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Abstract. 3D hand pose estimation is still far from a well-solved prob-
lem mainly due to the highly nonlinear dynamics of hand pose and the
difficulties of modeling its inherent structural dependencies. To address
this issue, we connect this structured output learning problem with the
structured modeling framework in sequence transduction field. Standard
transduction models like Transformer adopt an autoregressive connection
to capture dependencies from previously generated tokens and further
correlate this information with the input sequence in order to priori-
tize the set of relevant input tokens for current token generation. To
borrow wisdom from this structured learning framework while avoiding
the sequential modeling for hand pose, taking a 3D point set as input,
we propose to leverage the Transformer architecture with a novel non-
autoregressive structured decoding mechanism. Specifically, instead of
using previously generated results, our decoder utilizes a reference hand
pose to provide equivalent dependencies among hand joints for each out-
put joint generation. By imposing the reference structural dependencies,
we can correlate the information with the input 3D points through a
multi-head attention mechanism, aiming to discover informative points
from different perspectives, towards each hand joint localization. We
demonstrate our model’s effectiveness over multiple challenging hand
pose datasets, comparing with several state-of-the-art methods.

Keywords: 3D Hand Pose Estimation, Structured Learning, Attention,
Non-Autoregressive Transformer

1 Introduction

Articulated 3D hand pose estimation has been one of the most essential top-
ics in computer vision because of its significant role in human behavior anal-
ysis and understanding, leading to enormous practical applications in human-
computer interactions, robotics, and virtual/augmented reality, etc. With the
advances of deep learning algorithms as well as the emergence of consumer level
depth sensors, notable progress has been brought to 3D hand pose estimation
field [18,14,26,47,40,36,39,50,16,32,43,44,15,28,30,51,54].
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Despite significant success achieved in recent years, it is still challenging
to obtain precise and robust hand pose due to complex pose variations, large
variability in global orientation, self-similarity between fingers, and severe self-
occlusion, etc. To tackle this structured output learning problem, we argue it
is vital for learning algorithms to not only explore the intrinsic dependencies
from input data, but also fully exploit the structural correlations among hand
joints as well as its dependencies with input data, both of which has been fewly
discussed. In our work, we focus on 3D point cloud as input, a simple yet effective
representation converted from depth data, aiming to take advantage of these vital
information from it.

To make use of above mentioned information towards hand pose estimation,
we connect the articulated pose estimation problem with the sequence trans-
duction tasks in Natural Language Processing (NLP) field. As another type
of structured output prediction problem, state-of-the-art sequence transduction
algorithms [41,1,48] fully exploit these correlations, following a classic encoder-
decoder framework. They utilize an autoregressive decoding strategy to model
sequential correlations among output tokens while also capturing global depen-
dencies between the input and output sequence through attention mechanism.
These modeling techniques have led to drastic performance improvements in gen-
erating syntactically and semantically valid sentences, such as language trans-
lations and image captions. Thus, to borrow wisdom from these strategies, we
propose to leverage the Transformer model as our fundamental building block to
take advantage of all these missing pieces for robust 3D hand pose estimation.

As a structured learning task, we should first pay attention to the inher-
ent dependencies among hand joints since human hands are highly articulated
and inherently structured. For instance, pinky finger cannot be bend without
bending the ring finger or all fingers cannot bend backward too much [27]. Most
current works simply treat pose as a set of independent 3D joints [14,16,32,30]
while a few studies have enforced pose-related constraints in the form of either
pre-trained kinematic models [31,30,53,54,22] or hand-crafted priors [42]. How-
ever, due to the large variations in hand motions, there are more correlations
that cannot be captured via such pre-defined constraints. Thus, learning a model
that can adaptively model the structural patterns is necessary for these cases.
Inspired by the autoregressive decoding mechanism used in sequence transduc-
tion tasks, we can enforce pose patterns by conditioning each joint generation on
previously generated joints. However, the autoregressive factorization nature re-
sults in heavy inference latency. In addition, given a specific order of hand joints,
the sequential modeling assumes each joint is mainly correlated with “previous”
joints in the order. However, hand joints should be inter-correlated with both
“previous” and “future” ones. Thus, if we only consider sequential correlations,
this might cause inferior and physically invalid poses due to biased modeling.

