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Abstract. Deep neural networks are generally considered black-box mod-
els that offer less interpretability for their decision process. To address
this limitation, Class Activation Map (CAM) provides an attractive so-
lution that visualizes class-specific discriminative regions in an input
image. The remarkable ability of CAMs to locate class discriminating
regions has been exploited in weakly-supervised segmentation and lo-
calization tasks. In this work, we explore a new direction towards the
possible use of CAM in deep network learning process. We note that
such visualizations lend insights into the workings of deep CNNs and
could be leveraged to introduce additional constraints during the learn-
ing stage. Specifically, the CAMs for negative classes (negative CAMs)
often have false activations even though those classes are absent from
an image. Thereby, we propose a loss function that seeks to minimize
peaks within the negative CAMs, called ‘Homogeneous Negative CAM ’
loss. This way, in an effort to fix localization errors, our loss provides
an extra supervisory signal that helps the model to better discriminate
between similar classes. Our designed loss function is easy to implement
and can be readily integrated into existing DNNs. We evaluate it on
a number of classification tasks including large-scale recognition, multi-
label classification and fine-grained recognition. Our loss provides better
performance compared to other loss functions across the studied tasks.
Additionally, we show that the proposed loss function provides higher
robustness against adversarial attacks and noisy labels.

1 Introduction

The conventional training strategy for deep neural networks (DNNs) involves
loss functions that operate on the logit space [19, 30]. Given an input, a DNN
model learns a function that maps it to the output label space, where the loss
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Fig. 1. Comparison of the class activation maps (CAMs) between the baseline (CE
loss) and our proposed loss, for sample images from ImageNet [6]. Positive CAMs are
shown on the far left, followed by top four negative CAMs, which are ranked based on
classification probability. For each CAM, the corresponding class name and predicted
probability are shown in the upper right region. For the baseline, there are many false
activations in the negative CAMs (see first and third row). In contrast, our method
produces clearer negative CAMs, thus avoiding localization errors and leading to a
higher classification accuracy.

is computed. The network thus learned is considered a ‘black-box’ model whose
prediction process lacks transparency for human understanding and interpre-
tation. To resolve this limitation of DNNs, a number of approaches have been
proposed to visualize the decision process within deep networks [31,32,42]. These
approaches provide interpretable and intuitive explanations for DNN decisions,
making them more transparent and explainable. One popular way to visualize
the internal mechanics of DNNs is using the attention visualization correspond-
ing to each category.

Zhou et al. [46] proposed class activation mapping (CAM), which illustrates
the discriminative spatial regions in an image that are relevant to a specific class.
Due to their remarkable ability to locate class-specific discriminative regions,
CAMs have been shown to provide cost-free localizations for objects using just
the image-level labels. In this work, we show that the interpretation provided by
CAMs, into the internal mechanics of DNNs, can be exploited to add additional
constraints and provide an extra supervisory signal during network optimization.
Concretely, since a CAM provides coarse object location for a class, if the class
is absent, the corresponding CAM should be relatively clear and have no or
less attentive regions (peaks), compared with the CAM for the positive class.
Hence, our novel loss function, called Homogeneous Negative CAM (HNC) loss,
is proposed to suppress the peaks in the activation maps corresponding to the
negative classes.

Despite the simplicity of our approach, it provides clear gains in problems
such as image recognition, multi-label classification and fine-grained recognition.
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For example, compared to the Cross Entropy (CE) loss baseline, HNC loss deliv-
ers absolute top-1 accuracy gains of 1.2% and 1.1% on CIFAR-100 and ImageNet
datasets, respectively. The suppression of negative CAMs provides an additional
supervision to the deep network, which helps resolve confusions regarding the
final prediction, thereby helps improve the overall classification performance.
As shown in Fig. 1, removing false peaks from negative CAMs also results in
visualizations that are more consistent and faithful to given class labels for an
image. Furthermore, we demonstrate that the HNC loss improves robustness of
the learned model towards adversarial attacks and noisy labels.

