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Abstract. We propose a deep convolutional neural network (CNN) to
estimate surface normal from a single color image accompanied with
a low-quality depth channel. Unlike most previous works, we predict
the normal on the 2-sphere rather than the 3D Euclidean space, which
produces naturally normalized values and makes the training stable. Al-
though the depth information is beneficial for normal estimation, the
raw data contain missing values and noises. To alleviate this problem,
we employ a confidence guided semantic attention (CGSA) module to
progressively improve the quality of depth channel during training. The
continuously refined depth features are fused with the normal features
at multiple scales with the mutual feature fusion (MFF) modules to
fully exploit the correlations between normals and depth, resulting in
high quality normals and depth with fine details. Extensive experiments
on multiple benchmark datasets prove the superiority of the proposed
method.

Keywords: Normal estimation, 2-sphere, Confidence guided semantic
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1 Introduction

This paper aims to recover high-quality surface normal and depth from a single
RGB-D image using a deep neural network. Recently, the availability of depth
information has promoted a great enhancement in the applications of object
recognition [10, 31], sematic segmentation [4, 13, 20, 28], 3D scene reconstruc-
tion [17, 22, 25], pose estimation [5, 37], etc. From the depth channel, we can
easily obtain surface normals with least square optimization [24, 29]. Unfortu-
nately, depth images captured by low-cost depth sensors (e.g., Microsoft Kinect
and ASUS Xtion Pro) are notoriously corrupted by noises and contain miss-
ing/invalid values. These artifacts degrade the visual quality of both depth and
normal images, influencing their usage in different tasks.
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Fig. 1. The network architecture of our method

To improve the quality of normals and/or depth, a variety of methods have
been proposed recently, among which the deep learning based solutions gain the
most excellent results. These methods usually view the normal map as a con-
ventional color image and predict the values directly in the 3D Euclidean space
(i.e.,R3) [1, 29, 33, 38]. In this way, the three components of any output normal
are learned without any restriction. However, we know that the values of normal
should lie on a unit 3D ball (i.e., S2). A straightforward strategy is to explicitly
normalize the result before calculating the loss [38]. However, such a strategy
still cannot guarantee that the final output is normalized and is sub-optimal
since the gradients propagated backwards to the model are unconstrained [21].
In contrast to this strategy, we opt to predict surface normals on the 2-sphere
by learning two independent parameters: azimuth angle θ and elevation angle
φ. Both parameters are constrained: θ ∈ [−π, π] and φ ∈ [0, π]. The benefit of
this solution is two-fold. First, it ensures that the output normals are naturally
normalized without any explicit normalization operation. Second, it makes the
training stable since the regression gradients are constrained and well-behaved.

In this paper, we use RGB and depth images as input in the task of normal
estimation. These two inputs are fed into two separate branches of our neural
network and fused at multiple scales with a new mutual feature fusion (MFF)
module, as shown in Fig. 1. As a main difference from previous methods [38,39],
this module does not simply fuse features of different branches by concatenation
but learns a mapping function from one feature map to the other. This fusion
strategy can be viewed as using one branch as the guided filter to re-weight the
feature maps in another branch via pixel-wise transformations, making a new
form of hyper-network.

To handle missing values and noises in the raw depth data, Zeng et al. [38]
suggested using a learned confidence map to mask out these invalid regions
before feature fusion. However, we observe that these invalid regions actually
contain many fine details such as corners and edges. Neglecting these features
in the depth image will over-blur the estimated normal map. To tackle this
problem, we introduce a confidence guided semantic attention (CGSA) module
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for depth feature inpainting during network training, which enhances the depth
image in high-level semantics. With the progressively improved depth channel,
our network not only produces surface normals with clearer edges and more
details, but also provides a high-quality depth map as a by-product.

To summarize, the main contributions of our work are:

– a deep learning based solution that estimates surface normal on the 2-sphere
with a well defined loss function,

– a CGSA module designed to enhance depth feature by exploiting high-level
semantics, and

– the multi-scale MFF modules to effectively combine features from different
branches.

2 Related Work

Per-pixel normal estimation has been extensively studied in the past years. Tradi-
tional methods like [24] estimated surface normals via least square optimization.
Qi et al. [29] integrated traditional methods into a deep neural network archi-
tecture and jointly predicted depth and surface normals with the 3D geometric
information.