Motivated by recently proposed Non-AutoRegressive Transformer (NART)
models [19,37,21,46], we propose to replace the autoregressive factorization of
the Transformer with a novel non-autoregressive structured learning mechanism
designed for 3D hand pose estimation. Instead of using previously generated
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Fig. 1. Left: Overview of our proposed NARHT model composed of 3 components.
The encoder computes point-wise features ci for each input point pi. The structured-
reference extractor will feed a reference pose φ̃j into decoder. Then decoder further
models the dependencies among reference joints and correlate this information with
point-wise features ci for each joint generation φj . Right: An illustration of our non-
autoregressive structured decoding strategy. Each joint generation is conditioned on
the reference pose dependencies and relevant input points. N , J , L1, and L2 is the
number of input points, hand joints, encoder layers, and decoder layers, respectively.

tokens as decoder input, representative NART models directly feed a modified
copy of input tokens to decoder, aiming to generate all output tokens simultane-
ously. Obviously, it provides drastic inference speedup but comes at the cost of
performance degradation due to the removal of information from output tokens.
To preserve the parallelism while feeding necessary pose-related information to
the decoder, we design a structured-reference extractor, aiming to provide a
reference hand pose in the form of joint-wise features and use its inherent corre-
lations to approximate that of output pose. Thus, given the reference pose to the
decoder, we adopt a non-causal self-attention layer [19] to capture its inherent
dependencies towards each output joint generation. By exposing the extracted
reference pose to the decoder, our model is able to generate all joints in parallel,
conditioned on pose-related information.

Beyond drawing the dependencies from structured input and output data,
respectively, the Transformer network further models the correlations between
the input and output to explore the relevant input information. By modeling
the correlations, what each output token generation can access is not only its
relation with previously generated tokens but also the informative input fea-
tures. Motivated by this strategy, our Transformer-based model also correlates
each output joint generation with the input points via an multi-head attention
mechanism. Specifically, for certain joint estimation, we utilize the dependen-
cies among reference hand joints as queries to attend over input points. The
goal is to adaptively discover informative points that contribute towards each
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joint generation, from different representation subspaces. Then, we merge the
attention-weighted information along with the dependencies among reference
joints to localize certain output joint. This scheme is similar to current state-
of-the-art voting-based techniques [44,18,26,47] which mainly take the pairwise
point to point Euclidean offsets as vote scores. Nevertheless, we can easily find
cases where points with small Euclidean but large Geodesic offsets can con-
tribute less than those with small Geodesic but large Euclidean offsets. Thus,
this strategy might lead to sub-optimal results. Instead, the multi-head attention
generalizes the offsets-based techniques by letting the model decide itself regard-
ing which aspects to look at towards certain joint generation. Thus, we argue
our method also extends this line of work to a more adaptive version with more
various aspects being examined, based on the multi-head attention mechanism.

In summary, our main contributions are shown as follows:

• We propose a novel Non-AutoRegressive Hand Transformer (NARHT) for
3D hand pose estimation from unordered point sets. To the best of our knowl-
edge, it is the very first attempt to connect the structured hand pose esti-
mation with the Transformer-based transduction frameworks in NLP field.

• We design a non-autoregressive structured decoding strategy specifically for
articulated pose estimation to replace the autoregressive factorization of tra-
ditional Transformer, aiming to break the sequential inference bottleneck and
provide necessary pose information during the decoding process.

• Using pose dependencies as queries, we further implement a fully adaptive
point-wise voting scheme through a multi-head attention mechanism. This
scheme correlates the captured pose dependencies for each output joint with
input points from different aspects, contributing to precise joint localization.