2 Related Works

In this section, we first introduce popular network visualization approaches, and
then review the recent advances in loss functions for optimizing the DNNs.
Network Visualization. Patterns that can maximally activate particular units
within a deep network were synthesized using gradient information in [11,27,32].
Deep feature representations have also been inverted to reconstruct the corre-
sponding input image [9,27]. Another category of visualization methods includ-
ing DeConvNet [42] and Guided Back-propagation [33] amplify the salient pat-
terns in an image by modifying the raw gradients. As such, the above-mentioned
visualization methods are either non-discriminative for different classes or il-
lustrate model behavior as a whole, instead of providing an image-specific vi-
sualization. To address this requisite, [46] proposed an activation visualization
mechanism (i.e. CAM) that sheds light on the implicit attention of a DNN on an
image. While [46] is applicable to a specific class of architectures (e.g., without
fully connected layers), [31] extended the concept to work with a broader range of
DNN architectures. Due to the class-discriminative nature and simplistic design
of [46], we base our loss formulation on class activation maps.
Loss Functions. A major factor in deep neural network’s design is the choice of
a correct objective function. Cross-entropy loss is hitherto the most popular loss
function for computer vision problems such as classification, retrieval, detection
and segmentation [13]. For special cases, alternative loss functions have been
proposed in the literature, which can be grouped into two main classes, (a) max-
margin loss functions and (b) data-imbalance losses. The margin maximizing loss
functions put relative constraints with respect to other class boundaries such that
each class is well-separated in the output space [7,12,26]. These constraints are
generally posed as an angular margin [7,25,26,37], a spatial distance measure [16]
or as a ranking penalty for multi-label classification problems [12,44]. In the sec-
ond category, cost-sensitive objectives [8,17,18] are designed to re-weight the loss
such that all classes in a long-tail data distribution are adequately modeled. From
another perspective, a set of loss functions seek to re-balance back-propagated
gradients by focusing on difficult examples and putting less emphasis on easy
cases [23,29].

The closest to our approach are [2,10,15]. Among these, [10] seeks to minimize
the peaks in the output ‘logit’ space to improve generalization on fine-grained
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tasks. Guo et al. [15] work on CAMs, but impose a consistency constraint that
tries to obtain similar CAMs for original and transformed images. Finally, [2]
flattens out the negative class scores in the logit-space to achieve adversarial
robustness. In contrast to these loss functions, we seek to remove peaks with in
the CAMs for negative classes, thus ensuring that implicit CNN attention con-
forms with the information available from ground-truth labels. We extensively
compare our approach with the above mentioned loss functions and demonstrate
significant improvements.

3 Method

In this section, we first introduce class activation maps, and then give a de-
tailed description of our loss, followed by gradients analysis. Finally, we show
the comparative analysis between two proposed variants of HNC loss.

3.1 Class Activation Maps

Consider the multi-class image classification task with n classes. Let I be a
training image with ground-truth label l ∈ J , where J = {1, 2, ..., n} is the
label set. Let F ∈ Rc×h×w denotes the high-level feature maps, output from
network’s last convolution layer, where c, h, w denote number of channels, height
and width of the feature maps, respectively. After passing F through a global
average pooling (GAP) layer and a fully connected (FC) layer with weight matrix
W ∈ Rc×n, class confidence scores s = {si : i ∈ J} ∈ Rn are obtained to make
the final predictions.

Class activation mapping [46] is a simple visualization approach that has
shown great potential in localizing discriminative regions corresponding to a
class. As a result, it has been used in both weakly supervised and fully supervised
settings for a variety of tasks, such as classification [46], object localization [3,49],
segmentation [34,47] and counting [4]. As shown in [46], we can simply convolve
the feature maps F and W to obtain class activation maps M ∈ Rn×h×w,

Mo =
∑
k

wk,oFk, (1)

where Mo ∈ Rh×w is the class activation map (CAM) corresponding to an
output class ‘o’, wk,o is the element in the kth row and oth column of matrix
W , and Fk ∈ Rh×w is the feature map corresponding to the kth channel. For
simplicity, the bias term is omitted in Eq. 1.

Most previous works use the CAM of the positive class, e.g., as a clue for
coarse object localization [1,4], and ignore the CAMs for negative classes. How-
ever, we find that there are many false peaks in negative CAMs as showed in
Fig. 1, which in turn negatively affect the classification performance resulting in
false positives. Following this intuition, we propose a novel loss to suppress the
highly activated regions in the negative CAMs.
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Fig. 2. Overview of our proposed Homogeneous Negative CAM loss. From left to right,
a positive class activation map (CAM) followed by a group of negative CAMs is shown.
Negative CAMs are ranked based on their classification scores. Our proposed loss (two
variants: HNCmse and HNCkd) is designed to suppress the false activations in the
negative CAMs. As shown on top, during the early training phase, there are several false
peaks in the negative CAMs. After training with our loss, the negative CAMs generated
during the inference stage are flattened out, which leads to a correct prediction.