With the emergence of deep learning, recent methods predict surface normals
under the framework of deep neural network, most of which use a single RGB
image as the input [2, 8, 19, 40]. Wang et al. [33] proposed a network that inte-
grates local, global, and vanishing point information to predict surface normals.
Bansal et al. [1] proposed a skip connection network architecture to fuse features
from different layers for normal estimation. Zhang et al. [41] designed a pattern-
affinitive propagation network to predict surface normals and depth jointly by
the affinity matrices. Due to the lack of geometric information in these RGB
based methods, the details of the estimated results are not satisfactory, easily
incurring over-blurriness or strange artifacts.

Compared with the RGB based methods, the study of RGB-D based sur-
face normal estimation is far not enough. The 3D reconstruction based methods
like [25] can be used for surface normal estimation but a sequence of RGB-D
images are usually required for these methods. Zhang et al. briefly discussed
normal estimation with RGB-D input in [39] and reported that their network
produced better predictions with RGB input than the RGB-D input. More re-
cently, Zeng et al. [38] proposed a hierarchical fusion network for surface nor-
mal estimation, which achieved the state-of-the-art performance. Notably, these
works always treat invalid areas in the raw depth data as smooth plane that en-
ables smooth transition in the corresponding areas of surface normals. However,
as holes mainly exist along the boundaries of objects, the smooth transition will
over-blur edges and erase details in the given scene.

To alleviate such a problem, we can first fill holes in the depth map in a
preprocessing step with the guidance of the RGB image and further improve
the performance of the estimated normals. Unfortunately, the accuracy of en-
hanced depth is still limited as single image depth enhancement itself is also a
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challenging problem [11,14,15,23,24,26,39]. Considering the strong correlations
between depth and surface normals, we design a unified network to predict sur-
face normals and enhance low-quality depth jointly. To fill large missing areas in
the raw depth, we perform depth inpainting for high-level depth feature map by
updating unreliable regions with patches in the reliable regions, which lessens
the influence of big holes to a large extent and makes our method more stable.

3 Surface Normal Estimation on the 2-Sphere

The following sections detail our network to estimate per-pixel surface normal
from a single RGB-D image. As illustrated in Fig. 1, the basic architecture of
our network contains two autoencoders with skip connections (Sec. 3.1). One au-
toencoder maps a color image to a normal map with multi-scale features fused
from the corresponding depth branch using the MFF modules (Sec. 3.2). The
output normals are represented in the polar coordinate (Sec. 3.3) with a well de-
fined loss function (Sec. 3.4), ensuring proper normalization and stable training.
Another autoencoder progressively refines the raw depth image leveraging the
color features and a CGSA module specifically designed for depth feature map
inpainting (Sec. 4).

3.1 Network Architecture

Our network comprises two autoencoders, both of which are similar in their
architectures. In the color branch of the first autoencoder, we adopt a modified
VGG-16 network [32] by reducing channel numbers of the last two convolution
blocks, i.e., conv4 and conv5 in the original VGG-16, from 512 to 256. The
raw depth branch of the second autoencoder is organized in a similar way to the
color branch except that a CGSA module is inserted before the fourth block, i.e.,
conv4, of the encoder as shown in Fig. 1 (dark orange box). Two decoders are
symmetric to the encoders and are equipped with skip connections. Three MFF
modules are used to fuse feature maps at different scales of the decoders. The last
deconvolution layer with stride 1 and kernel size 3×3 outputs a 2-channel image
(representing θ and φ of surface normal) and a single channel image (representing
depth) in each decoder, respectively. We use ReLU activation function for all the
(de)convolution layers except the last layer, which is equipped with the sigmoid
activation function, to ensure that the output values fall in the range of [0,1].

