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Abstract. Neural networks are vulnerable to adversarial attacks. Prac-
tically, adversarial training is by far the most effective approach for en-
hancing the robustness of neural networks against adversarial examples.
The current adversarial training approach aims to maximize the poste-
rior probability for adversarially perturbed training data. However, such
a training strategy ignores the fact that the clean data and adversarial
examples should have intrinsically different feature distributions despite
that they are assigned with the same class label under adversarial train-
ing. We propose that this problem can be solved by explicitly modeling
the deep feature distribution, for example as a Gaussian Mixture, and
then properly introducing the likelihood regularization into the loss func-
tion. Specifically, by maximizing the likelihood of features of clean data
and minimizing that of adversarial examples simultaneously, the neural
network learns a more reasonable feature distribution in which the in-
trinsic difference between clean data and adversarial examples can be
explicitly preserved. We call such a new robust training strategy the ad-
versarial training with bi-directional likelihood regularization (ATBLR)
method. Extensive experiments on various datasets demonstrate that the
ATBLR method facilitates robust classification of both clean data and
adversarial examples, and performs favorably against previous state-of-
the-art methods for robust visual classification.
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1 Introduction

A key challenge for utilizing neural networks in visual classification is their vul-
nerability to adversarial examples, which has attracted increasing concerns in
recent years [4,18,16,13]. Visual adversarial examples are crafted by adding small
perturbations that are imperceptible to human eyes onto the clean data, caus-
ing the neural networks to produce wrong predictions. In addition, researches
have demonstrated that adversarial examples can be transferable across differ-
ent models [11,20], i.e. adversarial examples generated based on one model can
successfully attack other models. As such, the existence of adversarial examples
has become a serious threat to the safety of neural networks.
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Fig. 1. Illustration of the expected feature space of (a) adversarial training
and (b) the proposed ATBLR method. Adversarial examples are generated to re-
semble other classes. But existing adversarial training methods ignore their intrinsically
different feature distribution and treat them equally with the clean data. The proposed
method addresses this issue by optimizing not only the class probability distribution
but also the likelihood of the feature distribution.

Improving the robustness of neural networks has become a critical issue in
addition to increasing the classification accuracy. Numerous algorithms are pro-
posed to address this issue, among which the most effective approaches are based
on adversarial training [4,12]. The basic idea of adversarial training is to gener-
ate adversarial examples based on the latest model weights during training and
feed them into the model for training. The adversarial examples are assigned
the same class label as their source images. Madry et al. [12] propose a more
generic form of adversarial training, which is formulated as a saddle-point opti-
mization problem. However, the adversarial training only aims to optimize the
posterior probability, without considering the feature distribution. The feature
space of adversarial training is illustrated in Fig. 1(a). This paper focuses on
the deepest features of neural networks, e.g. the output of the global average
pooling layer after the last convolutional layer in ResNet [5]. Fig. 1(a) shows the
expected feature space of adversarial training but it is difficult to achieve in prac-
tice because existing adversarial training methods ignore the intrinsic difference
between the feature distributions of the clean data and adversarial examples.
For instance, a clean sample from class 0 is adversarially perturbed into class 1.
Previous research [6] justifies that such an adversarial example contains highly
predictive but non-robust features for class 1. As such, its features should follow
a different distribution compared to the features of the clean data from class
0. However, the adversarial training scheme ignores its similarity to class 1 and
forces the neural network to treat it the same way as the clean data from class
0 by assigning them with the same target class distribution, which is typically a
one-hot distribution of the ground-truth (GT) class. This unreasonable under-
lying constraint in existing adversarial training methods leads to sub-optimal
classification performance.