3.2 Our Proposed Loss

Our Idea. The basic idea of our ‘Homogeneous Negative CAM ’ (HNC) loss is
to suppress the false activations on the class activation maps for negative classes
(see Fig. 2). When the positive class and the negative class are very different
(e.g., plane vs. tree), it is understandable that the CAM for a negative class
should not be focused on any particular region. For the situation where the
positive and negative classes are similar (e.g., warplane vs. airliner), our loss
remains relevant. By using our proposed loss, the CAM for the negative class
is forced to be relatively clearer (less peaks), helping the network to resolve the
confusions between similar classes and leading to correct prediction. Suppress-
ing the false activations in the CAMs thus provides additional supervision to
the network, compared to the normal CE loss which only suppresses the class
confidence scores for negative classes (average of negative CAMs).

We develop two alternatives for enforcing homogeneity in negative CAMs.
The first approach simply uses the Mean Square Error (MSE) loss to suppress
the peak responses, while the second approach minimizes the KL-divergence
between negative CAMs and a uniform map. We refer to these two approaches
as the HNCmse loss and HNCkd loss, respectively.
HNCmse Loss. The general idea is to suppress the CAMs for the top-k negative
classes (with k highest confidence scores) using the MSE loss.

We define J
′

as the set of all negative classes: J
′

= {i : i ∈ J ∧ i 6= l}. Let
s′ = {si : i ∈ J

′} be the set containing the confidence scores of all negative
classes. We compute the kth highest values of s′ and denote it as tk. Next, we
obtain J

′

> by thresholding s using tk, defined as follows:

J
′

> = {i : i ∈ J
′
∧ si ≥ tk}
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where, J
′

> contains the negative classes whose confidence scores are within the
top-k of all negative classes. Then, our HNCmse loss is defined as follows:

HNCmse(M , l) =
1

hw

∑
o∈J′

>

∑
i,j

(
Mo(i, j)−α

)2
, (2)

where i, j denote the indices and α is the constant towards which the peaks in
Mo are suppressed and we set it as 0 for all o ∈ J ′

>.
HNCkd Loss. In an ideal situation, the negative CAMs should be clear, provid-
ing no focused region for negative classes. Thus, we propose to force the top-k
negative CAMs to have a uniform spatial distribution. Let U ∈ Rh×w be a
uniform probability matrix with all elements equal to 1/(hw). Our HNCkd loss
minimizes the KL-divergence between the negative CAMs and U :

HNCkd(M , l) =
∑
o∈J′

>

DKL

(
U ||M

′

o

)
, (3)

where M
′

o = σ(Mo) and σ is the softmax activation function to convert Mo to
a probability map. We denote,

DKL(U ||M
′

o) =
∑
i,j

U(i, j) log
U(i, j)

M ′
o(i, j)

= const− 1

hw

∑
i,j

log
(
M

′

o(i, j)
)
, (4)

where const is a constant. After removing the constant and combining Eq. 3 and
Eq. 4, we get the HNCkd loss as:

HNCkd(M , l) = − 1

hw

∑
o∈J′

>

∑
i,j

log
(
M

′

o(i, j)
)
. (5)

Overall Loss. The overall loss is the weighted combination of cross entropy and
HNC losses. We note that our proposed loss can also be used together with other
image classification losses, e.g., Focal loss [23] and LGM loss [36]. In this work,
we stick with combining our loss function with the basic cross entropy loss to
demonstrate the concept (idea) and clearly show its benefit. Hence, cross entropy
loss is the fair baseline and used frequently in our experiments (§4). As shown
by our results (§4), this combination works well on various tasks and datasets.
The cross entropy (CE) loss is defined on class confidence scores s as:

CE(s, l) = − log
exp (sl)∑
i∈J exp(si)

, (6)

where si is the ith element of s. The overall loss is defined as follows:

Lcl(s,M , l) = CE(s, l) + λ HNC(M , l). (7)

Here, λ is the hyper-parameter controlling the weight of the HNC loss, which
can be implemented according to Eq. 2 or Eq. 5.
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Multi-label Classification. For multi-label classification, we adopt the weighted
sigmoid cross-entropy (SCE) loss, as in [22]. For an image I, let l = {li ∈ J}
denotes the set containing all ground-truth classes. Then, the loss function is,

SCE(s, l) = − 1

n

(∑
o∈l

uo log
1

1 + exp(−so)
+
∑
o/∈l

uo log
exp(−so)

1 + exp(−so)

)
,

uo = exp(1− po)[o ∈ l] + exp(po)[o /∈ l],

(8)

where po is the probability of positive samples for class ‘o’ in the training set.
Despite the SCE loss being used, we can generate class activation maps and
J

′

> in the same way as multi-class classification. The overall loss for multi-label
classification (Lmlc) is as follows:

Lmlc(s,M , l) = SCE(s, l) + λ HNC(M , l). (9)

Here, the HNC loss can be implemented according to Eq. 2 or Eq. 5.

3.3 Gradient Analysis

We consider the overall loss given by Eq. 7. Since, so = 1
hw

∑
i,j Mo(i, j), we

can compute the derivative of the overall loss with respect to Mo(i, j) to obtain
the gradient formulae denoting the effect of change in class-activation maps on
the net loss. For simplicity, we write Mo(i, j) as M i,j

o here. First, for the cross
entropy loss, by chain rule:

∂CE(s, l)

∂M i,j
o

=
∂CE

∂so
· ∂so

∂M i,j
o

, where
∂CE

∂so
=

exp(so)∑
k exp(sk)

− yo,
∂so

∂M i,j
o

=
1

hw
,

∂CE(s, l)

∂M i,j
o

= β
exp(β

∑
i,j M

i,j
o )∑

k exp(β
∑

i,j M
i,j
k )
− βyo, (10)

where y is a one-hot encoded vector and β = 1
hw . Similarly for HNCmse,

∂HNCmse

∂M i,j
o

= 2β(M i,j
o −α). (11)

For the KL divergence, the derivative is given by:

∂HNCkl

∂M i,j
o

=
exp(M i,j

o )∑
i′,j′ exp(M i′,j′

o )
− β. (12)

Discussion. For cross entropy loss, we observe that the gradient for every loca-
tion of the class activation map Mo, is always the same regardless of the pixel
intensities, as seen from Eq. 10. It is expected, since the CE works directly on
the class confidence scores, which is the average of Mo. However, for our loss, the
gradients (Eq. 11 and Eq. 12) for different locations of the Mo can be different.
Specifically, a false peak region of the top-k negative CAMs has higher gradients
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Fig. 3. Comparison between HNCmse and HNCkd. Peak and Regular CAM cases are
shown as toy examples to illustrate the behavior of both losses. Both pixel maps
(columns 4-7) and line plots (columns 2-3) are shown. (best viewed with zoom)

than non-peaked regions. As a result, those regions would be suppressed more,
helping network to better differentiate the positive class and those top-k negative
classes (the most confusing ones).

One may argue that when using a normal CE loss, some regions of the neg-
ative CAMs can be very negative and our loss can have the effect of further
increasing those negative values. Note that this scenario is unlikely because our
loss is used together with CE loss. CE loss pushes the overall scores of negative
CAMs to be small while our loss pushes the negative CAMs to be homogeneous
(without peaks). The overall effect is that peaks will be suppressed.

3.4 Comparison: HNCmse vs. HNCkd

In order to study the comparative nature of both proposed loss functions, we
consider two typical cases for CAM. (a) A highly-focused CAM with a single peak
region (peak CAM ). (b) A normal case where the CAM is neither too focused
nor too spread out (regular CAM ). These two example cases are shown from
top to bottom in Fig. 3. For each case, we illustrate a comparison between loss
and gradient values for HNCmse and HNCkd loss functions. From the gradients
maps (last two columns in Fig. 3), we clearly observe that for our loss, different
locations of the CAMs can have different gradients, which is consistent with our
analysis in §3.3. Below, we derive an alternate form for HNCkd that will help us
better understand the comparison between the two variants.