3.2 Multi-scale Mutual Feature Fusion

To fully utilize the close geometry relationship between depth and surface nor-
mals, some previous works resort to fuse information from different feature maps.
The most widely used strategy, as adopted in [38, 39], is by a simple concate-
nation operation. We observe that this is sub-optimal since the feature maps
are from different domains such that they can not be properly handled with the
same convolution operations. Zhang et al. [39] validated that such a strategy
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(a)Color (b)Raw depth (c)Concatenation (d)MFF (e)GT

Fig. 2. Visual quality comparisons between different feature fusion strategies, i.e., the
simple concatenation operation and the mutual feature fusion (MFF) module

will make the network learn from the inaccurate and incomplete depth directly,
lowering the influence of the color information. Consequently, as demonstrated
in Fig. 2(c), the invalid or unreliable areas of the depth map will mislead the
prediction of surface normals, leading to strange artifacts around the boundaries
of depth holes.

Instead of simply concatenating features from different branches, we design
a multi-scale fusion strategy in which the two autoencoders exchange features
at multiple scales by several MFF modules. As illustrated in Fig. 3, each MFF
module contains four conditional feature transform (CFT) blocks 3 (light blue
boxes) and four convolution layers (dark blue arrays). The motivation of using
the CFT blocks is to view the normal estimation as a conditional generative
problem in which the depth image serves as an auxiliary feature. Similarly, the
normal map is considered as an auxiliary feature in the task of depth inpainting.
Such a strategy has been previously used in image dehazing [12], image trans-
lation [16] and Monte Carlo denoising [36]. All these methods including ours
rely on some auxiliary features as a condition to address the ill-posed image
generation problems.

Supposing Fa is an auxiliary image (or feature map) and Fs is the source
image, the output of the CFT block at scale l is the target image Ft defined as

F lt = CFT(F ls,F la|γ,β) = γ(F la)⊗F ls ⊕ β(F la) (1)

where (γ,β) is the modulation parameter pair with γ denoting the scaling op-
eration matrix and β denoting the shifting operation matrix. ⊗ and ⊕ represent
the element-wise multiplication and addition operation, respectively. Intuitively,
the CFT block learns a mapping function that outputs the (γ,β) pair under
some auxiliary feature conditions. Applying this mapping function to any source
image yields a new target image.

In our MFF module, we utilize such conditioned mapping functions (i.e.,
CFT blocks) mutually to generate parameters for pixel-wise transformation and

3 We use four CFT blocks to improve the MFF module’s ability of representing more
complex feature transformations.
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Fig. 3. The MFF module. IN represents the InstanceNorm layer and ReLU represents
the ReLU activation function

modify the weights of each feature map in different branches at multiple scales.
Specifically, the normal feature map acts as Fs and the depth feature map as Fa
in the normal branch of the decoder while the roles exchange in the depth branch.
Rather than simple concatenation, we re-weight the feature maps through ad-
ditive and multiplicative interactions based on the conditioning representation.
To better utilize feature information from high-level to low-level, we embed the
MFF module at three scales in the decoder. As evidenced in Fig. 2(d), the MF-
F modules avoid the risk of incurring strange artifacts due to unreliable depth
values. Note that masking out the invalid areas in the depth map, as suggested
by Zeng et al. [38], will also remove these artifacts but lead to loss of details as
compared in Fig. 6.

3.3 2-Sphere vs. 3D Euclidean Space

One of our important insights is that the 2-sphere space is more suitable for
estimating surface normals than the 3D Euclidean space. Estimating surface
normals in the 3D Euclidean space has several problems. First, the output 3-
channel normals are learned without any restriction. Zeng et al. [38] performed
a normalization before calculating the loss. However, this does not always guar-
antee that the outputs form unit vectors that indicate directionality. Moreover,
such a normalized operation is sub-optimal since the gradients propagated back-
wards to the model are not constrained [21], potentially leading to unstable
training or convergence. To tackle such a problem, Liao et al. [21] suggested
modifying the traditional normalization with a spherical exponential function
to enable stable training. However, since this function always outputs positive
values, an additional classification branch is required to predict the sign values,
which complicates the prediction.
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Instead, our method deals with the problem in a more straightforward and
efficient way by predicting two independent angles directly on the 2-sphere:
azimuth angle θ and elevation angle φ. The two spaces are linked by the following
formulas: {

θ = arctan2 (x, y)

φ = arctan2 (z,
√
x2 + y2)

(2)

where arctan2 is the two-dimension form of the arctan function. (x, y, z) is the
Cartesian coordinate of the normal.

