
Supplementary Material: Improving Query
Efficiency of Black-box Adversarial Attack

Yang Bai1,4,?, Yuyuan Zeng2,4,?,
Yong Jiang1,2,4,†, Yisen Wang3,†, Shu-Tao Xia2,4, and Weiwei Guo5

1 Tsinghua Berkeley Shenzhen Institute, Tsinghua University
2 Tsinghua Shenzhen International Graduate School, Tsinghua University

3 Shanghai Jiao Tong University
4 PCL Research Center of Networks and Communications, Peng Cheng Laboratory

5 vivo AI Lab

A The Structure of ANP in NP-Attack

Here, we show the detailed structure of the pre-trained ANP [15, 27] model on
CIFAR10 [17].

B More Optimization Options of NP-Attack

Here we show the details of the other two optimization options, NP-Attack-Z
and NP-Attack-RZ.

NP-Attack-Z In this case, we fix r and optimize on the distribution of z, in
order to sample z with adversary. Under the guidance of score outputs in each
query, to be simplified, we just optimize the predictive mean µ, keeping σ fixed.
The optimization of our NP-Attack is inherited from NES [31], which could
enhance query efficiency compared with those vector-wise gradient estimation
strategies. Omitting the fixed r while inheriting Decoder g from the pre-trained
NP, the estimated loss function in our NP-Attack could be considered as L =
EN (z|µ,σ2)l(g(z)). The optimization of µ is implemented by adding some random
Gaussian noises and further using NES to estimate the gradient. Those added
Gaussian noises are of the same variance with z in pre-trained NP. The reason
comes as that a same variance could keep z of a simpler representation for
variance after adjustment in each iteration, which benefits the optimization later.
The optimization function could be computed as: µt+1 ← µt − η∇µL |µt

, where
η denotes a learning rate. To guarantee such optimization being more accurate,
in practice the optimization is over a mini-batch of sample size b, which means

? Equal contribution. ({y-bai17, zengyy19}@mails.tsinghua.edu.cn)
† Corresponding authors: Yisen Wang (eewangyisen@gmail.com) and Yong Jiang

(jiangy@sz.tsinghua.edu.cn).



2

Table 1. Structure of the deterministic part of encoder h. (The input of Linear1
includes the pixel position: 3072 (32 × 32 × 3) × 3, the pixel value in RGB respectively:
3072 × 1, thus with a size of 3072 × 4 in total.)

Layer Input Output Activation function

Linear1 3072×4 3072×128 ReLU
Linear2 3072×128 3072×128 ReLU
Linear3 3072×128 3072×128 ReLU
SelfAtt 3072×128 3072×128 -

CrossAtt 3072×128 3072×128 -
Linear4 3072×128 3072×128 -

Table 2. Structure of the sampled latent part of encoder h.

Layer Input Output Activation function

Linear1 3072×4 3072×128 ReLU
Linear2 3072×128 3072×128 ReLU
Linear3 3072×128 3072×128 ReLU
SelfAtt 3072×128 3072×128 -
Mean 3072×128 3072×128 -

Linear4 3072×128 3072×128 -

Table 3. Structure of the latent part of decoder g. (The input of Linear1 includes the
deterministic path: 3072 × 128, the sampled latent path: 3072 × 128 and the target
pixel position: 3072 × 3, thus with a size of 3072 × 259 in total.)

Layer Input Output Activation function

Linear1 3072×259 3072×128 ReLU
Linear2 3072×128 3072×128 ReLU
Linear3 3072×128 3072×128 ReLU
Linear4 3072×128 3072×1 ReLU

we add b random perturbations independently during each iteration and operate
on those outputs. So the updating operation is on the average values instead:

µt+1 ← µt −
η

b

b∑
i=1

l(g(zi))∇µt
logN (zi | µi, σ2). (1)

Given that µi = µt + piσ, zi = µi + piσ = µt + 2piσ, where pi is sampled from
the standard Gaussian distribution N (0, I), and σ is multiplied to keep a simple
representation for variance, ∇µt

logN (zi | µi, σ2) ∝ σ−1pi.

NP-Attack-RZ Similarly, we propose NP-Attack-RZ as a third choice by opti-
mizing both r and z simultaneously. The operation is the same with NP-Attack-
R/Z as shown in Algorithm 1.



3

C The Visual Comparison of Adversarial Examples by
Different NP-Attack Versions.

We show the adversarial examples generated by NP-Attack-R/Z/RZ in Figure
1. We observe that adversarial perturbations generated by NP-Attack-R are
centered around the main digits while perturbations generated by NP-Attack-
Z are scattered on the background. Furthermore, the location of adversarial
perturbations in NP-Attack-RZ is somehow in a moderate degree between NP-
Attack-R and NP-Attack-Z.

Optimize R

Optimize Z

Optimize R&Z

Benign

Fig. 1. Adversarial examples of different optimization methods (NP-Attack-R/Z/RZ).

D Evaluation on Additional Architectures

We additionally do experiments under ε = 0.031 on CIFAR-10 on various archi-
tectures including ResNet18 [12], VGG16 [24] and WideResNet [35]. We compare
NP-Attack-R with the state-of-the-art NAttack here and report the attack suc-
cess rate (ASR) and average queries in Table 4. We conduct untargeted attacks
with the same experimental setting of Section 4.2. The experimental results
demonstrated that our method still outperforms towards various architectures.

Table 4. Adversarial evaluation of untargeted black-box attacks on CIFAR-10 on
various architectures.

Attack Method
ASR Avg Queries

ResNet18 VGG16 WRN ResNet18 VGG16 WRN

NAttack 96.79% 100% 99.89% 311 430 335
NP-Attack-R(Ours) 100% 100% 100% 185 294 196



4

E The Generated Adversarial Examples on ImageNet by
NP-Attack

We show the adversarial examples generated by our NP-Attack-R here. It is
demonstrated that though we perturb each 32×32×3 patch in the original im-
ages, the perturbation generated by our method is still imperceptible.

Tench

Coho

Brittany spaniel

German short-haired 
pointer

Sundial

Wall clock

Fig. 2. Adversarial example of ImageNet generated by NP-Attack-R on untargeted
attack bounded by L∞=0.05. Top row shows the original images and the true labels
while the bottom row are the adversarial examples with predicted label.