Proposition 1. The minimization of HNCkd is equivalent to minimizing the
maximum (peak) value in Mo, while simultaneously maximizing the average
CAM response M̄o (mean of Mo) : o ∈ J ′> to obtain a homogeneous CAM.

Proof. Consider the loss defined in Eq. 5. By putting M ′
o = σ(Mo) and simpli-

fying, we get:

HNCkd(M , l) =
∑
o∈J′

>

[
log
∑
i′,j′

exp(M i′,j′

o )−M̄o

]
,
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where, the first term on the right is the Log-Sum-Exp (LSE) function, which is a
smooth approximation of the max operation. Then, since LSE(Mo) > max(Mo),
HNCkd acts as an upper bound for the following expression:

HNCkd(M , l) >
∑
o∈J′

>

[
max(Mo)− M̄o

]
.

As a result, when minimizing HNCkd, we are effectively reducing the peak values
in negative CAMs, while simultaneously maximizing the average CAM response.

The above proposition shows that the loss values for HNCkd follow a linear re-
lation with the local values in the input CAM. On the other hand, HNCmse

imposes a quadratic penalty that focuses more on the extreme values. Thereby,
HNCmse is relatively more sensitive to outliers in the CAM, while HNCkd ap-
plies a relatively smoother penalty. In our experiments, we notice nearly similar
performance from both HNCkd and HNCmse.

4 Experiments

In this section, we conduct extensive experiments to demonstrate the effective-
ness of our proposed loss function. Specifically, we evaluate our loss on general
image recognition (see §4.1), multi-label classification (see §4.2), fine-grained
classification (see §4.3), adversarial robustness (see §4.4), and noisy label learn-
ing (see §4.5). Then, ablation studies are performed in §4.6. All experiments are
carried out using the Pytorch framework on NVIDIA Tesla V100 GPUs.

4.1 General Image Classification

For the task of general image classification, we evaluate our loss on the CIFAR-
100 [20] and ImageNet (ILSVRC 2012) [6]. Below, we summarize our results.
CIFAR-100 Classification: CIFAR-100 consists of 60,000 images in total.
Among these images, 50,000 are used for training while the remaining 10,000
are used for testing. CIFAR-100 has a total of 100 classes, each with 600 images.
The results are averaged over 5 runs.

We train two backbone networks, ResNet-56 and ResNet-110, from scratch
with our loss. We use input images with the original resolution after standard
data augmentation, i.e., random flipping and cropping with a padding of 4 pixels
on each side. The learning rate is initially set to 0.1, and dropped by a factor of
0.1 at 84 and 122 epochs. We train our model for 164 epochs in total.

Table 1 shows the comparisons between our loss and other recent or top-
performing loss functions including Center loss [39], Large-margin Gaussian Mix-
ture (LGM) loss [36], Focal loss [23], Class-balanced (CB) Focal loss [5], Angular
softmax (A-Softmax) loss [25], Large-margin cosine (LMC) loss [38], Additive
Angular Margin (AAM) loss [7], and Anchor loss [29]. Among these loss func-
tions, [2, 7, 25, 36, 38] focus on margin maximization between classes to enhance



10 G. Sun et al.

ResNet-56 ResNet-110
Loss Functions Publication

Top-1 Top-5 Top-1 Top-5

Cross Entropy - 72.40 92.68 73.79 93.11

Center Loss [39] ECCV16 72.72 93.06 74.27 93.20

LGM Loss [36] CVPR18 73.08 93.10 74.34 93.06

Focal Loss [23] ICCV17 73.09 93.07 74.34 93.34

CB Focal Loss [5] CVPR19 73.09 93.07 74.34 93.34

A-Softmax Loss [25] CVPR17 72.20 91.28 72.72 90.41

LMC Loss [38] CVPR17 71.52 91.64 73.15 91.88

AAM Loss [7] CVPR19 71.41 91.66 73.72 91.86

Anchor Loss* [29] ICCV19 - - 74.38 92.45

Ours (HNCmse) - 73.35 93.11 75.00 93.58

Ours (HNCkd) - 73.47 93.29 74.76 93.65

Table 1. Performance comparisons between different loss functions on CIFAR-100. *:
the number is taken from the corresponding paper. Results show that our loss outper-
forms other losses by a clear margin.