The benefit of predicting surface normals on the 2-sphere is at least two-fold.
First of all, the 2-sphere is a naturally closed geometric manifold defined in the
R3 that the output normal is expected to be normalized when getting back to
the 3D Euclidean space. Second, without the need of any explicit normalization
operation, the gradients escape from passing through the normalization layer
for backward propagation, which makes the gradients constrained and enables
stable training and easy convergence since the final layer is activated by the
sigmoid function whose gradient is only determined by the constrained output.
To train our model on the 2-sphere, we convert the ground-truth normals to the
polar coordinate with Eq. 2. After prediction, we convert the learned θ and φ
back to the 3D Euclidean space.

3.4 Loss Function

The loss function for our network is the L1 norm which reflects the median
angle difference between the predicted result and the ground truth. Denoting
the input RGB and depth image by Ic and Id, the output normal and depth
image by Tn and Td and the ground-truth/target normal and depth image by
Gn and Gd, we aim at minimizing the distance between the ground truth and
the output generated from the input RGB-D image. The loss function contains
two components: one for surface normal and the other for depth. Though we
represent the azimuth angle θ in the range of [−π, π] (or in the range of [0, 1] after
normalization),−π and π actually indicate the same direction on S2. Considering
this property, we define the “circle loss” operator as 	 for θ where

‖T θn 	Gθn‖1 = 2 min
(
‖T θn −Gθn‖1, 1− ‖T θn −Gθn‖1

)
. (3)

Then, our loss function is defined specifically as

L(Tn, Td, Gn, Gd|Ic, Id) =
1

N

N∑
i=1

(‖Tφn,i −G
φ
n,i‖1

+ ‖T θn,i 	Gθn,i‖1 + λ‖Td,i −Gd,i‖1) (4)

where N is the total pixel number, ‖·‖1 denotes the L1 norm and λ is a balanced
factor between depth and surface normal.
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(a) (b) (c)

Fig. 4. Visualization of the raw depth images (the left image in each group) and the
corresponding depth confidence maps (the right image in each group)

4 Confidence Guided Semantic Attention

In this section, we introduce the CGSA module for depth feature inpainting.
Although the depth information is becoming easier to obtain with the develop-
ment of the RGB-D sensors, it is not fully exploited in the problem of surface
normal estimation. The most important factor is that the depth data is not al-
ways reliable. Recently, Zeng et al. [38] proposed a confidence guided RGB-D
fusion scheme to make use of limited geometric information from raw depth data
for surface normal estimation. Their confidence map, which is also learned from
a neural network, acts as a mask that masks out depth features with the low
confidence before passing to the RGB branch. However, low confidence areas
are mostly important scene details such as edges. Simply eliminating these areas
will lead to the loss of details in the final results. Considering this, we propose a
CGSA module to utilize spatial attention to recover missing values of the depth
map conditioned on the valid patches from the reliable regions.

4.1 Confidence Map for Raw Depth

Before discussing the details of the CGSA module, we first introduce our def-
inition of depth confidence map which will be used in the CGSA module. We
assume that if there is no missing value in the neighboring region of a pixel i in
the input depth image Id and the variance of its local region is small, the depth
confidence of i is high. Therefore, C(Id, i) is given by

C(Id, i) =

{
1, if C̃(Id, i) > Ts

C̃(Id, i), otherwise
(5)

C̃(Id, i) = I(Id,i > 0)Γ (Id,i) · exp(−σ
2
i

γd
) (6)

with I(Id,i > 0) being an indication function. γd is the controlling factor and Ts
is a pre-defined threshold. Γ (Id,i) represents the percentage of valid pixels in a
neighboring region of i with the form

Γ (Id,i) =

∑
j∈N (i) I(Id,j > 0)

|N (i)|
(7)

where |N (i)| returns the total number of the neighboring pixels. σ2
i =

∑
j∈N (i) ‖Id,i−

Id,j‖2 represents the variance among the neighboring region N (i) of i. We use
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Fig. 5. The process of CGSA module. The confidence values of the confidence map in
the white regions are 1 and the dark regions are lower than 1

neighborhood of a 3×3 size of pixel i for all the scenes. Several examples of depth
confidence maps are shown in Fig. 4. As seen, pixels with low confidence values
always exist in large holes and along object boundaries. We down-sample the
confidence map to match the spatial size of feature map in the CGSA module.