Adversarial Training with Bi-directional Likelihood Regularization 3

To address this issue, we propose to optimize the neural networks so that
not only the clean data and its corresponding adversarial examples can be clas-
sified into the same class but also the their feature distributions are explicitly
encouraged to be different. The proposed method is illustrated in Fig. 1(b). To
achieve this, we explicitly learn the feature distribution of the clean data by
incorporating the Gaussian Mixture Model into the network. More specifically,
for the visual classification task, features belonging to each class correspond to
one Gaussian component, of which the Gaussian mean is the trainable parame-
ter updated by stochastic gradient descent and the Gaussian covariance matrix
is reduced to identity matrix for simplicity. As such, the entire network can be
trained end-to-end. Then we adopt the likelihood regularization term introduced
in [21] to encourage the extracted features of clean data to follow the learned
Gaussian Mixture distribution. We note that the likelihood regularization in this
paper is intrinsically different from that in [21] because our method takes two
different types of inputs, i.e. the clean data and adversarial examples, and opti-
mizes the likelihood term towards different directions for these two inputs. For
the clean data, the objective is to maximize the likelihood since we aim to learn
its feature distribution through training. For the adversarial examples, since
they should follow a distribution that is different from the one of clean data,
the objective is to minimize the likelihood. The common objective for both the
clean data and adversarial examples is the cross-entropy loss for the posterior
probability and the target class. We refer to the proposed method as Adversarial
Training with Bi-directional Likelihood Regularization (ATBLR). We present a
comparison study in Fig. 3, Section 4.3 to demonstrate that the proposed bi-
directional likelihood regularization leads to different feature distributions for
the clean data and adversarial examples.

Our method can be implemented efficiently, without increasing the number
of trainable parameters. The classification layer in a neural network is typically
a fully-connected layer with K × C trainable parameters, in which K is the
number of object classes and C is the dimension of the features. It outputs the
class distribution based on the features. Our method replaces it with a Gaussian
Mixture Model without adding extra trainable parameters. Since this paper is
focused on the visual classification task, the deepest features belonging to each
class can be assigned with one Gaussian component. As such, the GMM also
requires K × C trainable parameters in total for the K Gaussian components
when the covariance is reduced to identity matrix as aforementioned. The likeli-
hood regularization, which is essentially the l2 distance between features and the
corresponding Gaussian mean, brings about very little computational overhead
to the neural networks.

The main contributions of this paper are summarized as follows:

– We propose the bi-directional likelihood regularization on the conventional
adversarial training method based on the learned feature distribution. Fea-
tures of the clean data and adversarial examples are explicitly encouraged
to follow different distributions.
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– We improve both the robustness of neural networks and the classification
performance on clean data without adding extra trainable parameters.

– We evaluate the proposed method on various datasets including MNIST [10],
CIFAR-10 and CIFAR-100 [8] for different adversarial attacks. Experimental
results show that the proposed algorithm performs favorably against the
state-of-the-art methods.

2 Related Work

2.1 Adversarial Attacks

Adversarial examples are crated data with small perturbations that cause mis-
classification in neural networks [18]. Plenty of algorithms have been developed
to generate adversarial examples.

Fast Gradient Sign Method (FGSM). Goodfellow et al. [4] propose the
Fast Gradient Sign Method (FGSM) which uses a single-step perturbation along
the gradient of the loss function L with respect to the input image x. The
adversarial example xadv is computed by xadv = x + ε · sign(∇xL(x, y)). To
perform a targeted attack, we replace the true label y with a wrong target label
t and reverse the sign of the gradient by xadv = x− ε · sign(∇xL(x, t)).

Basic Iterative Method (BIM). Kurakin et al. [9] extends the single-step
approach to an iterative attack which updates the adversarial example at each
iteration by the formulation of FGSM method and clips the resulting image to
constrain it within the ε-ball from the original input x. The adversarial example
is computed by xiadv = clipx,ε(x

i−1
adv +α · sign(∇xL(xi−1adv , y)), where α is the step

size for each iteration.