ResNet-101 ResNet-152
Loss Functions

Top-1 Top-5 Top-1 Top-5

CE (reproduced) 23.2 6.7 22.9 6.6

LGM* [36] 22.7 7.1 - -

Ours (HNCmse) 22.3 6.4 21.9 6.1

Ours (HNCkd) 22.1 6.4 21.8 6.0

Table 2. Error rates of different losses on Im-
ageNet. For ResNet-101, our loss outperforms
the baseline by 1.1% in terms of Top-1 error.

Loss Functions Top-1

CE 86.0

Center Loss [39] 86.5

Focal Loss [23] 85.8

Ours (HNCmse) 87.1

Ours (HNCkd) 86.9

Table 3. Accuracy of different loss-
es with ResNet-50 on CUB-200-2011.
Ours surpasses CE by 1.1%.

the performance, [39] performs clustering and [5, 23, 29] focus on discriminat-
ing hard examples. In contrast, our approach develops a simple constraint for
intermediate CAMs of negative classes.

The results show that our loss clearly outperforms other methods. Remark-
ably, compared to the CE loss, our loss achieves 1.07% and 1.21% improvements
(top-1 accuracy) on ResNet-56 and ResNet-110, respectively. The fact that our
loss has a larger margin over CE using ResNet-110 than ResNet-56 is possibly
due to the higher redundancy in a larger network, which can lead to more seri-
ous over-fitting. Among other loss functions, both the LGM loss [36] and Focal
loss [23] perform well, but are inferior to our loss for both ResNet-56 and ResNet-
110. Note that CB Focal [5] was designed for targeting class-imbalance in the
training set. For CIFAR-100, since all classes have the same number of images,
CB Focal performs as well as the Focal loss. The loss functions that operate on
the hyper-sphere manifold [7,25,38] perform a bit lower which demonstrates the
manifold assumption does not hold true for CIFAR-100.

ImageNet Classification: ImageNet [6] is a large-scale dataset for visual recog-
nition. It contains ∼1.2 million training and 50,000 validation images.

We train ResNet-101 and ResNet-152 with the proposed loss. Basically, input
image is random cropped to size of 224 × 224 by scale and aspect ratio. Following
[40], an initial learning rate of 0.1 is used and dropped by a factor of 0.1 after
every 30 epochs. We use a weight decay of 0.0001 and a momentum of 0.9. The
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All
Method

mAP F1-C P-C R-C F1-O P-O R-O

ResNet-101† [48] 75.2 69.5 80.8 63.4 74.4 82.1 68.0

ResNet-101-SRN* [48] 77.1 71.2 81.6 65.4 75.8 82.7 69.9

Baseline ResNet-101* 74.9 69.7 70.1 69.7 73.7 73.6 73.7

Ours
ResNet-101+HNCmse 77.8 72.3 78.9 67.4 76.5 81.9 71.9
ResNet-101+HNCkd 77.6 72.3 75.8 69.7 76.1 78.2 74.1

Baseline AC* [15] 77.5 72.2 77.4 68.3 76.3 79.8 73.1

Ours
AC+HNCmse 78.5 72.8 79.6 67.9 76.9 82.3 72.1
AC+HNCkd 78.2 72.9 76.8 70.0 76.6 78.6 74.7

Table 4. Comparisons between methods w/ and w/o our loss on MS-COCO using
different metrics. ‘ResNet-101†’ represents the baseline implemented with complex data
augmentations in [48] and * means the number is taken from [15]. Our loss provides a
gain over both basic and strong baselines.

training is terminated at 120 epochs. Training is conducted on 8 Tesla V100
GPUs, using a total batch size of 256. To make fair comparison, all models are
trained under the same strategy, unless specifically stated.

Table 2 shows results of our loss on ImageNet. Though our loss is simple, it
proves very effective for large-scale recognition task. By simply replacing the CE
with HNC loss, the error rate is reduced by a margin of 1.1% on both ResNet-101
and ResNet-152. Our loss also outperforms the recently proposed LGM loss [36],
which is based on the assumption that deep features follow a Gaussian Mixture
distribution. Note that, similar to CIFAR-100, both variants of our loss give
comparable results.