4.2 The CGSA Module

Considering the high correlation between RGB and depth, most existing methods
[15, 24, 27, 35] use RGB images to recover the missing depth values under the
assumption that pixels with similar colors tend to have similar depth in a local
region. Similarly, we perform depth feature inpainting to enhance the depth
channel with the CGSA module. The workflow of CGSA is shown in Fig. 5,
where the key point is to update each low confidence depth feature patch with
the most similar high confidence depth feature patch.

More specifically, we first define the attention mapM based on the calculated
confidence map that Mi is set to 0 if Ĉ(i) = 1 and set to 1 in other cases.
Here, Ĉ denotes the down-sampled confidence map from C that Ĉ(i) returns
the confidence value of patch i. We employ M on the color feature map Fc so
that Fc is divided into the attention regionsMc (regions with low confidence) and

the reference regions Mc (regions with confidence equal to 1). For each attention

patch Mc,i, we find the closest-matching patch Mc,i in the reference regions. The
relevant degree between these patches is measured with the squared L2 distance
defined as ‖Mc,i−Mc,i‖22. By doing this, we actually find a mapping Ψ for every
patch from the attention regions to the reference regions. We then apply Ψ to
the depth feature map Fd so that each patch Fd,i in the low confidence regions
couples with the most similar reference patch Ψ(Fd,i). Finally, we update Fd,i
with the following scheme:

F ′d,i = Ĉ(i) · Fd,i + (1− Ĉ(i)) ·Ψ(Fd,i). (8)

Considering that enhancing depth locally fails to fill large holes, we perform
depth feature inpainting on high-level semantics, which avoids filling big holes
directly at large scales and makes the module work more stable, efficiently im-
proving the qualities of both the estimated surface normals and recovered depth.
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The detailed implementation of the CGSA module is provided in the supplemen-
tal material.

5 Experiments

5.1 Implementation Details

Datasets. We evaluate our method on three RGB-D datasets: NYUD-v2 [24],
ScanNet [6] and Matterport3D [3]. NYUD-v2 dataset consists of RGB-D im-
ages collected from 464 different indoor scenes, among which 1449 images are
provided with ground-truth normals and depth. We randomly choose 1200 of
them for training and the remaining 249 images for testing. For the ScanNet
and Matterport3D datasets, we use the ground-truth data provided by Zhang
et al. [39] and follow their training and testing lists. Specifically, we use 105432
images for training and 12084 for testing of Matterport3D; 59743 for training
and 7517 for testing of ScanNet. We convert all the normal maps in the training
datasets from R3 to S2 with Eq. 2 before training. After that, the training pro-
cess carries on S2. We train our network and test its performance on the three
datasets, respectively. All the methods in comparison are tested with the same
testing lists.

Training Details. Our network generally converges after 60 epochs. We
implement it with PyTorch on four NVIDIA GTX 2080Ti GPUs. We use RM-
Sprop optimizer and adjust the learning rate with the initial rate of 1e−3 and
the power of 0.95 every 10 epochs. The hyper-parameters {λ, γd, Ts} are set to
{2.0, 0.2, 0.98} according to validation on a 5% randomly split training data.

Evaluation Metrics. We adopt four metrics to evaluate the qualities of
estimated normals: the mean of angle error (mean), the median of angle error
(median), the root mean square error (rmse) and the pixel accuracy with angle
difference with ground truth less than tn where tn ∈ {11.25◦, 22.5◦, 30◦} [29,38,
40]. The qualities of the recovered depth are also evaluated with four metrics:
the root mean square error (rmse), the mean relative error (rel), the mean log
10 error (log 10), and the pixel accuracy with max( Td

Gd
, Gd

Td
) less than td where

td ∈ {1.25, 1.252, 1.253} [29, 41].

5.2 Comparisons with the State-of-the-arts

In this section, we compare our network with the state-of-the-art normal and
depth estimation methods.