Projected Gradient Descent (PGD). Madry et al. [12] discover that stronger
attacks can be generated by starting the iterative search of the BIM method from
a random initialization point within the allowed norm ball centered at the clean
data. This method is called the Projected Gradient Descent (PGD) method.

Carlini & Wagner (C&W). Nicholas et al. [3] propose the C&W algorithm
which is an optimization-based attack method. An auxiliary variable ω is in-
troduced to reparameterize the variable for adversarial example by xadv =
1
2 (tanh(ω) + 1) and solve minω ‖ 12 (tanh(ω) + 1) − x‖22 + c · f( 1

2 (tanh(ω) + 1)).
The loss weight c is adjusted by binary search. And f(x) = max(max{Z(x)i :
i 6= t} − Z(x)t,−κ), in which Z(x)t is the logit for the target class t and the
non-negative parameter κ controls the confidence for the adversarial example.

2.2 Defensive Methods

With the development of adversarial attack methods, the defense methods against
them have attracted greater concerns in recent years. The defensive distillation
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approach [14] aims to train a substitute model with smoother gradients to in-
crease the difficulty of generating adversarial examples. Nevertheless, it is not
effective for the optimization-based attack methods such as [3]. Song et al. [17]
propose to model the image distribution in the pixel space and restore an ad-
versarial example to be clean by maximizing its likelihood. But it is difficult to
effectively model the distribution in the pixel space where there is much noise
and the dimension is much larger than that in the feature space. The adversar-
ial training method [4,18] generates adversarial examples during training and
use them as training data to improve the robustness against adversarial exam-
ples. However, this method is shown to be vulnerable to iterative attacks [9].
Tramer et al. [19] propose to improve the performance of adversarial training by
generating adversarial examples using an ensemble of neural networks. Madry et
al. [12] propose a more general framework for adversarial training and use ran-
dom initialization before searching for adversarial examples to deal with iterative
attack methods. Wong et al. [23] incorporate the linear programming into the
training to minimize the loss for the worse case within the allowed perturba-
tion around the clean data. However, the test accuracy on the clean data is
severely compromised. Xie et al. [24] develop a network architecture which uses
the non-local mean filter to remove the noises in the feature maps of adversarial
examples. Song et al. [15] adopt the domain adaptation algorithms in adversarial
training to learn domain-invariant representations across the clean domain and
the adversarial domain. However, these methods are all based on the original
adversarial training method and they do not address the issues concerning the
feature distributions in the adversarial training which we discussed above.

3 Proposed Algorithm

3.1 Preliminaries

Adversarial Training. This paper focuses on the visual classification task.
Suppose the number of object classes in the dataset is K. Denote the set of
training samples as D = {(xi, yi)}Ni=1, in which xi ∈ RH×W×3 is the image, yi ∈
{1, 2, ...,K} is the class label andN is the number of training samples. Denote the
one-hot label vector corresponding to label yi as yi. Let fθ(x) : RH×W×3 → RK
denote a neural network parameterized by θ. The network outputs the class prob-
ability distribution given an input image. Then the classification loss function
for the training pair (xi,yi) is

Lcls(xi, yi; θ) = −yi log fθ(xi). (1)

The adversarial training method [12] is formulated as a min-max optimization
problem, which is expressed as

min
θ

max
‖δi‖∞≤ε

1

N

∑
(xi,yi)∼D

Lcls(xi + δi, yi; θ). (2)
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The maximizer of the inner problem can be approximately found by using k steps
of the PGD attack or a single-step FGSM attack. The adversarial examples are
crafted by adding the inner maximizer to the clean data. The min-max problem
is solved by stochastic gradient descent by feeding the adversarial examples as
inputs to the neural network.