4.2 Multi-label Classification

We conduct multi-label classification experiments on MS-COCO dataset [24]. It
contains 82,783 training and 40,504 validation images, annotated with 80 labels.
Since ground-truth labels are not available for the test set, we train our network
on the training set and evaluate it on the validation set, following [15]. Our loss
is tested on the official implementation of [15].

We follow the same training strategy as in [15]. Namely, an input size of
288 × 288 is used, and we fine-tune ResNet-101, pretrained on the ImageNet
dataset. The initial learning rate is 0.001, and dropped with a factor 0.1 after
6 and 8 epochs. Following other works in multi-label classification [15, 43], the
evaluation metrics we choose are: mean Average Precision (mAP), as well as
macro and micro precision/recall/F1-score (denoted as P-C, R-C, F1-C, P-O,
R-O, F1-O, respectively). For details of these metrics, we refer to [43].

The performance comparisons between HNC and baselines are shown in Table
4. In terms of mAP, both HNCmse and HNCkd outperform the baselines. Specif-
ically, for the baseline ResNet-101, HNCmse achieves a gain of 2.9% in mAP. For
the stronger baseline method named Attention Consistency (AC) [15], HNCmse

is also superior and achieves a 1.0% increment. Notably, the AC approach is also
a loss working on the CAMs. It forces the transformed CAMs of original images
to be consistent with the CAMs of the transformed images. Our loss is related to
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Table 5. Performance compar-
ison of our loss against FGSM
attack with different perturba-
tions (ε) on CIFAR-100 using
ResNet-110 architecture.

ε CE Center Loss [39] Ours (HNCmse) Ours (HNCkd)

0.05 14.55 14.76 23.92 29.80

0.1 9.89 10.42 17.20 21.80

0.2 6.15 7.17 11.01 12.96

0.3 3.79 5.54 6.90 7.06

Noise type r 0.2 0.4 0.6 0.8

symmetric
CE 51.98 38.76 22.48 9.16

HNCmse 58.98 48.03 32.86 14.73
HNCkd 56.59 44.86 29.15 12.20

(a)

Noise type r 0.1 0.2 0.3 0.4

asymmetric
CE 63.10 56.60 49.33 40.89

HNCmse 67.18 62.91 56.12 46.51
HNCkd 65.33 59.72 51.98 43.04

(b)

Table 6. CIFAR-100 results with symmetric (a) and asymmetric (b) noise.

AC since both can reduce the over-fitting (due to redundancy) in the network.
But AC does not explicitly consider the negative CAMs, which have many false
activations and need to be suppressed.

4.3 Fine-grained Classification

For fine-grained classification, we evaluate our loss on the CUB-200-2011 dataset
[35], which is widely used for this task. It contains 5,994 training and 5,794 test
images, each of which belongs to one of 200 bird classes.

We fine-tune ResNet-50, which is pretrained on the ImageNet dataset. The
initial learning rate is set to 0.001 and reduced by 0.1 after 50 epochs. A total
batch size of 16 is used and the model is trained using 2 GPUs.

Table 3 shows the results of different losses with ResNet-50 on CUB-200-
2011. Both HNCmse and HNCkd outperform the baseline (ResNet-50 with CE
loss), by a margin of 1.1% and 0.9%, respectively. Remarkably, our proposed loss
also outperforms other losses, including Center loss [39], and Focal loss [23].

4.4 Adversarial Robustness

Since our proposed loss suppresses negative CAMs, we anticipate this strategy
to be helpful against adversarial attacks. Adversarial examples are generated by
intentionally adding small but imperceptible perturbations to the inputs, which
cause the model to make wrong predictions with high confidence [14]. We con-
sider the most challenging attack case, i.e., the white-box attack, where all the
model parameters and training details are known to the adversary. Specifically,
we use the fast gradient sign method (FGSM) [14], which adopts the gradient
back-propagated from the training loss to determine the direction of the pertur-
bation. An adversarial example I∗ is generated by: I∗ = I + ε · sign(∇IL(I, l)),
where ε is the magnitude of perturbation, I is the input image, l is the ground-
truth label for the input, and L(I, l) is the classification loss function. We select
ε ∈ {0.05, 0.1, 0.2, 0.3} for our experiments.
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Setting CE Ours (HNC)

ResNet-110 - 73.79 75.00

DenseNet-BC k=12, d=100 77.32 78.78

ResNeXt-29 c=8, d=64 81.77 82.32

ResNeXt-29 c=16, d=64 81.98 82.81

Table 7. Comparison between HNC and CE
on various networks. Our loss outperforms
baseline for all considered architectures.