2 Related Work

3D Hand Pose Estimation. 3D hand pose estimation has received much
attention in computer vision over the last decade. The developed approaches
can be categorized into three types: generative approaches, discriminative ap-
proaches, and hybrid approaches. Our method is more related with the discrim-
inative line of works. Most discriminative approaches [40,36,32,43,44,47,12,44,6]
directly feed 2D depth maps as images into 2D CNNs. Nevertheless, the mis-
match between the 2.5D depth data and the 2D learning algorithms cannot
guarantee a full exploration of the input 3D geometric information. Subsequent
methods [15] project depth maps into multi-views and feed them into multi-view
CNNs. However, the separate pipelines with multi-view fusion is non-trivial to
deal with. To further address the problem, 3D voxels [16,11,28] comes into play
for direct 3D geometric modeling. Moon et al. [28], which is still one of the state-
of-the-art methods, exploits voxel-to-voxel predictions to estimate the per-voxel
likelihood for each joint. But the volumteric pipeline causes high computation
burden due to the need of large memory. Recent years, there is an obvious trend
shifting towards RGB-based solutions [57,29,17,49,23,3,52,4] because of the con-
venience of data acquisition. However, the ambiguities in single RGB camera
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Fig. 2. Left: Classic encoder-decoder framework in sequence transduction tasks, such as
AutoRegressive Transformer (ART) [41]. Middle: Recently proposed encoder-decoder
framework without autoregressive connection, such as Non-AutoRegressive Trans-
former (NART) [19,21,37,46]. Right: Our proposed encoder-decoder framework with
additional function g as the structured-reference extractor (NARHT).

and the lack of texture features make current techniques still far more ubiqui-
tous than depth-based methods. A lot of attentions have also been paid to the
3D point-based techniques [18,14,26,7,8]. Ge et al. [14] proposes a hand Point-
Net for directly mapping the unordered point sets to 3D hand poses. But as an
irregular data format, more efforts can be applied in order to fully explore its ge-
ometric information. In this paper, motivated by several sequence transduction
algorithms [48,41,1,19,21,37,46], we propose a novel mechanism for directly op-
erating on input points while injecting the pose-related dependencies for robust
pose estimation.

3 Methodology

Our proposed NARHT model is illustrated in Fig. 1. Given a set of unordered
3D points converted from hand depth image, our target is to infer a corre-
sponding 3D hand pose, which is parameterized as a set of 3D joint coordinates
Φcam = {φcam

1 , ...,φcam
J } in the camera Coordinate System (C.S.), where J is

the number of hand joints. To obtain robust hand poses, we propose to leverage
a Transformer-based architecture with a non-autoregressive structured decoding
strategy. The model follows the typical encoder-decoder frameworks [41,38,9,2],
with an additional structured-reference extractor for non-autoregressive decod-
ing. Specifically, following [14,18] to make our model more robust to hand ori-
entations, we first downsample and normalize the input point set to N points
in OBB C.S., represented as P = {p1, ...,pN}. The hand joints Φcam is also
transformed into OBB C.S., denoted as Φ = {φ1, ...,φJ}. Then, we feed the
normalized points P into the encoder to generate enhanced point-wise rep-
resentations C = {c1, ..., cN}. We utilize a basic PointNet [33], followed by a
permutation-invariant self-attention layer to better capture the long-range de-
pendencies among input points. During decoding, to impose structured pose
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patterns for each joint generation, we first adopt a structured-reference extrac-
tor to take the input points and generate a reference hand pose in the form of
joint-wise features Φ̃ = {φ̃1, ..., φ̃J}. The reference pose is further exposed to the
decoder and a non-causal self-attention layer [19] is used to capture the structural
dependencies among its joints, which serves as an approximation to that of the
target hand pose. Then, we correlate the captured pose dependencies with the
point-wise features C to discover the relevant points from different representation
subspaces towards certain joint generation, using the encoder-decoder attention
module. Finally, we merge all the attention-weighted point-wise features along
with the captured dependencies to infer each joint location in parallel. Based on
this decoding strategy, our model is able to simultaneously generate all joints
conditioned on pose-related information.