3.2 Modeling the Feature Distribution

As discusses in Section 1, our motivation is to consider the difference between fea-
ture distributions of clean data and adversarial examples. We adopt an effective
and tractable distribution to model the feature distribution, i.e. the Gaussian
Mixture Model. For simplicity, the covariance matrix is reduced to the identity
matrix. This is not only efficient but also beneficial for reducing the redundancy
across different feature dimensions. Besides, we assume the prior distribution
for each class is the constant 1/K. For the visual classification task, features
belonging to each class are assigned with one Gaussian component. Formally,
denote the features at the deepest layer of the neural network by

x̃i = hθ(xi), (3)

in which hθ(·) represents the feature extraction process in the neural network.
As such, the posterior probability of the ground-truth class yi is expressed by

p(yi|x̃i) =
N (x̃i;µyi)∑K
k=1N (x̃i;µk)

, (4)

in which µk is the Gaussian mean of class k and N (·) is the density function of
Gaussian distribution.

The computation in Eq. 4 can be implemented with a layer in the neural
network, with the Gaussian means as its trainable parameters. This layer is
deployed immediately after the deepest features of the neural network and out-
puts the class distribution. The entire network can be trained end-to-end and
the Gaussian means are updated by gradient descent through back-propagation.
Equipped with such a layer, the neural network can learn to not only predict
class probabilities but also model the feature distribution.

3.3 Likelihood Regularization for Features

The adversarial training scheme in Eq. 2 adopts only the adversarial examples for
training, without using the clean data. In this paper, we leverage both the clean
data and the adversarial examples generated by the inner problem in Eq. 2 for
training, with equal proportion. We train the neural networks equipped with the
layer introduced in Section 3.2 to learn the feature distribution of clean data. In
addition, we adopt the likelihood regularization [21] to maximize the likelihood
of features of clean data. Formally, the likelihood regularization is defined as the
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negative log likelihood, which is given by

Llkd = − 1

N

N∑
i=1

logN (hθ(xi);µyi). (5)

By ignoring the constant term and constant coefficient, we derive

Llkd =
1

N

∑
i

‖hθ(xi)− µyi‖2. (6)

The likelihood regularization is weighted by a hyperparameter λ > 0 and added
to the cross-entropy loss during training. Hence, the final objective function for
the clean data is given by

L =
1

N

∑
(xi,yi)∼D

(−yi log fθ(xi) + λ‖hθ(xi)− µyi‖2). (7)

We note that this formulation is essentially different from the center loss [22]
because the center loss does not consider modeling the feature distribution. How-
ever, the mapping function fθ(·) here contains the Gaussian Mixture Model and
the posterior probability is generated based on the learned feature distribution.

By minimizing Eq. 7, the neural network not only learns to make classifi-
cations but also learns to model the feature distribution of clean data. For the
adversarial training, the clean data and adversarial examples are assigned the
same class label but their feature distributions should be different since adver-
sarial examples are crafted to resemble the class other than the ground-truth
one and researches [6] reveal that they contain highly predictive but non-robust
features of other classes. As such, a more reasonable training approach should
encourage the features of clean data and adversarial examples to be different.
This can be achieved by introducing the regularization term. We propose to
maximize the likelihood value for adversarial examples during training. Denote
the adversarial examples generated by solving the inner maximization problem
in Eq. 2 as {ai}Ni=1, in which ai = xi+arg maxδi Lcls(xi+ δi, yi; θ). We minimize
the following loss for adversarial examples.

Ladv =
1

N

∑
i

(−yi log fθ(ai)− λ‖hθ(ai)− µyi‖2). (8)

The training scheme is illustrated in Fig. 2. It demonstrates two important
modifications we make to the original adversarial training scheme. First, the
original adversarial training is conducted on a discriminative model, which only
considers the output probability distribution and maximizes the target proba-
bility. In contrast, our method explicitly models the feature distribution through
end-to-end training. Second, we explicitly encourage different feature distribu-
tions by optimizing the likelihood regularization towards opposite directions for
the clean data and adversarial examples. Our method facilitates a more reason-
able feature distribution in the scope of robust classification and improves the
classification accuracy of both clean data and various adversarial examples.
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Fig. 2. Training schemes comparison. Top: the original adversarial training
method [12]. Bottom: the proposed ATBLR method.