Fig. 4. Top-1 accuracy of HNC for dif-
ferent λ. Dotted line shows the CE loss.

Table 5 shows performance of different losses under FGSM attack on CIFAR-
100 with ResNet-110. We compare with Center loss and CE loss. For all consid-
ered ε, our loss is more robust than the others.

The higher robustness of HNC loss is potentially because it constraints the in-
termediate activations that have been shown to provide better deterrence against
perturbations [28, 41]. Interestingly, we found HNCkd to be considerably better
than HNCmse in this task. This is primarily due to the reason that HNCmse

focuses on the outliers, thus adversarial noise that is generally low in strength
can sneak in easily. In contrast, HNCkd gives an equal penalty to all deviated
negative CAM values, thus blocking away the maliciously crafted perturbations.

4.5 Learning from Noisy Labels

Here, we show the effectiveness of our loss for learning from noisy labels. This
area has recently attracted lots of research attention. We test on CIFAR-100
using ResNet-110 following the training strategy described in §4.1. We use both
the symmetric noise setting, where label noise is uniformly distributed among all
categories with probability r, and asymmetric noise setting, where each ground-
truth class is flipped to the next class circularly with probability r. Thus, r ∈
[0, 1] denotes the noise rate. Following [21], we choose r of 0.2, 0.4, 0.6, and 0.8 for
symmetric noise, and r of 0.1, 0.2, 0.3, 0.4 for asymmetric noise. Following [45],
we retain 10% of training data as validation set.

The results are shown in Table 6 where we report test accuracy of the last
epoch. Our HNC loss outperforms the baseline (CE) with a large margin. Re-
markably, for symmetric noise with noise rate 0.6, our loss obtains a absolute
improvement of 10.38%, compared with the baseline.

4.6 Ablation Study

We conduct ablation studies on the CIFAR-100. Firstly, we show how λ, the
factor balancing the CE and HNC, affects the accuracy. Fig. 4 shows the change
in performance with respect to λ. For both HNCmse and HNCkd, the effect
of λ follows a similar trend. In the beginning, classification accuracy increases
when λ is increased. This is potentially because the negative CAMs are more
suppressed and thus become smoother when λ increases. However, after a certain
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Fig. 5. Qualitative comparisons of CAMs between our method and baseline (CE), for
images from ImageNet [6]. For each sample, we first show original image (left), followed
by the CAMs of the baseline (top) and our loss (below). The CAMs follow the sequence:
the positive CAM on left and then top-4 negative CAMs (ranked by the score). For
each CAM, the class name and probability are shown in white. For all considered cases,
our loss clears the negative CAMs, thus leading to the correct prediction.

threshold, the performance drops as λ is further increased. This is because with
very large λ, the relative weight of the CE loss is lower and the network loses
focus on classification task. For all considered values of λ, our loss outperforms
the baseline (CE loss), which again validates the soundness of our proposal.

We also compare HNC performance across various architectures. Since HNCmse

and HNCkd performs similarly, we compare HNCmse with CE in Table 7. Our
loss outperforms CE for different architectures, which shows its effectiveness.

4.7 Qualitative Results and Analysis

We show the qualitative results in Fig. 5. The main effect of our loss on CAMs
can be summarized into two cases: (i) clearing the negative CAMs and locating
a similar discriminative region as the baseline (top samples in Fig. 5); (ii) clear-
ing the negative CAMs but locating a totally different and more discriminative
region (below samples in Fig. 5). We conjecture that if our constraints can be
satisfied when locating a similar region, the first case happens. However, if the
positive class and negative classes are very difficult to separate, i.e. the relevant
region located by the baseline is not discriminative enough, then the network is
forced to find a different and more informative region to classify objects.

5 Conclusion

In this paper, we propose a novel loss (HNC) to suppress false activations in the
negative CAMs. Its effectiveness is demonstrated by extensive experiments on
various tasks: generic image recognition, multi-label classification, fine-grained
classification, adversarial robustness, and learning from noisy labels. We observe
that our loss successfully clears the negative CAMs and leads to consistent vi-
sualizations and improved performance across all studied tasks.
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