3.1 Tranformer Revisited

For structured output learning problems, besides extracting features from in-
put data, we should always investigate the inherent dependencies of structured
output as well as its correlations with the input data in order to generate pre-
cise and valid results, such as 3D articulated poses, language translations, and
image captions. Transformer [41], established as state-of-the-art transduction
model, exactly takes advantage of all these information with a solely attention-
based mechanism to generate syntactically and semantically correct sentences.
In particular, AutoRegressive Transformer (ART), following the classic encoder-
decoder frameworks, adopts self-attention layer to first capture long-range de-
pendencies from input structured data and previously generated output tokens,
respectively. Then it further utilizes encoder-decoder attention to model depen-
dencies between input and previously generated output. Finally, Transformer
can sequentially generate token conditioned on the captured information.

The superior performance achieved by Transformer mainly comes down to
the combination of autoregressive decoding with the attention mechanism for
modeling the structural dependencies from data. Therefore, to translate this
framework into our case, we keep the attention mechanism while extending the
autoregressive decoding to a more suited strategy for 3D hand pose estimation.
In the following sections, we continue revisiting both key concepts.

Multi-Head Attention. Attention mechanism [1,24] is used to adaptively ag-
gregate the set of input values without regard to their distance, according to the
attention weights that measure the compatibility of given query with a set of
keys. Formally, we first assume the dimension of each query and key is dk and
dimension of value is dv, then a scaled dot-product attention mapping [41] can
be computed as:

Attention (Q,K,V ) = softmax

(
QKT

√
dk

)
V , (1)

where matrices Q, K, and V denote a set of queries, keys, and values, respec-
tively. Moreover, to extend the capacity of exploring different subspaces, the
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attention can be extended to cases with multi-head [41]:{
MultiHead (Q,K,V ) = Concat (head1, ..., headh)WO,

headi = Attention
(
QWQ

i ,KW
K
i ,VWV

i

)
;

(2)

where linear transformations WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈

Rdmodel×dv , and WO ∈ Rhdv×dmodel are parameter matrices. h is the number
of subspaces and dk = dv = dmodel/h = 32 in our implementation. We mainly
rely on two variants of attention in our model. The first one is self-attention for
capturing long-range dependencies from input and reference hand pose, respec-
tively. The keys and queries are from same set of elements. The second one is
encoder-decoder attention to prioritize the subset of input points where relevant
information is present for certain joint generation. The keys and queries are from
two sets of elements.

Autoregressive Decoding. As mentioned previously, Transformer generates
each token in an autoregressive manner. Thus, the decoding mechanism condi-
tions the generation of each token on the inherent dependencies among previ-
ously generated tokens, as shown in Fig. 2. Formally, given a source sentence
X = {x1, ...,xT ′} with length T ′, the autoregressive decoding factors the dis-
tribution of output sequence Y = {y1, ...,yT } with length T into a chain of
conditional probabilities with a left-to-right sequential structure [41,19]:

part (Y |X;θ) =

T∏
t=1

p (yt|y1:t−1,x1:T ′ ;θ), (3)

where θ is the model parameters. As shown in Eq. 3, despite its ability to capture
inherent dependencies from output sequence, the autoregressive decoding suffers
from high inference latency since the generation of tth token yt depends on
previously generated tokens y1:t−1. In addition, the sequential modeling might
not work well towards hand motion, leading to sub-optimal results, since hand
joints are inter-correlated with each other rather than constrained only in a
sequential manner. Thus, we propose a non-autoregressive structured decoding
mechanism to replace the slow sequential modeling process and enforce more
reasonable pose dependencies into decoding process.

3.2 Non-Autoregressive Structured Decoding

Recently proposed Non-AutoRegressive Transformer (NART) models [19,21,37]
remove the sequential dependence on previously generated tokens and directly
feed a modified copy of input sequence X ′ = {x′1, ...,x′T ′} to decoder, as shown
in Fig. 2. It can achieve significant inference speedup, however, at the cost of
inferior accuracy compared to ART models due to the lack of information from
output sequence. The decoding process can be formulated as:

pnart (Y |X;θ) =

T∏
t=1

p (yt|x′1:T ′ ,x1:T ′ ;θ). (4)
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This motivates us to come up with a similar architecture with the ability to
explore the structured output patterns and run in parallel. We propose a novel
non-autoregressive structured learning mechanism designed for 3D hand pose
estimation. Instead of feeding previously generated results or modified copy of
input, we let the decoder take a reference pose in the form of joint-wise fea-
tures Φ̃ = {φ̃1, ..., φ̃J}, generated by a structured-reference extractor. Exposing
the reference pose to the decoder, we further employ a non-causal self-attention
layer [19] for drawing the correlations among reference joints. Guided by the
captured reference pose dependencies, we then adopt the encoder-decoder at-
tention mechanism used in the Transformer to discover the informative input
points from different representation subspaces. This presents a fully adaptive
point-wise voting scheme, aiming to better capture correlations between output
joints and input points. We aggregate the weighted point-wise features along
with the pose dependencies and pass it through a Position-wise Feed-Forward
Network (FFN) [41] to obtain the decoder output. Finally, the decoder output
will go through a Fully Connected (FC) layer to obtain each joint coordinates.
The decoding process can be formulated as:

pnarht (Φ|P;θ) =

J∏
j=1

p
(
φj |φ̃1:J ,p1:N ;θ

)
, (5)

where θ is the model parameters. In this manner, our model can simultaneously
generate all hand joints conditioned on the necessary pose patterns. For training,
we adopt maximum likelihood estimation method with a squared L2 loss between
the ground truth Φ̂ = {φ̂1, ..., φ̂J} and the estimated joint coordinates. The loss
for each training sample is defined as:

L1 =

J∑
j=1

‖φj − φ̂j‖22. (6)

Structured-Reference Extractor. In order to expose more reasonable pose-
related information to the decoder, we replace the inefficient autoregressive fac-
torization nature of Transformer model with a novel non-autoregressive struc-
tured learning mechanism. As shown in Fig. 1, we feed the normalized 3D points
into a structured-reference extractor in the goal to generate a reference hand
pose in the form of joint-wise features Φ̃ = {φ̃1, ..., φ̃J}. By exposing the ref-
erence pose to the decoder, the decoder can capture the correlations among
reference joints as an approximation to that of the target pose and use this
information to better constrain the output space, leading to more precise and
physically valid hand joints.

Specifically, we adopt a PointNet++-based network [34] to map the input
points P to a latent feature vector and transform it into J points with 64-dim
features. We then pass it through a MLP network to obtain J points with dmodel-
dim features, which gives us reference pose in the form of joint-wise features.

We also apply an intermediate supervision to encourage the reference pose to
include more information regarding the ground truth. Thus, we add a FC layer
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for regressing a hand pose Φ′ = {φ′1, ...,φ′J} from the joint-wise features. The
second loss term is given below:

L2 =

J∑
j=1

‖φ′j − φ̂j‖22. (7)

Non-Causal Self-Attention. Conventional Transformer conditions each out-
put token generation on previously generated results without the access for the
information from the future decoding steps. Given the reference pose output
from the sturcutred-reference extractor, the decoder in our model could avoid
this autoregressive factorization and explore the dependencies among all J ref-
erence hand joints. Therefore, we can avoid the causal mask used in the masked
self-attention module of the traditional Transformer decoder. Moreover, similar
to [19], we mask out each reference joint’s position only from attending to itself,
aiming to model the dependencies among reference joints without seeing itself.

Point-Wise Voting. Another key benefit of using the Transformer model is
that it can model the global dependencies between the input and output tokens
via a encoder-decoder attention mechanism. This strategy can be extended to
a fully adaptive point-wise voting scheme for hand joint localization. Specifi-
cally, in our model, we utilize the captured dependencies among reference joints
as queries to attend over all input points for each output joint generation. It
will put strong focus on parts of the input points and help the decoding pro-
cess select the informative points that can contribute to certain joint generation.
Compared with the popular Euclidean offsets-based voting-scheme [18,26,44,47],
the attention-based mechanism is more adaptive and comprehensive. Moreover,
the multi-head self-attention mechanism enables the voting-scheme to be per-
formed from different representation subspaces, adding more perspectives to the
relevant point searching. The per-point votes will be merged with the captured
dependencies to decide each 3D joint location.