4 Experiments

To evaluate the robustness and generalization ability of the proposed method,
we present experimental results on datasets including MNIST [10], CIFAR-10
and CIFAR-100 [8]. We report the natural accuracy, i.e. the accuracy of clean
data, and that of adversarial examples. Following the widely adopted proto-
cal [24,12,2], we consider the adversarial attack methods including FGSM [4],
PGD [12] and C&W [3]. We evaluate the robustness of our method under two
different threat models.
– White-box attack: the attacker has access to all the information of the tar-

get classification model including the model architecture and model weights.
The adversarial examples for testing are generated using gradient informa-
tion of the target model.

– Black-box attack: the attacker has knowledge of the model architecture
but has no access to its model weights. The adversarial examples for testing
are generated using the gradient information of a substitute model, which
is independently trained using the same architecture and training hyper-
parameters as the target model.

Experiments are conducted with the Tensorflow [1] using the Nvidia TITAN X
GPU. All the codes and trained models will be made available to the public.

4.1 MNIST

We apply the proposed ATBLR method to train robust models for image classi-
fication to compare with the baseline method, i.e. the adversarial training [12].
The MNIST dataset [10] is a handwritten digit dataset consisting of 10 classes
including 60,000 images for training and 10,000 images for testing. We use the
data augmentation method including mirroring and 28 × 28 random cropping
after 2-pixel zero paddings on each side. The models are tested on different types
of adversarial examples, including the FGSM [4], PGD [12] with varying steps
and restarts, C&W [3] with κ = 0 and C&W with a high confidence parameter
κ = 50 (denoted as C&W-hc method).
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Table 1. Classification accuracy (%) on the MNIST dataset for clean data
and adversarial attacks. The evaluation is conducted for both white-box and black-
box attacks.

Testing Input Steps Restarts
Accuracy (%)

Adv. Training [12] ATBLR (ours)

Clean - - 98.8 99.3

White-box Attack
FGSM - - 95.6 97.2
PGD 40 1 93.2 94.8
PGD 100 1 91.8 94.1
PGD 40 20 90.4 93.5
PGD 100 20 89.3 92.7
C&W 40 1 94.0 95.8
C&W-hf 40 1 93.9 96.3

Black-box Attack
FGSM - - 96.8 98.4
PGD 40 1 96.0 97.7
PGD 100 20 95.7 97.6
C&W 40 1 97.0 98.8
C&W-hf 40 1 96.4 98.5

Implementation Details. Following the practice in [12], we generate PGD
attacks of 40 steps during training and use a network consisting of two convo-
lutional layers with 32 and 64 filters respectively, followed by a fully connected
layer of size 1024. The input images are divided by 255 so that the pixel range
is [0, 1]. The l∞ norm constraint of ε = 0.3 is imposed on the adversarial per-
turbations and the step size for PGD attack is 0.01. The models are trained
for 50 epochs using ADAM [7] optimizer with a learning rate of 0.001. The pa-
rameter λ in Eq. 7 and 8 which balances the trade-off between the classification
loss and bi-directional likelihood regularization is set to 0.1. For the evaluation
of the black-box attacks, we generate adversarial examples on an independently
initialized and trained copy of the target network according to [12].

The experimental results on the MNIST dataset are presented in Table 1.
The results show that the strongest attack is the PGD attack with multiple
restarts. It can be observed that the proposed method not only improves the
robustness against adversarial attacks but also improves the accuracy of the
clean data. Moreover, the performance gain is achieved without introducing any
extra trainable parameters, which validates the effectiveness of addressing the
difference of feature distributions between clean data and adversarial examples.