Comparisons of Surface Normal Estimation. We compare the results of
our method with some high-ranking surface normal estimation methods, includ-
ing Zhang’s network [40], GeoNet [29], SharpNet [30] and HFM-Net [38] with
their public available pre-trained models fine-tuned on each dataset. Fig. 6 shows
the visual quality comparisons among all these methods. As seen, the results pro-
duced by Zhang’s network and SharpNet have many unwanted details, e.g., the
highlights on the desk, due to the lack of depth information. GeoNet alleviates
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(a)Color (b)Raw depth(c)Zhang’s (d)GeoNet (e)SharpNet(f)HFM-Net (g)Ours (h)GT

Fig. 6. Visual quality comparisons with the state-of-the-art surface normal estimation
methods on ScanNet (the first and second rows), Matterport3D (the third and fourth
rows) and NYUD-v2 (the last row) datasets

this problem by jointly learning depth and surface normals, incorporating geo-
metric relation between them. However, it tends to generate over-blurred results.
HFM-Net generally performs better than these previous methods, but still has
the problem of detail losing, especially in the areas that have been masked out
by the depth confidence map, e.g., the edges of the desks in the first two scenes,
the leaf stalk in the third scene and the lamp in the last scene. In comparison,
our method achieves better visual effects that are very close to the ground truths
and preserves most of scene details without introducing artifacts.

(a)Color (b)Raw depth (c)GeoNet (d)SharpNet (e)MonoD (f)LabDEN (g)Ours (h)GT

Fig. 7. Visual quality comparisons with the state-of-the-art depth estimation methods
on ScanNet (the first row), Matterport3D (the second row) and NYUD-v2 (the third
row) datasets

To further validate the accuracy of our method, we provide quantitative
analysis for different datasets in Table 1. The best results are highlighted in
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Table 1. Performance of surface normal estimation on the NYUD-v2, Matterport3D
and ScanNet datasets. The last three columns are the different variants of the proposed
method, i.e., the model trained on R3, the model without CGSA (-CGSA) and the
model without MFF (-MFF)

Metrics Zhang’s GeoNet SharpNet HFM-Net Ours R3 -CGSA -MFF

mean 23.430 21.385 21.226 14.188 12.172 12.850 12.790 13.001
median 14.446 12.810 14.084 6.827 6.377 7.222 7.595 7.193

NYUD- rmse 30.162 30.257 28.912 23.139 19.152 20.027 19.317 20.335
v2 11.25◦ 39.95 44.93 41.39 65.91 69.41 66.39 65.66 65.31

22.5◦ 66.11 68.16 67.24 82.03 85.90 84.89 84.43 84.35
30◦ 75.35 76.27 76.43 87.36 90.40 89.96 89.90 89.51
mean 21.920 24.277 25.599 17.140 14.687 15.903 16.147 15.768
median 11.039 15.975 18.319 6.483 4.885 5.759 6.336 6.010

Matter- rmse 32.041 34.454 34.806 27.339 25.308 26.476 26.654 26.179
port3D 11.25◦ 48.25 40.17 27.56 61.05 69.74 66.65 65.79 65.95

22.5◦ 67.13 62.42 62.60 77.51 82.55 80.44 80.31 80.71
30◦ 75.00 71.65 73.27 83.14 86.73 85.13 85.08 85.44
mean 23.306 23.289 23.977 14.590 13.508 14.205 14.390 14.425
median 15.950 15.725 17.038 7.468 6.739 6.938 7.019 6.971

Scan- rmse 31.371 29.902 31.974 23.638 21.991 23.024 22.933 23.093
Net 11.25◦ 40.43 46.41 27.95 65.65 67.21 65.70 65.18 65.24

22.5◦ 63.08 64.04 63.91 81.21 82.85 81.72 81.27 81.21
30◦ 71.88 76.78 75.74 86.21 87.68 86.75 86.38 86.29

Table 2. Performance of depth estimation on NYUD-v2 dataset

Metrics GeoNet SharpNet MonoD LabDEN Ours

rmse 0.106 0.104 0.197 0.028 0.015
log10 0.121 0.150 0.198 0.030 0.019

NYUD- rel 0.283 0.278 0.610 0.069 0.044
v2 1.25 56.50 50.38 34.87 95.26 97.80

1.252 84.98 75.16 58.20 98.74 99.69
1.253 95.08 86.37 75.51 99.57 99.96

bold. As seen, in all the cases, our method ranks first among these peer-reviewed
methods according to the metrics mentioned above. It is worth noticing that our
method achieves a significant improvement on the metrics of angle difference,
especially in the case of tn = 11.25◦. This further proves the benefit of normal
estimation on the 2-sphere since the 2-sphere is friendly to angle differences.