3.3 Encoder

The goal for our encoder is similar to that in the Transformer, which is to draw
long-range dependencies from the input data and compute point-wise represen-
tation. Various methods have been proposed for direct operation on point cloud.
The classic PointNet [33] operates on each point independently without con-
sideration of the inherent geometric correlations. Subsequent methods mainly
rely on convolution-based multi-resolution hierarchy to resolve this issue. How-
ever, many recent studies [45,35,10,56,5] have shown convolution-based design
is inefficient to capture long-range dependencies while also causing optimization
difficulties. In addition, the transformation invariance caused by the widely used
pooling operation tends to cause loss of precise localization information which
is vital for articulated pose estimation. Thus, in our work, we first feed the in-
put points into a basic PointNet-based network [33] to extract basic point-wise
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Table 1. Comparison with state-of-the-art methods on ICVL [39] (Left), MSRA [36]
(Middle), and NYU [40] (Right). “Error” indicates the mean joint distance error in
(mm).

Methods Error
DeepModel [53] 11.56
DeepPrior [31] 10.40

CrossingNets [43] 10.20
HBE [55] 8.62

DeepPrior++ [30] 8.10
REN (9x6x6) [20] 7.31
DenseReg [44] 7.24
SHPR-Net [7] 7.22

Hand PointNet [14] 6.94
Pose-REN [6] 6.79

CrossInfoNet [12] 6.73
A2J [47] 6.46

Point-to-Point [18] 6.33
V2V-PoseNet [28] 6.28
NARHT (Ours) 6.47

Methods Error
Feedback [32] 15.97

CrossingNets [43] 12.20
REN (9x6x6) [20] 9.79

3D CNN [16] 9.58
DeepPrior++ [30] 9.50

Pose-REN [6] 8.65
Hand PointNet [14] 8.51
CrossInfoNet [12] 7.86
SHPR-Net [7] 7.76

Point-to-Point [18] 7.71
V2V-PoseNet [28] 7.59
DenseReg [44] 7.23
NARHT (Ours) 7.55

Methods Error
DeepPrior [31] 20.75
DeepModel [53] 17.04
Feedback [32] 15.97

CrossingNets [43] 15.50
3D CNN [16] 14.11

REN (9x6x6) [20] 12.69
DeepPrior++ [30] 12.24

Pose-REN [6] 11.81
SHPR-Net [7] 10.78

Hand PointNet [14] 10.54
DenseReg [44] 10.21

CrossInfoNet [12] 10.08
Point-to-Point [18] 9.05
Point-to-Pose [26] 8.99

A2J [47] 8.61
V2V-PoseNet [28] 8.42
NARHT (Ours) 9.80

features and further adopt self-attention layer to enhance the representation by
modeling the inherent dependencies among different points.

3.4 End-to-End Training

We utilize loss functions L1 and L2 mentioned above to jointly supervise the
end-to-end learning procedure of our NARHT model, which is formulated as:

L = λL1 + L2, (8)

where λ = 10 is the weight coefficient to balance L1 and L2.

4 Experiments

4.1 Datasets

ICVL Dataset [39]. It contains 22k frames for training and 1.5k frames for test-
ing. The dataset also includes an additional 300k augmented frames with in-plane
rotations. The dataset provides 16 annotated joints. MSRA Dataset [36]. It
consists of 76.5k depth images captured from 9 subjects. Each subject contains
17 hand gestures and each hand gesture has about 500 frames with segmented
hand depth image. The ground truth annotations contains 21 joints. We adopt
the common leave-one-subject-out cross-validation strategy for evaluation on this
dataset. NYU Dataset [40]. It contains 72K training and 8.2K testing frames.
For each frame, the RGBD data from three Kinects is provided. Following the
common protocol, we only use the frontal view with a subset of 14 ground truth
joints. HANDS 2017 Dataset [50]. It consists of 957k training and 295k test-
ing frames, which are sampled from BigHand2.2M [51] and FHAD [13] datasets.
The testing set has seen subjects in training set and unseen subjects. The dataset
provides 21 annotated 3D joints.
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Table 2. Left: Ablation study for several components of our Non-AutoRegressive Hand
Transformer (NARHT) on ICVL [39]. Right: Comparison of inference time on single
GPU.