4.2 CIFAR

We apply the proposed ATBLR method to train robust classification models
on the CIFAR-10 and CIFAR-100 datasets and make comparisons with previous
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Table 2. Classification accuracy (%) on the CIFAR-10 dataset for clean data
and adversarial attacks. The PGD attacks for testing are generated with l∞ norm
constraint ε = 8 and a step size of 2. †We re-run the code of PATDA with ε = 8 since
it reports the result for ε = 4 which generates weaker adversarial attacks.

Method Clean
White-box Black-box

FGSM PGD-10 PGD-100 PGD-1000 PGD-1000

Network: ResNet-32
Natural Training 92.73 27.54 0.32 0.11 0.00 3.03
Adv. Training [12] 79.37 51.72 44.92 43.44 43.36 60.22
IAAT [2] 83.26 52.05 44.26 42.13 42.51 60.26

PATDA† [15] 83.40 53.81 46.59 45.27 44.01 61.79
FD [24] 84.24 52.81 45.64 44.60 44.21 62.84
ATBLR (ours) 86.32 58.60 50.18 48.56 47.88 64.38

Network: WideResNet-32
Natural Training 95.20 32.73 2.17 0.35 0.00 4.29
Adv. Training [12] 87.30 56.13 46.26 45.14 44.87 61.07
IAAT [2] 91.34 57.08 48.53 46.50 46.54 58.20

PATDA† [15] 84.63 57.79 49.85 48.73 48.04 58.53
FD [24] 86.28 57.54 49.26 46.97 46.75 59.31
ATBLR (ours) 92.12 59.69 52.11 51.17 50.63 62.89

state-of-the-art methods. The CIFAR-10 dataset [8] consists of 32×32 pixel color
images from 10 classes, with 50,000 training images and 10,000 testing images.
The CIFAR-100 dataset [8] has 100 classes containing 50,000 training images and
10,000 testing images. We use the typical data augmentation method including
mirroring and 32×32 random cropping after 4-pixel reflection paddings on each
side. We use the network architectures of ResNet-32 [5] and WideRenset-32 [25]
following Madry et al. [12] and Zhang et al. [26]. Our method is compared with
the natural training and previous state-of-the-art training approaches designed
to improve the robustness of classification models:

– Natural Training: Training with cross-entropy loss on the clean training data.
– Adversarial Training (Adv. Training) [12]: Training on the clean training

data and the adversarial examples generated during training.
– Instance Adaptive Adversarial Training (IAAT) [2]: Training that enforces

the sample-specific perturbation margin around every training sample.
– PGD-Adversairal Training with Domain Adaptation (PATDA) [15]: Adver-

sarial training combined with domain adaptation algorithms.
– Feature Denoising (FD) [24]: Training that combines Adversarial Training

and a network architecture with the non-local filters to remove the noise
caused by the adversarial examples in feature space.

Implementation Details. During adversarial training, the adversarial exam-
ples are generated by PGD-10 attacks, i.e. 10 steps of PGD attack are conducted
on the clean data for each training iteration. The step size for the PGD attack is
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set to 2 out of 255. A l∞ norm constraint of ε = 8 is imposed on the adversarial
perturbations. The models are trained for 200 epochs using ADAM [7] optimizer
with the learning rate of 0.001 and the batch size of 128. The parameter λ which
balances the trade-off between the classification loss and bi-directional likelihood
regularization is set to 0.02. We present more quantitative results in Section 4.4
to study the influence of the parameter λ. For evaluation in the white-box set-
ting, the models are tested on (1) PGD-10 attacks with 5 random restarts, (2)
PGD-100 attacks with 5 random restarts and (3) PGD-1000 attacks with 2 ran-
dom restarts. For evaluation in the black-box setting, following the experimental
setting of [2], the PGD-1000 attack with 2 random restarts is adopted.

