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A Code Release

Codes, training data, and the trained model are accessible via an anonymized
web link: https://github.com/dscig/TwoStageUC.

B Training Details

Unsupervised Classification Task (Sec. 4.1). ResNet18 with five Norm-FC
classification heads was used as the backbone network. Stage 1 of the model
used a batch size of 128 and the model was trained in 5 rounds with 200 epochs
per round. w(t) was set to zero at first and gradually increased by 0.2 every 80
epochs, following the original work [1]. Stage 2 used the same batch size, and
the model was trained with 300 epochs. Stochastic gradient descent with Nes-
terov momentum 0.9 was utilized as an optimizer. For the first 80 epochs, the
learning rate was fixed as 0.01 then scaled-down 0.1 every 40 epochs after the
first 80 epochs. Weights in Norm-FC are randomly initialized, and then fixed
during training. Each weight becomes a prototype vector by class, and there-
fore, random initialization may be sufficient to characterize each class. We also
found that these fixed weights can avoid training loss fluctuations and lead to the
model’s fast convergence. We used four data augmentation techniques: resized
crop, horizontal flip, color jitter, and grayscale. Hyper-parameter λ for consis-
tency preserving loss (Lcp) is set to 1. Temperatures for both stages (i.e., τ and
τc) are set to 0.1. This choice is similar to previous studies [3,5]. The auxiliary
clustering step in the original IIC model [4] was omitted to keep the number
of clusters identical. In the case of STL-10, which includes both unlabeled and
labeled images, we used the full dataset for training Stage 1’s encoder and used
the labeled images in Stage 2.

Semi-Supervised Classification Task (Sec. 4.4). WideResNet28-2 [6] was
used as the backbone network for all models. This network was first pretrained
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with given datasets in an unsupervised fashion (based on our algorithm). We
then connected a linear classifier to the pretrained CNN network and trained
the network. For the fully-supervised model, we trained the model upon pre-
trained weights for 180 epochs. SGD with Nesterov momentum 0.9 was used
as an optimizer. The learning rate was set as 0.005 for CIFAR-10 and 0.001
for SVHN initially, then were scaled-down every 40 epochs after the first 80
epochs to 0.1. The same data augmentation technique was used except for the
horizontal flip on SVHN. Affine transform was used for SVHN instead of a hor-
izontal flip not to deform the contents. When applying our pretrained model to
other semi-supervised algorithms, we ensured to follow the training details of
the corresponding works.

C Hyper-parameter Analysis

Hyper-parameters affect the final classification accuracy. We show the effect of
two parameters: the weight factor λ in the second stage loss from Equation 1 and
the temperature τc in a softmax function from the normalized fully connected
layer from Equation 2.

Lstage2 = Lassign + λ · Lcp (1)

yji =
exp(

wj

||wj || · vi/τc)∑
k exp( wk

||wk|| · vi/τc)
(2)

Figure 1 shows the effect of weight and temperature changes in the fully
connected layer. The red line plots the accuracy of the head with the lowest
training loss among five heads, and the blue line plots the averaged accuracy
over five heads. Both lines exhibit similar trends that the accuracy reaches the
top for specific hyper-parameters values and drops, otherwise.

In the case of λ, the accuracy reaches the highest value at λ = 1 and decreases
when the weight of consistency preserving loss changes. Consistency preserving
loss can be regarded as the loss controlling the embedding quality, while Lassign

can be regarded as that controlling the class assignment quality. Hence, λ controls
the balance between the two, and extremely small or large λ values will break
the equilibrium.

Meanwhile, the temperature value, τc, controls the degree of concentration
of feature vectors projected in the unit sphere. The temperature value is critical
for correctly training the classifier. A possible explanation might be the topolog-
ical characteristics of the normalized vector, i.e., it has confined space, and the
temperature is critical to amplifying specific signals. When τc becomes larger
and gets closer to 1, its concentration effect diminishes, and weak signal results
in poor performance. However, if τc gets smaller and closer to 0, the signal is
hugely amplified, and small perturbations affect a lot during the training. As a
result, moderate value is necessary for τc. By utilizing the optimal joint values
of λ and τc upon our proposed model, the performance of unsupervised image
classification could be further enhanced.
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Fig. 1: Analysis of accuracy on the CIFAR-10 dataset across (a) the changing
weight factor λ in the second stage and (b) the temperature value τc in the
normalized fully-connected layer. The red line plots the accuracy of the head
with lowest training loss among five heads, and the blue line plots the averaged
accuracy over five heads.

D Further discussion on the effect of pretraining

According to the conclusion from previous work [2], pretraining may only con-
tribute to speed up the model convergence and does not necessarily lead to an
improvement in the accuracy of downstream supervised learning tasks. To inves-
tigate whether this finding also holds for the current unsupervised problem set-
ting, we additionally conducted a simple experiment on CIFAR-10. We skipped
the first stage’s pretraining and only trained the second stage model with larger
training epochs (300→ 1,300 epochs). However, these changes rather result in a
significantly lower performance than our full model (81.0% → 59.1%), and even
did not show a substantial enhancement in performance compared to our second
stage only model with 300 epochs (58.6% → 59.1%). We speculate this result is
due to its different nature of ‘unsupervised’ setting, i.e., we do not have any labels
and thereby we can only solve auxiliary tasks with many sub-optimal solutions.
Although longer training epochs can enable the model convergence, finding a
generalizable solution beyond the auxiliary task seems a different problem.
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