Dataset Compoent Error

ICVL

Autoregressive Transformer 8.57
P2P as encoder 6.70

Coordinate-based reference pose 6.67
NARHT (Ours) 6.47

Methods FPS (single GPU)
V2V-PoseNet[28] 3.5
DenseReg [14] 27.8

Point-to-Point [18] 41.8
NARHT (Ours) 43.2

4.2 Evaluation Metrics

We adopt two most commonly used metrics in literature to evaluate the perfor-
mance of 3D hand pose estimation. The first metric is the 3D per-joint Euclidean
distance mean error (in mm) on all test frames as well as the overall 3D Eu-
clidean distance mean error (in mm) of each frames’ total joints across all test
frames. This metric demonstrates the overall performance of each estimated joint
and hand pose. The second metric is the fraction of good frames that have all
joints within a specified distance to ground truth. This metric is considered more
strict, which better indicates the performance of a given estimation technique.

4.3 Implementation Details

Input. We set the number of sampled points as N = 1024 and also concate-
nate each input 3D coordinate with estimated 3D surface normal. Encoder. We
adopt a basic PointNet-based Network [33] followed by a standard Transformer
encoder. The PointNet structure consists of 1 MaxPool layer and 2 MLP net-
works. Each MLP is composed of 3 FC layers. We use the Transformer encoder
with headers h as 8, dmodel as 256, layer number L1 as 3 and do not use Posi-
tion Encoding module. Decoder. We adopt PointNet++-based Network [34] as
Structured-Reference Extractor and a modified standard Transformer decoder.
The PointNet++ structure consists of 3 set abstraction layers followed by 1
MaxPool layer and 1 MLP for extracting joint-wise features. For the modified
Transformer decoder, we replace the Masked Multi-Head Attention layer with a
Non-Causal Multi-Head Attention layer [19]. We set headers h as 8, dmodel as
256, layer number L2 as 6. Position Encoding module is not used. We only have
1 FC layer as the final layer to convert the decoder output to joint coordinates.
Training. For training NARHT, we use Adam [25] optimizer with initial learn-
ing rate as 1e-3, λ as 10. The learning rate is divided by 10 after 40 epochs.
Following [14,18], we adopt similar strategies for data augmentation with ran-
dom arm lengths and random stretch factors. All experiments were conducted
on single NVIDIA TITAN Xp GPU using PyTorch framework, with the batch
size of 16 for training and evaluation.

4.4 Ablation Study

We choose ICVL dataset to conduct ablation study and evaluate the results us-
ing mean joint distance error in (mm) metric. The results are shown in Table 2.
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Fig. 3. Comparison with state-of-the-art methods on ICVL [39] (Left), MSRA [36]
(Middle), and NYU [40] (Right) datasets. The proportions of good frames is used for
comparison.

Fig. 4. Comparison with state-of-the-art methods on ICVL [39] (Left), MSRA [36]
(Middle), and NYU [40] (Right) datasets. The per-joint mean error distances is used
for comparison (R: root, T: tip).

Effectiveness of Non-Autoregressive Structured Decoding. To verify the
effectiveness of our proposed non-autoregressive stuctured decoding, we compare
our NARHT model with Autoregressive Transformer-based (ART) model, which
is to use the original Transformer [41] for 3D hand pose estimation. We imple-
ment with scheduled sampling [2] as the training strategy for ART model. With
the autoregressive decoding, we can see a obvious performance drop. More im-
portantly, the ART model runs much slower than our NARHT model due to
the sequential modeling. These help demonstrate that hand joints should not
be modeled only in a sequential manner and our non-autoregressive decoding
process can use the reference pose dependencies for better joint localization.