The experimental results on the CIFAR-10 dataset are presented in Table 2.
We observe that the proposed method improves the classification accuracy of
both the clean data and adversarial examples. Compared with the original ad-
versarial training, the results demonstrate that our method achieves large accu-
racy gain by considering the feature distribution differences and introducing the
bi-directional likelihood regularization during training. Moreover, our method
performs favorably against the Feature Denoising (FD) method [24], which is
the previous state-of-the-art method. By switching from the network of ResNet-
32 to its 10× wider variant, the classification performance is increased due to
larger model capacity. Our method can increase the model’s robustness for both
the simple and complex models.

We present the experimental results on the CIFAR-100 dataset in Table 3.
As shown by the results, the CIFAR-100 dataset is more challenging than the
CIFAR-10 dataset. Nevertheless, we observe that the proposed ATBLR method
consistently increases the robustness against adversarial examples and performs
favorably against previous state-of-the-art methods.

4.3 Evolution of the Likelihood Regularization

During training, we propose to optimize different objective functions for clean
data and adversarial examples, which are given by Eq. 7 and 8, respectively.
Here we investigate the evolution of the values of Llkd in the training progress
to verify that the likelihood of clean data and adversarial examples is optimized
to be different. We conduct the experiments on the CIFAR-10 dataset with the
same network and training schemes as in Section 4.2. We evaluate and record the
value of the likelihood regularization according to Eq. 6 for the clean data and
adversarial examples, respectively, in each input batch. We compare two models.
The first one is trained with the proposed ATBLR method and the second one
is trained without optimizing the Llkd during training.

The curves for the values of Llkd are plotted in Fig. 3. We note that larger
Llkd indicates smaller likelihood value since Llkd is essentially the negative log-
arithm of likelihood. In the left figure, as the training converges, the Llkd of
clean data (blue) is low, which means the network learns to model the feature
distribution of the clean data. The Llkd of adversarial examples (orange) is large,
which is nearly twice that of the clean data. In contrast, the right figure shows
that the Llkd values of the clean data and adversarial examples are almost the
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Table 3. Classification accuracy (%) on the CIFAR-100 dataset for clean
data and adversarial attacks. The PGD attacks for testing are generated with l∞
norm constraint ε = 8 and a step size of 2.

Method Clean
White-box Black-box

FGSM PGD-10 PGD-100 PGD-1000 PGD-1000

Network: ResNet-32
Natural Training 74.88 4.61 0.02 0.01 0.00 1.81
Adv. Training [12] 55.11 26.25 20.69 19.68 19.91 35.57
IAAT [2] 63.90 27.13 18.50 17.17 17.12 35.74
PATDA [15] 59.40 27.33 20.25 19.45 19.08 35.81
FD [24] 65.13 26.96 21.14 20.39 20.06 36.28
ATBLR (ours) 67.34 28.55 21.80 21.54 20.96 37.79

Network: WideResNet-32
Natural Training 79.91 5.29 0.01 0.00 0.00 3.22
Adv. Training [12] 59.58 28.98 26.24 25.47 25.49 38.10
IAAT [2] 68.80 29.30 26.17 24.22 24.36 35.18
PATDA [15] 64.24 28.35 24.51 23.45 23.08 35.81
FD [24] 67.13 29.54 27.15 25.69 25.14 37.95
ATBLR (ours) 70.39 30.85 29.49 27.53 27.15 39.24

same during training. The comparison verifies that the proposed method effec-
tively encourages the features of clean data and adversarial examples to follow
different distributions. The quantitative evaluation in Section 4.2 validates that
introducing such a regularization during training is effective in improving the
accuracy of both clean data and adversarial examples.