Comparisons of Depth Estimation. As a by-product, our method also
produces high-quality depth maps. We conduct comparisons with some popu-
lar depth estimation methods to verify the effectiveness and robustness of our
proposed method. The methods in comparison are GeoNet [29], SharpNet [30],
MonoD [9] and LabDEN [18]. Both visual comparisons in Fig. 7 and quantita-
tive comparisons in Table 2 reveal that our method outperforms these previous
methods, achieving the state-of-the-art performance in depth recovery.
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(a) Color (b) Raw depth (c) R3 (d) S2 (e) GT

Fig. 8. Visual quality comparions between the R3 space and the S2 space

5.3 Ablation Study

To validate the effectiveness of each module in our method, we conduct several
ablation studies.

Comparisons between Different Spaces. We compare surface normal
estimation on the 3D Euclidean space (i.e., R3) and the 2-sphere space (i.e., S2)
in Fig. 8. As expected, normal estimation on S2 provides higher-quality results
than directly regressing the Cartesian coordinate in the R3 space. It achieves an
obvious improvement in accuracy in terms of angle differences. As reported in
the bottom right corner of each image, our method on S2 significantly surpasses
that in R3 in the metric of the angle difference of tn = 11.25◦.

Effectiveness of the MFF Module. In Fig. 2 we show that the proposed
MFF module is better than simple concatenation on fusing information from
different branches. For simple concatenation, artifacts occur in the areas where
the depth information is unreliable. It considers the inaccurate regions in the
depth map as extra features and produces strange artifacts in these areas. The
MFF module avoids this problem by not directly using the depth feature maps
but re-weighting the normal feature maps via pixel-wise transformation based
on conditioning representation, producing more stable and pleasing results.

Effectiveness of the CGSA Module. We verify the effectiveness of the
CGSA module by removing it from our complete method. As shown in Fig. 9,
without the depth inpainting procedure, wrong predictions appear in the large
holes of the depth map. With the CGSA module enhancing depth feature map
in high-level semantics, our complete method produces more plausible results in
the regions where the raw depth is absent.

However, the enhanced depth values are not always reliable when our inpaint-
ing fails to find similar patches. As shown on the LCD screen of the first scene
and the windows of the second scene in Fig. 2(c), these inaccurate depth values
may affect the estimated normal values, leading to strange artifacts. The pro-
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(a) Color (b) Raw depth (c) GT normal (d) GT depth

(e) w/o CGSA (f) Our complete

Fig. 9. Visual quality comparisons between with and w/o CGSA module

posed MFF can avoid this as explained before. Nevertheless, CGSA is necessary
to avoid wrong predictions in large holes of raw depth maps.

We also conduct quantitative analysis of different situations of our method
on the above three datasets. The quantitative results in the last four columns of
Table 1 show that our complete model consistently shows superior performance
compared with other models.

6 Conclusion and Future Work

In this work, we prove the superiority of estimating surface normals on the
naturally normalized 2-sphere than in the unconstrained R3 space. To improve
the feature quality of the depth channel, we design a CGSA module to recover
depth feature maps in high-level semantics. Our network fuses RGB-D features
at multiple scales with the MFF modules, which organizes the two branches as
a new form of hyper-network. Moreover, we design a loss function which is more
suitable for the 2-sphere. Extensive experimental results verify that our method
outperforms the state-of-the-art methods in providing high-quality surface nor-
mals with clearer edges and more details.

Although our method achieves the state-of-the-art performance, it suffers
from some limitations. Notably, our network fails to capture some sharp details
especially for distant objects, e.g., the details on the wall. This is probably due
to the low-quality of ground-truth normal maps in current datasets. We hope
this would be solved by introducing high-quality datasets or by developing GAN-
based generative models [7, 34] to recover these sharp features.
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