Impact of the Representation of Reference Pose. We examine the impact
of the representation used for reference pose. The reference pose is generated by
the structured-reference extractor and fed into our decoder. Thus we could use
either joint-wise coordinates or joint-wise features as decoder input. According
to the results, the coordinates-based representation is inferior to the feature-
based representation, which might be caused by the lack of flexibility for the
coordinates-based format.
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Fig. 5. Qualitative results for ICVL [39] (Top), MSRA [36] (Middle) and NYU [40]
(Bottom) datasets.

Effectiveness of Self-Attention Layer. To demonstrate the effectiveness of
self-attention layer for drawing long-range dependencies from input points, we
also implement a model using the Point-to-Point [18] architecture as encoder
without any self-attention layers. Besides the mean distance error, the runtimes
for both encoders per frame on average are compared. Although the improve-
ment (0.23mm) shown in Table 2 is small, our attention-based encoder (3.80ms)
has much higher running efficiency than point-to-point-based encoder (35.90ms).
This verifies our point that self-attention layer can better capture long-range de-
pendencies in a much more efficient manner.

4.5 Comparisons with the State-of-the-Arts

We compare the performance of the proposed NARHT on multiple public 3D
hand pose datasets with most of state-of-the-art methods, including 2D and
3D-based approaches [31,53,43,20,30,6,44,55,12,47,7,18,14,28,32,16]. The com-
prehensive experimental results are given in Fig. 3 on fraction of good frames
over different thresholds, Fig. 4 on per-joint mean error (mm), Table 1 on mean
joint distance error (mm), and Table 2 on inference speed.

Before we perform specific analysis for each dataset. We want to point out, in
terms of the percentage of good frames, when the error threshold is larger than
20mm for ICVL, 5mm for MSRA, 30mm for NYU, our method is superior to
previous state-of-the-art methods by a certain margin. This reveals, compared
with other methods, our model has the most number of good frames with all
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estimated joints within a certain range deviated from the ground truth joint.
This also verifies the robustness of our model and meets our expectation since
we explicitly enforce necessary structured pose patterns into the decoding pro-
cess. Some qualitative results for three datasets are also presented in Fig. 5.

ICVL. Our method can outperform other methods except for the A2J [47],
Point-to-Point [18], and V2V-PoseNet [28] on overall mean distance error shown
in Table 1. However, as shown in Table 2, while our mean error is slightly infe-
rior to V2V-PoseNet, Point-to-Point, our method has higher inference efficiency,
especially compared with V2V-PoseNet.

MSRA. Our method is superior to the current methods except for DenseReg [44]
on the overall mean distance error. However, as mentioned above, our method
has the best fraction of good frames when the threshold is larger than 5mm on
MSRA and better results over almost all thresholds than DenseReg. More im-
portantly, although our method is 3D-oriented, our model still runs much faster
than DenseReg according to Table 2.

NYU. In terms of the overall mean error distances, our method in most cases
outperforms current state-of-the-art models, except for A2J, Point-to-Pose [26],
V2V-PoseNet, and Point-to-Point. However, our model is superior to Point-to-
Point and V2V-PoseNet on fraction of good frames when the threshold is larger
than 30mm by a large margin. Since we do not have the curve for A2J and
Point-to-Pose, we cannot compare on this aspect.

HANDS 2017. We also compare with A2J, Point-to-Pose, V2V-PoseNet, and
Hand PointNet [14] on HANDS 2017. While our mean distance error is inferior
to A2J, Point-to-Pose, and V2V-PoseNet on seen cases, our model outperforms
other methods except for A2J on unseen data.

5 Conclusion

In this paper, we propose to connect structured hand pose estimation problem
with the sequence transduction tasks in NLP field in the goal to fully inves-
tigate related structural information for precise pose prediction. Following the
Transformer framework and proposed non-autoregressive decoding strategy, we
can condition each joint generation on necessary pose dependencies as well as
selective input features. Experimental results on multiple challenging datasets
verify the effectiveness of our model, comparing to state-of-the-art methods in
real-time performance. In the future, we plan to explore more possibilities re-
garding bridging the gap between the structured output learning problems in
pose estimation and NLP fields, such as pose estimation from RGB images and
image captioning.
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