In addition, we observe in the left figure that the two curves do not separate
until about 700 iterations. This phenomenon can be explained as below. The
model parameters are randomly initialized and the likelihood of both types of
inputs is low at the start since the features are far from their corresponding
Gaussian mean. At the early training stage, the cross-entropy loss in Eq. 7 and 8
is dominating because the λ is small. The cross-entropy loss is driving the features
to move closer to the corresponding Gaussian mean, thus decreasing the Llkd for
both types of inputs. As the cross-entropy loss becomes smaller, the likelihood
regularization is having a larger impact. After a certain point of equilibrium,
which is about 700 iterations in this experiment, the likelihood regularization
term in Eq. 8 is slowing Llkd from decreasing for adversarial examples. Finally,
the training converges and the Llkd value of adversarial examples is larger than
that of clean data, which means that the clean data follows the learned GM
distribution better and the adversarial examples follow a different distribution.
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Fig. 3. Curves of the likelihood regularization for clean data and adversarial
examples. Left: the model is trained using the proposed ATBLR method. Right: the
model is trained without optimizing Llkd but we record its value during training. The
experiment is conducted on the CIFAR-10 dataset with ResNet-32. The first 60 epochs
are shown here since the changes in the rest 140 epochs are not obvious.

4.4 Hyper-parameter Analysis

We study the effect of choosing different values of λ in the proposed ATBLR
method and compare the performance. We conduct the experiments on the
CIFAR-10 and CIFAR-100 datasets using the ResNet-32 network.

The experimental results are presented in Fig. 4. The PGD attack is stronger
than FGSM. Nevertheless, our method improves the classification performance
for different types of attacks and the clean data. Comparing results of λ = 0 and
the others, we conclude that the ATBLR method can improve the classification
performance consistently for different values of the hyper-parameter λ. The re-
sults also demonstrate that it is disadvantageous to set a λ that is too large. This
is reasonable considering that λ is a balancing coefficient for the classification
loss and the likelihood regularization. Too large a λ will lead to the dominance of
the likelihood regularization term. This damages the classification performance
because the features of all the clean data tend to collapse into one point under
this objective function. Nevertheless, our method makes steady improvements
for different λ in a wide range. We choose λ = 0.02 for experiments in Section 4.2
based on this hyper-parameter study.

4.5 Adversaries for Training

In the previous experiments, following other works, we select PGD attacks with
10 steps as the adversarial examples for training. We investigate the effect of
adopting other alternatives and present the results on the CIFAR-10 dataset in
Table 4. The results show that the performance gain that our method achieves
becomes larger when stronger attacks are used for training. For example, if
the training adversaries are switched from PGD-10 to the stronger PGD-100,
the performance gain on clean data is increased from 86.32 − 79.37 = 6.95 to
86.49−77.45 = 9.04, likewise in other columns. This is expected because stronger
adversarial examples have greater similarity to another class. As such, it is more
favorable if they are encouraged to follow a feature distribution which is different
from that of clean data of the original class.
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Fig. 4. Hyper-parameter study for λ on the CIFAR-10 dataset (top) and the
CIFAR-100 dataset (bottom). λ = 0 denotes the original adversarial training.

Table 4. Classification accuracy (%) of the proposed ATBLR method / the
original adversarial training when trained with different adversaries.

Model Clean FGSM PGD-10 PGD-100

Training w/ FGSM 89.83/87.40 91.87/90.93 1.03/0.00 0.14/0.00
Training w/ PGD-10 86.32/79.37 58.60/51.72 50.18/44.92 48.56/43.44
Training w/ PGD-100 86.49/77.45 58.74/51.58 51.25/45.06 52.37/45.71

5 Conclusion

In this paper, we propose a novel method for training robust classification mod-
els against adversarial attacks. In contrast to the previous adversarial training
method which optimizes only the posterior class distribution, our method learns
the feature distribution of clean data through end-to-end training. Furthermore,
the intrinsic difference between feature distributions for clean data and adversar-
ial examples is preserved by optimizing the likelihood regularization in opposite
directions for these two types of inputs. Moreover, our method introduces no ex-
tra trainable parameters. Extensive experiments demonstrate that our method
performs favorably against previous state-of-the-art methods in terms of the
classification accuracy of both the clean data and adversarial examples.
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