point selection. However, SA is a two-step hybrid ensemble method, using the
bootstrapping and Core-set for uncertainty and representativeness estimation,
respectively. In contrast, our DAAL can select the samples in both terms of
uncertainty and representativeness in one-step.

Implementation details. For the image classification task, we use Wide-
Resnet-Network [43] with depth=28, width=2 (WRN-28-2) as the backbone of
the task model, while the dilated residual network [42] is used for the seman-
tic segmentation task. The dual adversarial network is implemented using the
PyTorch toolbox. For fair comparison, the baselines adopt the same training
protocol. To alleviate the influence caused by the random nature of a neural
network and the random initial labeled pool, all experimental results reported
are the average of three repeated experiments. Note that we evaluate all meth-
ods without any data augmentation. One reason is that we expect to select the
most representative subset of the raw dataset rather than the enlarged dataset
by data augmentation. The other is that as reported in [27], the performance of
AL methods with/without using data augmentation differs drastically, which is
difficult for a fair comparison.

Image classification. The task model and our DAAL are trained for 150 epochs.
The stochastic gradient descent (SGD) optimizer is adopted to supervise the
training of the task model. The initial learning rate is set to 0.1 and decreases
to 0.01 after 80 epochs and 0.001 after 120 epochs, respectively. For the training
of our dual adversarial network, the Adam optimizer is used with the learning
rate of 5 x 10~4. The batch size during adversarial learning is set to 128 and ¢
of Eq. 6 is set to 0.2.

Semantic segmentation. The task model and our DAAL are trained for 50 epochs
and 100 epochs, respectively, using the Adam optimizer. The learning rate is set
to 5 x 107* and o of Eq. 6 is set to 0.2.

4.3 Image classification on CIFAR10/100

We compare the proposed DAAL with the baselines on CIFAR10/100. The eval-
uation results are presented in Fig. 3. On CIFAR10, the WRN-28-2 trained with
the samples selected by our DAAL achieves the highest average classification ac-
curacy, e.g., 84.1740.24% with 40% data from the training dataset, which is close
to the accuracy yielded by training on the entire dataset (i.e., 88.34 + 0.43%).
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Fig. 3. Performance comparison of different AL approaches, including VAAL [36],
Learning Loss (LL) [41], Core-set [32], Entropy [33], random sampling and our DAAL
on CIFAR10/100. For semantic segmentation, the additional approaches, MC-Dropout
[14] and Suggestive Annotation [32] are compared. The U.B. denotes the upper bound
performance given by the task model trained on the entire data set.

As shown in Fig. 3, the average classification accuracy between different AL
approaches is similar with an extremely small labeled pool (i.e., 15%). The un-
derlying reason is that the task model is not well trained and samples in the
unlabeled pool may contain similar informativeness for the task model. As the
size of labeled pool increases, the DAAL shows its advantage on data selection
and surpasses the runner-up (i.e., Learning Loss [41]). The random sampling
strategy yields the lowest classification accuracy under most settings of labeled
data amount.

Similar trends of improvement are observed on CIFAR100. Our DA AL achieves
an average classification accuracy of 41.92+0.31 % with 40% training data, which
is the highest record among the listed AL approaches. It is worthwhile to mention
that only our DAAL provides consistent improvements on both CIFAR10 and
CIFARI100. The runner-up approach (i.e., Learning Loss) on CIFARI0 achieves
an average classification accuracy of 39.15+0.41% on CIFAR100 with 40% train-
ing data, which ranks the fourth place—even lower than the random sampling
strategy. The experimental results demonstrate that our DAAL can comprehen-
sively estimate the informativeness of data points and select the samples with
larger contributions to the optimization of model for the image classification
task.

4.4 Semantic segmentation on Cityscapes

We illustrate the performance of DAAL and the baseline methods on Cityscapes
in Fig. 3. Our DAAL achieves an mIoU of 53.84+0.24% by using only 40% labeled
data, which is comparable to the performance of training on the entire dataset
(i.e., 59.42 + 0.29%). As the proposed DAAL takes both the uncertainty and
representativeness into consideration, it outperforms the uncertainty-only AL
approach (e.g., VAAL and MC Dropout). Although the SA selects samples based
on a combination term of uncertainty and representativeness, its performance is
even lower than the uncertainty-only VAAL, which demonstrates the benefit of
the two terms (i.e., uncertainty and representativeness) is not fully exploited. The
state-of-the-art AL approach, i.e., LL, which predicts the loss of neural network
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Fig. 4. Performance comparison of DAAL, original VAAL, VAAL using the deep fea-
tures of the task model, and LL on CIFAR10/100. TF denotes the deep features of the
task model and RSS represents the random subset selection.

as its uncertainty estimation, yields a similar accuracy to random sampling on
the Cityscapes test set. The reason for this phenomenon is that LL can provide
excellent uncertainty estimation only for datasets containing fewer classes (e.g.,
CIFARI10). As the task difficulty increases, such as more classes (i.e., CIFAR100)
or complicated targets (i.e., pixel-wise prediction on Cityscapes), the LL often
fails to accurately predict the loss of neural network and consequently selects
the less informative samples.

4.5 Performance analysis

To further evaluate the effectiveness of our DAAL, we conduct experiments to
compare the state-of-the-art AL approaches (Learning Loss [41] and VAAL [36])
with the proposed DAAL.

Influence of feature representation in VAAL. We have analyzed the short-
comings of LL and VAAL on CIAFR10 and CIAFR100 and presented some ex-
planations in previous section. As the VAAL does not involve the information
of task model for data selection, the comparison between VAAL and our DAAL
may be unfair. In this regard, we build a VAAL taking the features encoded by
the task model as input (denoted as VAAL + TF), instead of the image data.
The evaluation results on the three datasets are presented in Fig. 4. It can be
observed that the accuracy of VAAL increases on CIFAR10 by using the features
encoded by the task model, which achieves a comparable accuracy to LL. Fur-
thermore, LL [41] constitutes a random subset with the size of 10,000 samples
from unlabeled pool during each active learning iteration to ensure the diver-
sity of selected samples, where the K-most uncertain samples are chosen. We
evaluate this random subset strategy with VAAL. The variants are denoted as
VAAL + RSS and VAAL + TF 4+ RSS, respectively. As illustrated in Fig. 4, the
performances of VAAL and VAAL + TF are both improved by using the random
subset strategy. However, due to the lack of consideration of representativeness,
the performances of VAAL variants are still inferior to our DAAL.

Overlapping problem occurring in Learning Loss. Several studies [41, 32]
stated that there was an overlapping problem occurring in the current uncertainty-
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Fig. 5. The influence of random subset selection and using the representativeness dis-
criminator to avoid the overlapping problem in different budget sizes (i.e., the number
of samples selcted for annotation in each iteration) on CIFARI10 (top), CIFAR100
(middle), and Cityscapes (bottom). The budget sizes are (250, 1000, 2500), (250, 1000,
2500) and (30, 75, 150) for the CIFAR10, CIFAR100, and Cityscapes dataset, respec-
tively. RSS denotes random subset strategy and RD denotes the representativeness
discriminator.

only AL approaches. In particular, if the uncertainty-only AL approaches are
asked to select K samples from the unlabeled pool, the information contained
in the K selected samples may be similar, due to the single criterion (i.e., un-
certainty to the classifier). When the budget for oracle annotation is small, this
overlapping problem tends to be more severe. To verify this intuition, we fur-
ther conduct experiments evaluating the performance of LL with different bud-
get sizes, which are (250, 1000, 2500), (250, 1000, 2500), and (30, 75, 150) for
CIFARI10, CIFAR100, and Cityscapes, respectively. The evaluation results are
presented in Fig. 5. It can be observed that the influence caused by the over-
lapping problem decreases as the budget size increases—the LL and LL without
random subset strategy (LL w/o RRS) achieve similar performance with the
largest budget size.

To evaluate the benefit generated by integrating the additional criteria (e.g.,
representativeness) into the process of data selection, our representativeness dis-
criminator is added to LL without RSS, which forms an one-stage framework,
denoted as LL 4+ RD. To further evaluate the drawback of multi-stage hybrid
approaches, the representative-based Core-set is integrated to LL, denoted as
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Fig. 6. Impact of the dual discriminators of the proposed DAAL. uDis and rDis repre-
sent using uncertainty discriminator or representativeness discriminator only to train
the informativeness rater, respectively.

LL + Core-set, which first selects a representative subset by Core-set and then
chooses the K-most uncertain samples from them by LL. It can be observed
from Fig. 5 that without using RSS, the performance of LL significantly drops
due to the overlapping problem. The use of Core-set can alleviate the over-
lapping problem, which achieves similar accuracies to LL 4+ RSS. Oppositely,
the representativeness discriminator remarkably boosts the accuracy of LL w/o
RSS, which consistently surpasses the multi-stage approaches (LL + RSS and
LL + Core-set) under different settings (e.g., budget size). The experimental
results demonstrate the superiority of representativeness tackling the overlap-
ping problem and the one-stage framework, which fully exploits the benefit of
representativeness.

4.6 Ablation study

The contribution of each component of DAAL on CIFAR10/100 and Cityscapes
is illustrated in Fig. 6. The performance of DAAL degrades by removing either of
the discriminators. The uDis-only DAAL yields similar accuracies to LL, while
the rDis-only DAAL can only surpass the random sampling. Hence, the estima-
tion of data informativeness is not comprehensive in either term of uncertainty
and representativeness. Our one-stage DAAL is a more proper solution for the
data selection during active learning.

5 Conclusion

In this paper, we proposed a novel one-stage pool-based active learning approach,
namely DAAL, which learns to select samples with high uncertainty to the clas-
sifier and good representativeness to the unlabeled samples. The proposed AL
framework involves a informativeness rater and dual discriminators. Through the
adversarial learning between the informativeness rater and discriminators, our
DAAL framework is able to comprehensively estimate the data informativeness
to the optimization of the task model. Extensive experiments were conducted
on three publicly available datasets (i.e., CIFAR10/100 and Cityscapes). The
experimental results showed that our DAAL surpassed the state-of-the-art AL
approaches.
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